Digital Design Basics

- Two voltage levels - high and low (1 and 0, true and false) Hence, the use of binary arithmetic/logic in all computers
- A transistor is a 3-terminal device that acts as a switch

Logic Blocks

- A logic block has a number of binary inputs and produces a number of binary outputs - the simplest logic block is composed of a few transistors
- A logic block is termed combinational if the output is only a function of the inputs
- A logic block is termed sequential if the block has some internal memory (state) that also influences the output
- A basic logic block is termed a gate (AND, OR, NOT, etc.)

We will only deal with combinational circuits today

Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and an output E that is true only if exactly 2 inputs are true

Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and an output E that is true only if exactly 2 inputs are true

A	B	C	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Can be compressed by only representing cases that have an output of 1

Boolean Algebra

- Equations involving two values and three primary operators:
- OR : symbol + , $X=A+B \rightarrow X$ is true if at least one of A or B is true
- AND : symbol. , $X=A . B \rightarrow X$ is true if both A and B are true
- NOT : symbol ${ }^{-}, X=\bar{A} \rightarrow X$ is the inverted value of A

Boolean Algebra Rules

- Identity law : A + 0 = A ; A. $1=\mathrm{A}$
- Zero and One laws: A + $1=1$; A. $0=0$
- Inverse laws: $A \cdot \bar{A}=0 ; A+\bar{A}=1$
- Commutative laws : $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$; $\mathrm{A} . \mathrm{B}=\mathrm{B} . \mathrm{A}$
- Associative laws : $A+(B+C)=(A+B)+C$

$$
A \cdot(B \cdot C)=(A \cdot B) \cdot C
$$

- Distributive laws : A. $(B+C)=(A . B)+(A . C)$

$$
A+(B \cdot C)=(A+B) \cdot(A+C)
$$

DeMorgan's Laws

- $\overline{A+B}=\bar{A} \cdot \bar{B}$
- $\overline{A \cdot B}=\bar{A}+\bar{B}$
- Confirm that these are indeed true

Pictorial Representations

What logic function is this?

Source: H\&P textbook

Boolean Equation

- Consider the logic block that has an output E that is true only if exactly two of the three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are true

Multiple correct equations:

Two must be true, but all three cannot be true: $E=((A \cdot B)+(B \cdot C)+(A \cdot C)) \cdot \overline{(A \cdot B \cdot C)}$

Identify the three cases where it is true:
$E=(A \cdot B \cdot \bar{C})+(A \cdot C \cdot \bar{B})+(C \cdot B \cdot \bar{A})$

Sum of Products

- Can represent any logic block with the AND, OR, NOT operators
- Draw the truth table
- For each true output, represent the corresponding inputs as a product
- The final equation is a sum of these products

A	B	C	E	
0	0	0	0	
0	0	1	0	$(A \cdot B \cdot \bar{C})+(A \cdot C \cdot \bar{B})+(C \cdot B \cdot \bar{A})$
0	1	0	0	
0	1	1	1	- Can also use "product of sums"
1	0	0	0	- Any equation can be implemented with an array of ANDs, followed by
1	0	1	1	an array of ORs
1	1	0	1	
1	1	1	0	10

NAND and NOR

- NAND : NOT of AND : A nand $B=\overline{A . B}$
- NOR : NOT of OR: A nor $B=A+B$
- NAND and NOR are universal gates, i.e., they can be used to construct any complex logical function

Common Logic Blocks - Decoder

Takes in N inputs and activates one of 2^{N} outputs

I_{0}	I_{1}	I_{2}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Common Logic Blocks - Multiplexor

- Multiplexor or selector: one of N inputs is reflected on the output depending on the value of the $\log _{2} \mathrm{~N}$ selector bits

2-input mux

Adder Algorithm

Truth Table for the above operations:

A	B	Cin	Sum Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adder Algorithm

Truth Table for the above operations:

A	B	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Equations:

$$
\begin{aligned}
\text { Sum }= & \text { Cin } \cdot \bar{A} \cdot \bar{B}+ \\
& \text { B } \cdot \overline{\operatorname{Cin}} \cdot \overline{\mathrm{A}}+ \\
& \text { A } \cdot \overline{\mathrm{Cin}} \cdot \overline{\mathrm{~B}}+ \\
& \text { A } \cdot \mathrm{B} \cdot \mathrm{Cin}
\end{aligned}
$$

Cout $=$ A. B. Cin + A. B. $\overline{\mathrm{Cin}}+$
A. Cin. $\bar{B}+$
B. Cin. \bar{A}
= A. B +
A. Cin +
B. Cin

Carry Out Logic

Equations:

$$
\begin{aligned}
\text { Sum }= & \operatorname{Cin} \cdot \bar{A} \cdot \bar{B} \cdot+ \\
& \text { B } \cdot \operatorname{Cin} \cdot \bar{A}+ \\
& \text { A } \cdot \overline{\operatorname{Cin}} \cdot \bar{B}+ \\
& \text { A } \cdot
\end{aligned}
$$

Cout $=$ A. B. Cin + A. B. $\overline{\mathrm{Cin}}+$ A. Cin. $\bar{B}+$ B. Cin. $\overline{\mathrm{A}}$
= A. B +
A. Cin +
B. Cin

CarryOut

1-Bit ALU with Add, Or, And

- Multiplexor selects between Add, Or, And operations

32-bit Ripple Carry Adder

1-bit ALUs are connected
"in series" with the carry-out of 1 box going into the carry-in of the next box

Incorporating Subtraction

Must invert bits of B and add a 1

- Include an inverter
- Carryln for the first bit is 1
- The Carryln signal (for the first bit) can be the same as the Binvert signal

Source: H\&P textbook

Incorporating NOR and NAND

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NAND	1	1	01
NOR	1	1	00

Incorporating slt

- Perform a - b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The $31^{\text {st }}$ box has a unit to detect overflow and sign - the sign bit serves as the Less signal for the $0^{\text {th }}$ box

Incorporating beq

- Perform a - b and confirm that the result is all zero's

Control Lines

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NOR	1	1	00
NAND	1	1	01
SLT	0	1	11
BEQ	0	1	10

