
Auction Algorithms for Market Equilibrium

Rahul Garg ∗ Sanjiv Kapoor †

ABSTRACT
In this paper we study algorithms for computing market
equilibrium in markets with linear utility functions. The
buyers in the market have an initial endowment given by
a portfolio of items. The market equilibrium problem is to
compute a price vector which ensures market clearing, i.e.
the demand of a good equals its supply, and given the prices,
each buyer maximizes its utility. The problem is of consid-
erable interest in Economics. This paper presents a formu-
lation of the market equilibrium problem as a parameterized
linear program. We construct the dual of these parametrized
linear programs. We show that finding the market equilib-
rium is the same as finding a linear-program from the family
of programs where the optimal dual solution satisfies certain
properties. The market clearing conditions arise naturally
from complementary slackness conditions.

We then define an auction mechanism which computes
prices such that approximate market clearing is achieved.
The algorithm we obtain outperforms previously known
methods.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Economics.

Keywords
Auction Algorithms, Market Equilibrium, Approximation
Algorithms.

∗grahul@in.ibm.com, IBM India Research Lab., Block-I, IIT
Campus, Hauz Khas, New Delhi, INDIA - 110016.
†kapoor@iit.edu, Illinois Institute of Technology, Chicago,
USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

1. INTRODUCTION
In this paper we study algorithms for computing market

equilibrium in markets with linear utility functions. Con-
sider a market comprising n buyers and m items. Each
buyer has an endowment given by a portfolio of items. A
finite quantity of each item is available and is assumed to be
divisible. Further, each (buyer, item) pair has an associated
utility function. This function is assumed to be non-negative
and linear. The market equilibrium problem is to compute
a price vector and a feasible assignment of goods to buy-
ers such that no buyer is induced to change his assignments
with respect to the given set of prices and market clearing
is achieved, i.e. there is no surplus or deficit of the goods.

The problem is of considerable interest in Economics and
was first proposed in 1891 by Fisher [4]. Independently
Leon Walras (1894) proposed the notion of general equilib-
rium. Walras proposed that a general equilibrium could be
achieved by a price-adjustment process called tatonnement
[14]. Establishing that an equilibrium can be achieved is
a problem of considerable interest in descriptive and nor-
mative economics. The existence of equilibrium prices in a
general setting has been established by Arrow and Debreu
[1]. The proof is non-constructive and the natural question
is the existence of an efficient computation process which es-
tablishes equilibrium. However, as discussed in Devanur et
al. [8], computationally efficient time algorithms had evaded
researchers. A polynomial time algorithm for a specific case
has been recently proposed in Devanur et al. [8]. In this
case the set of traders is partitioned into buyers and sellers.
Buyers initially have endowment of money while the sellers
initially have items. Moreover, the buyers do not have any
value for money and the sellers do not have any value for
the items.

In this paper we consider a more general model of market
which consists of a set of traders who have an initial endow-
ment of a set of items (one of the items could be money).
The traders have different utilities for these items. These
utilities are assumed to be linear.

We formulate a family of linear programs parameterized
by the price vector. We construct the dual of these pro-
grams. The optimal solution of the dual program corre-
sponding to a market clearing price, has a special property.
We show that whenever the dual program satisfies this prop-
erty, the corresponding price vector achieves market clear-
ing. The market clearing conditions arise naturally from
the complementary slackness conditions of the parameter-
ized linear program.

We then define an auction mechanism which computes

equilibrium prices such that approximate market clearing
is achieved, i.e. the surplus is cleared to within ǫ of the
total final endowment and the items are almost all sold.
The proposed algorithm resembles a primal-dual mechanism
similar to Kuhn’s methodology for bipartite matching [11]
and provides an efficient tatonnement type process [13, 5]
for computing approximate market clearing.

The importance of polynomial time schemes has been
highlighted in a computer science context by Papadimitriou
[12]. Approximation algorithms for the market equilibrium
have been considered in [7] where a fixed number of buyers
(agents) have been considered. After the development of
this algorithm we have become aware of two approximation
algorithms recently developed for this problem. The first
algorithm [10] provides an approximation using the frame-
work described in [8]. This algorithm achieves complete
market clearing and approximate the optimality of the so-
lution. The second algorithm [9] removes the dependence
on the sizes of the numbers to achieve a strongly polyno-
mial algorithm. The notion of the approximation achieved
in the paper [9] is that of bounding the deficiency or surplus
of the goods in terms of their money value. The final al-
gorithm presented in our paper (Section 7) achieves market
clearing in terms of the quantity of each available good (and
hence in terms of their money value) and approximates the
optimality conditions.

The time complexity of our first algorithm is
O(1

ǫ2
nm log(pmaxa

ǫamin
) log pmax), where a =

Pm

j=1 aj the

sum of all available items, pmax is the largest price (as-
suming that the smallest price is unity), amin = minj aj

is the smallest quantity of an available item, n is the
number of traders and m is the number of items in the
market. The algorithm achieves approximate market
clearing in terms of the quantity of each available good.
We also give an improved approximation algorithm,
which achieves market clearing, and is of complexity
O(1

ǫ
(nm2 + mn2) log pmax). The largest price pmax can

be loosely bounded by vmax/vmin, where vmax and vmin

are the largest and smallest values of the positive valued
utilities, respectively. The algorithm is polynomial in all the
parameters of the problem, except for the error tolerance ǫ.

In comparison, the algorithm presented in [8]
solves a special case of this problem but requires
O(m2(n log(vmax/vmin) + log Mm2)) max-flow compu-
tations, where M is the total money available to compute
the exact market clearing prices. The algorithm in
[10] solves the problem we address with complexity
m4

ǫ
(log m + m log U + log M) max-flow computations where

U and M depend on the utilities and endowments, respec-
tively. And finally the algorithm in [9] solves the problem

in O(m4

ǫ
log m

ǫ
) max-flow computations. While the time-

complexity of these methods involves large polynomials (

roughly O(m7

ǫ
log m

ǫ
) (assuming max-flow computations are

O((m3)) these solutions provide very interesting insights
into this problem.

Apart from the improved complexity provided in this pa-
per the technique proposed is of particular interest. More-
over, if we aim to satisfy the approximation conditions of [9]
then the complexity of our method is also strongly polyno-
mial, i.e. O(1

ǫ
(nm2 + mn2) log m

ǫ
).

We begin with the market model in Section 2 and present
a parameterized linear programming formulation in Sec-

tion 3. We present our basic auction algorithm for approxi-
mating market equilibrium In Section 4 and the faster auc-
tion algorithm in Section 5. In Section 6 we discuss how
our algorithm can be used to find approximate market equi-
librium while allowing some of the utilities to be zero. In
Section 7 we show that, under a weaker definition of ap-
proximate market clearing [9] the time complexity of our
algorithm becomes strongly polynomial. We conclude in
Section 8.

2. MARKET MODEL
We consider the generalized market model with linear util-

ities. The market consists of a set of m goods (S) and a set
of n traders (T). Trader i has an initial endowment aij of
good j. The total amount of good j available in the market
is given by aj =

Pn

i=1 aij . The utilities of the traders on
these goods are assumed to be linear. Let vij be the per-
unit utility of trader i on good j. The traders exchange their
goods so as to maximize their individual utilities. For this
presentation, we will assume that the utilities are positive.
Note that as a consequence, all prices are positive. This as-
sumption can be removed by a variety of methods. In the
conclusion we outline a perturbation method which resolves
this issue. Utilities which are 0 can create arbitrary price
rises. This has also been observed in the algorithm in [10].
An alternate approach is to detect high prices during the
execution of the algorithm.

Let the prices of the goods be represented in terms of
an abstract currency, which serves just as a medium of ex-
change. Given the prices p1, p2, . . . , pm of the m goods, a
trader would like to buy goods with high utility per unit
money and sell goods with low utility per unit money. Thus,
in equilibrium, trader i will keep only those goods that max-
imize vij/pj , where vij represents per-unit utility of trader i
on good j. Let xij represent the amount of good j available
with trader i. Let P represent the m × 1 vector of prices
and X represent the n × m matrix of the assignments x′

ijs.
The pair (X, P) forms a market equilibrium iff (a) there is
neither a surplus nor a deficiency of any good (including
money); (b) all the traders get goods that maximize their
utility per unit money spent. The prices P are called market
clearing prices and X is called equilibrium assignment.

The condition for market equilibrium can be mathemati-
cally represented as:

∀j :
nX

i=1

xij = aj (1)

∀i :
mX

j=1

xijpj =
mX

j=1

aijpj (2)

xij > 0 ⇒ vij/pj ≥ vik/pk∀k (3)

xij ≥ 0, pj ≥ 0

Equation (1) implies that there is no deficiency or surplus
of any good. Equation (2) implies that there is no deficiency
or surplus of money. Equation (3) implies that every trader
gets only those goods that maximizes its utility gained per
unit money spend on the good.

It must be noted that the model described by Devanur et
al. [8] is a special case of the above model, where money is
also assumed to be a “good”. The traders are partitioned

into buyers and sellers. Initially the buyers are endowed with
money and the sellers are endowed with goods. The utility
of the traders on money is zero, and the utility of the sellers
on all the goods is zero. The sellers have unit utilities for
money. With these assumptions it can be observed that the
conditions (1), (2) and (3) translate into the market clearing
conditions for the model considered by Devanur [8].

3. A PARAMETRIZED LINEAR
PROGRAMMING FORMULATION

The market equilibrium conditions can be written as a
solution to a specific primal-dual program. Consider the
following program LP (P):

Maximize

nX
i=1

mX
j=1

vijxij

Subject to:

∀j :

nX
i=1

xij = aj (4)

∀i :
mX

j=1

xijpj =
mX

j=1

aijpj (5)

xij ≥ 0

If the prices pj are assumed to be fixed for all j then the
above program (LP (P)) becomes linear. We consider the
dual of this linear program (using Lagrangian multipliers βj

for (4) and αi for (5)) DP (P):

Minimize
nX

i=1

mX
j=1

aijpjαi +
mX

j=1

ajβj

Subject to:

∀i, j : αipj + βj ≥ vij (6)

This gives a family of primal-dual linear programs LP (P)
and DP (P), one for each value of the price vector P . It
is easy to show that the value of a feasible primal solution
is always less than or equal to that of a feasible dual so-
lution. Moreover, these values are equal when the feasible
primal and dual solutions satisfy the following complemen-
tary slackness conditions:

xij > 0 ⇒ αipj + βj = vij (7)

The following result relates the optimal solution of the
above programs to the market clearing prices.

Lemma 1. A price vector P ≥ 0 forms market clearing
prices if the program DP (P) has an optimal solution with
βj = 0.

Proof. Consider an optimal primal and an optimal dual
with βj = 0. The optimal primal satisfies the conditions
(4) and (5) which are same as (1) and (2). Complementary
slackness conditions (7) and the fact βj = 0 and the dual
feasibility conditions (6) give:

∀i, j : xij > 0 ⇒ αipj + βj = vij

⇒ αi = vij/pj

⇒ ∀k : vij/pjpk + βk ≥ vik

⇒ ∀k : vij/pj ≥ vik/pk

The following result is immediate from the definition of
market clearing prices.

Lemma 2. Existence of market clearing prices is equiv-
alent to the existence of a program DP (P) which has an
optimal solution with β = 0.

4. AN AUCTION ALGORITHM FOR
MARKET CLEARING PRICES

We now present an approximate algorithm for discover-
ing the market clearing prices. The algorithm is based on
the primal-dual formulation for market clearing as described
in the previous section. The variables βj are set to zero
throughout the algorithm. The variables xij are initialized
to zero and are modified as the algorithm progresses. The
prices pj are initialized to 1 and are slowly and monotoni-
cally increased as the algorithm makes progress.

This approach has a similarity with the Hungarian
method of Kuhn [11] for soving the assignment problem. Un-
like the Hungarian method which raises the price of all the
goods in a minimal over-demanded set by a specific amount,
our algorithm raises the price of one good at a time by a fixed
multiplicative factor (1+ ǫ), where ǫ > 0 is a small quantity
suitably chosen at the beginning of the algorithm. This al-
gorithm has an auction interpretation, where traders outbid
each other to acquire goods of their choice by submitting a
bid that is a factor (1 + ǫ) of the current winning bid. Prior
to this, auction algorithms have been proposed for maxi-
mum weight matching in bipartite graphs and network flow
problems [6, 3, 2].

The dual variables αi are chosen such that the dual fea-
sibility condition (6) is satisfied. During the course of the
algorithm, the variables xij are successively modified by a
bidding process such that the following relaxed primal and
relaxed complementary slackness conditions are always sat-
isfied:

∀j : If pj > 1 then
Pn

i=1 xij = aj else
Pn

i=1 xij ≤ aj (8)

∀i :
Pm

j=1 xijpj ≤ (1 + ǫ)
Pm

j=1 aijpj (9)

xij > 0 ⇒ vij ≤ αipj ≤ (1 + ǫ)vij (10)

The bidding process raises the prices. As these prices in-
crease, the inequalities (8) and (9) become tighter. These
become very close to (4) and (5) when the algorithm termi-
nates. This leads to approximate market clearing. We now
present the algorithm in detail.

Let the price of good j be pj . At any stage in the auction
algorithm, each good j is sold at two prices: pj/(1 + ǫ) and
pj . Let yij be the amount of good j sold to trader i at price
pj/(1 + ǫ) and hij be the amount sold to trader i at price
pj . Now, xij = yij + hij .

Define demand set Di of trader i as:

Di = arg max
j

vij/pj (11)

Define the surplus (ri) left with trader i as:

ri =

mX
j=1

aijpj −

mX
j=1

yij

pj

1 + ǫ
−

mX
j=1

hijpj (12)

and the total surplus r =
Pn

i=1 ri. Let amin = minj aj and
a =
Pm

j=1 aj . Further a good j is defined to be unassigned

if
Pn

i=1 xij < aj and assigned otherwise. Define a good j
to be available at price p if its current price pj is equal to p
and
Pn

i=1 hij < aj .
At the beginning of the algorithm, the prices (pj) are ini-

tialized to 1 and the variables yij , hij , xij are initialized to
zero. A trader (say i) with positive surplus acquires goods
in its demand set. If a good (say j) in the demand set of
trader i is still unassigned, it is acquired at unit price. If the
good j is available at its current price pj , it is acquired by
outbidding another trader who has been assigned the good
at a lower price (pj/(1 + ǫ)). If good j is not available at its
current price pj , its price is increased by a factor (1+ ǫ) and
hence, the good is made available. This process continues
until either the surplus of the traders becomes sufficiently
small or all the goods are assigned. The details of the algo-
rithm are given in Figure 1.

algorithm main
∀i, j : xij = yij = hij = 0; pj = 1;
ri =

Pm
j=1 aijpj;

αi = maxj vij/pj;
repeat

pick i s.t. ri > 0
αi = maxj vij/pj

pick j ∈ Di

if
Pn

k=1 xkj < aj then assign(i, j)
else if ∃k s.t. ykj > 0 then outbid(i, j, k)
else raise price(j)

until ∀i : ri < ǫ
n(1+ǫ)

amin or ∀j :
Pn

i=1 xij = aj

end algorithm main

procedure outbid(i, j, k)
t = min(ykj , ri

pj
)

hij = hij + t
ykj = ykj − t
ri = ri − tpj

rk = rk + t
pj

1+ǫ

end procedure

procedure assign(i, j)
t = min(aj −

Pn
k=1 xkj , ri

pj
)

hij = hij + t
ri = ri − tpj

end procedure

procedure raise price(j)
∀k : ykj = hkj

∀k : hkj = 0
∀i : ri = ri + ǫaijpj

pj = (1 + ǫ)pj

end procedure

Figure 1: An auction algorithm for discovering mar-

ket clearing prices

Lemma 3. During the progress of the auction algorithm,
conditions (8), (9), (10) and (6) are always satisfied.

Proof. Condition (8) is satisfied after the initialization
step. Note that procedure outbid() does not change the
values of pj and

Pn

i=1 xij . So, if condition (8) is satis-
fied before the entry to the procedure, it is also satisfied
after its exit. Procedure raise price() can only be entered
if
Pn

k=1 xkj = aj . It does not change the value of xij .
Therefore (8) will be satisfied at the end of the procedure.

In the procedure assign(), pj is unchanged and xij is only
increased. The variable t is chosen such that (8) remains
satisfied.

For condition (9) it is sufficient to show that ri ≥ 0
throughout the auction. This is true after the initialization
step. In procedures outbid() and assign(), the variable t is
chosen in such a way that ri ≥ 0. Procedure raise price()
does not change the value of

Pm

j=1 yijpj/(1+ǫ)+
Pm

j=1 hijpj

for any i. As a result ri as defined in (12), can only increase
in this procedure. Therefore (9) remains satisfied through-
out the algorithm.

The variables αi’s are set during initialization step and
the update step in such a way that (6) is satisfied. Proce-
dure raise price(j) only increases pj . Therefore (6) remains
satisfied throughout the algorithm.

Condition (10) is satisfied after the initialization step.
Since (6) is satisfied throughout the algorithm vij ≤ αipj .
We just need to show that:

xij > 0 ⇒ αipj ≤ (1 + ǫ)vij . (13)

Since pj ’s can only increase as the algorithm progresses, αi

can only decrease. Therefore, if (13) is satisfied before up-
date of αi, it will remain satisfied after the update as well.
When xij is increased in procedure outbid() or assign(),
j ∈ Di i.e. αi = vij/pj , which satisfies (13). It remains to
be seen that (13) continues to be satisfied after raise price()
is called.

Note that when assign() or outbid() is called, j ∈ Di

i.e. vij = αipj . Call to raise price(j) increases pj by a
factor (1 + ǫ). So, if raise price(j) is called after a call to
assign(i, j) or outbid(i, j, k), condition (13) remains satis-
fied. So, it is sufficient to show that between two successive
calls to raise price(j), outbid(i, j, k) is called for every i such
that xkj > 0. To see this, observe that raise price(j) sets
ykj = xkj∀k. But, raise price(j) is called only if ∀k, ykj = 0.
outbid(i, j, k) is the only place where value of ykj is re-
duced. Therefore, outbid(i, j, k) must be called for every k
s.t. ykj > 0. This completes the proof.

4.1 Analysis
We first show that when the algorithm terminates, condi-

tions (4) and (5) are approximately satisfied.

Lemma 4. When algorithm main terminates, the follow-
ing conditions are satisfied:

∀j :
aj

1 + ǫ
≤

nX
i=1

xij ≤ aj (14)

∀i :

mX
j=1

xijpj ≤

mX
j=1

aij(1 + ǫ)pj (15)

1

1 + ǫ

mX
j=1

ajpj ≤
nX

i=1

mX
j=1

xijpj ≤
mX

j=1

ajpj (16)

Proof. Condition (15) follows from (12) and the fact
that ri ≥ 0 when the algorithm terminates. The condi-
tion (16) follows from multiplying (14) with pj and summing
them up for all j. The second inequality of (14) follows from
the invariant (8). We now show that the first inequality of
(14) is satisfied when the algorithm terminates.

There are two conditions for the algorithm to terminate.
When all the goods get assigned (∀j :

Pn

i=1 xij = aj) then

condition (14) is trivially satisfied. In the other case we
have, ri ≤

ǫ

n(1+ǫ)
amin. From (12) we have:

ri =
mX

j=1

(aijpj − xijpj) +
ǫ

(1 + ǫ)

mX
j=1

yijpj (17)

⇒
nX

i=1

ri =
mX

j=1

nX
i=1

(aij − xij)pj +
ǫ

(1 + ǫ)

mX
j=1

nX
i=1

yijpj

From (8) it follows that if
Pn

i=1 xij < aj then pj = 1. Since
ri ≤

ǫ

n(1+ǫ)
amin,

Pn

i=1 ri ≤
ǫ

1+ǫ
amin. Therefore we have,

mX
j=1

nX
i=1

(aij − xij)pj +
ǫ

(1 + ǫ)

mX
j=1

nX
i=1

yijpj ≤
ǫ

(1 + ǫ)
amin

Since yij ≥ 0 and
Pn

i=1 aij ≥
Pn

i=1 xij ,

⇒ ∀j : aj −
nX

i=1

xij ≤
ǫ

(1 + ǫ)
amin

⇒ ∀j :
aj

(1 + ǫ)
≤

nX
i=1

xij

Let pmax be an upper bound on the prices discovered by
this algorithm. Every time raise price(j) is called, pj is in-
creased by a factor (1 + ǫ). Therefore, the number of times
raise price() can be called is bounded by m log(1+ǫ) pmax =
O(m

ǫ
log pmax). In order to show convergence, we first need

to bound pmax.

Lemma 5. Let vmin = mini,j vij . Let vmax = maxi,j vij .
For all j, pj ≤ (1 + ǫ)vmax/vmin.

Proof. We first show that there is at least one good that
stays at price 1. The price of a good can increase only when
it is completely assigned. The algorithm terminates if all the
goods are completely assigned. Therefore, there is at least
one good at unit price during the course of the algorithm
main. Let this good be k.

Consider good j s.t. pj > 1. Using (8) one can always
pick i such that xij > 0. From (10) we get αipj ≤ (1+ ǫ)vij .
From (6) we have αipk ≥ vik. Since pk = 1, we have pj ≤
(1 + ǫ)vij/vik ≤ (1 + ǫ)vmax/vmin.

Note that the algorithm described above is highly dis-
tributed and asynchronous. The algorithm does not specify
the order in which the procedures outbid(i, j, k), assign(i,
j) and raise price(j) are called. These may be called for any
value of i, j, k that satisfy the corresponding entry condi-
tions. However, if the bidding is organized in rounds with
each trader exhausting its surplus in every round then the
algorithm can be shown to terminate in polynomial time.

Lemma 6. If each trader exhausts its surplus once in a
round, then either there is a price rise in the round, or the
total surplus (r) reduces by a factor 1/(1 + ǫ) in the round.

Proof. Assume that raise price() is never called in the
round. Let r represent the value of the total surplus at
the beginning of the round, and ri represent the surplus of
trader i at the beginning of the round. We now put a lower
bound on the surplus reduction in the round.

Note that a call to assign() decreases the value of the
total surplus by t (as calculated in procedure assign()). Also
note that, a call to outbid(i, j, k) decreases the surplus
of trader i by tpj and increases the surplus of trader k by
tpj/(1 + ǫ). Therefore, it decreases the value of the total
surplus by tpjǫ/(1 + ǫ). In every round, for each trader
i, outbid() is repeatedly called until the surplus of trader
i goes to zero. Biddings done earlier by other traders can
only increase the surplus of trader i. Therefore, in calls
made to outbid() and assign() by trader i the total surplus is
guaranteed to reduce by at least riǫ/(1+ ǫ). Adding this for
every trader, we get that the total surplus reduces by at least
rǫ/(1 + ǫ) in every round where raise price() is not called.
In other words the surplus r′ after the round is bounded as:
r′ ≤ r/(1 + ǫ).

Theorem 1. If the bidding is organized in rounds, and
each trader exhausts its surplus once in every round, then the
algorithm main terminates in O(1

ǫ2
m log(pmaxa

ǫamin
) log pmax)

rounds.

Proof. Note that r can be written as:

r =
mX

j=1

nX
i=1

(aij − xij)pj +
ǫ

1 + ǫ

mX
j=1

nX
i=1

yijpj

It is easy to see that, raise price() can increase the value of
r. The maximum possible surplus increase by a single call
to raise price() is bounded by apmax where a =

Pm

j=1 aj .
The algorithm terminates if the total surplus becomes less
than ǫ

1+ǫ
amin. Therefore, the maximum number of rounds

between two successive calls to raise price() is bounded by
O(1

ǫ
log(apmax

ǫamin
)). The number of times raise price() is called

is bounded by O(1
ǫ
m log pmax). This gives the required

bound.

Further note that in each round, where each trader is con-
sidered once, a trader, say i, having a surplus ri and chosen
for processing either exhausts the surplus on a particular
good j or yj becomes zero. The first event is charged to the
trader i and the second to a price rise (which happens for
good j when yj is exhausted). Thus in every round n charges
corresponding to the first type of events are generated. This
leads to the bound of O(n(1

ǫ2
m log(pmaxa

ǫamin
) log pmax)

We next present a modification to the above basic algo-
rithm that gives better convergence and a stronger market
clearing condition.

5. A FASTER AUCTION ALGORITHM
With two minor variations on the bidding order, the upper

bound on the running time can be significantly improved.
These variations are: (a) A trader i with positive surplus
raises its assignment of good j to the higher price (pj) before
outbidding another trader on the good; (b) A trader who is
being outbid on a good which is still in its demand set, bids
back immediately on the good and raises its assignment to
the higher price and (c) bidding is organized in rounds such
that every trader exhausts its surplus at least once in every
round. These changes are incorporated in the algorithm
main2 using procedures outbid2() as shown in Figure 2.

Before moving further into the analysis, we introduce
some notations. Consider a directed bipartite graph G =

algorithm main2
∀i, j : xij = yij = hij = 0; pj = 1;
ri =

Pm
j=1 aijpj;

αi = maxj vij/pj;
repeat

compute demand sets Di; αi = maxj vij/pj

repeat
if there is no trader with ri > 0 then done

if there is no unassigned good then done

for all traders i incompletei = FALSE
while ∃i s.t. ri > 0, incompletei = FALSE

and raise price() is not called
pick j ∈ Di

if
Pn

k=1 xkj < aj then assign(i, j)
else if yij > 0 then outbid2(i, j, i)
else if ∃k s.t.ykj > 0 then outbid2(i, j, k)
else raise price(j)
if ri = 0 then incompletei = TRUE

end while
until (raise price() is called) or (done)

until done
end algorithm main2

procedure outbid2(i, j, k)
if j 6∈ Dk and i 6= k then

t = min(ykj , ri

pj
)

hij = hij + t
ykj = ykj − t
ri = ri − tpj

rk = rk + tpj/(1 + ǫ)
else

t = min(ǫ
(1+ǫ)

ykj , ri

pj
)

hkj = hkj + t/ǫ
ykj = ykj − t(1 + ǫ)/ǫ
hij = hij + t
ri = ri − tpj

endif
end procedure

Figure 2: A faster auction algorithm

(T, S, E) where T is the set of traders, S is the set of goods
and E is a set of directed edges between S and T . Define
D to be the set of demand edges, X the set of assignment
edges, Y a subset of the set of assignment edges and B a
subset of Y as follows.

(i, j) ∈ D iff j ∈ Di

(j, i) ∈ X iff xij > 0

(j, i) ∈ Y iff yij > 0

(j, i) ∈ B iff yij > 0 and j 6∈ Di

Note that when procedure outbid2(i, j, k) is called either ri

goes to zero or an edge from Y is removed (either yij goes
to zero or ykj goes to zero). Define a call to outbid2() as
complete when an edge in Y is removed and incomplete if
ri goes to zero.

Lemma 7. The number of complete calls to outbid2() is
bounded by O(1

ǫ
nm log pmax).

Proof. Initially, there is no edge in Y . Edges in Y
are added (ykj become non-zero) only through a call to

raise price(). Each call to raise price() can add at most
n edges in Y . Since the total number of price raises are
bounded by O(1

ǫ
m log pmax), the total number of times

edges are added to Y is bounded by O(1
ǫ
nm log pmax). Each

complete call to outbid2() removes one edge in Y . Hence the
result.

To bound the total running time of the algorithm, we need
to bound the number of incomplete calls to outbid2(). This
is dependent on the number of times ri becomes positive
after it has been set to zero. Note that, in the process of
bidding (when outbid2(i, j, k) is called), the surplus (ri)
may be transferred to another trader (rk). It can be seen
from the definition of procedure outbid2() that, surplus may
the transferred from trader i to a trader j using a sequence
of calls to outbid2() only through a directed path in the
graph G = (T, S, D∪B). We now prove an important result
that establishes that the surplus from a trader i cannot cycle
back to itself without a price rise.

Lemma 8. The graph G = (T, S, D ∪ B) is acyclic.

Proof. Consider the graph G at time t. As-
sume for contradiction that G has a cycle of the form
(u1, v1, u2, v2 . . . , uk, vk, u1) where ui ∈ T, vi ∈ S. Let ti

be the time instant when the price of good vi was raised to
its current level.

The fact that (v1, u2) ∈ B implies that yu2v1 > 0 and
v1 6∈ Du2. Since v1 is currently not in the demand set of u2,
it must have been assigned to u2 at time t′ < t1. When v1

was being assigned to u2, the price of v2 must have been at
its current level otherwise v2 will be in the demand set of
u2 instead of v1. Therefore, the price raise of v2 must have
happened prior to that of v1 i.e. t2 < t1. Continuing this
argument we get t1 < tk < tk−1 < . . . < t2 < t1 which is
a contradiction to our assumption that there was a cycle in
G. Therefore there is no cycle in G.

Lemma 9. After d rounds of bidding either there is a
price rise, or surplus of at least d traders is guaranteed to
be zero. Moreover, the surplus of these traders cannot rise
later until there is a price rise.

This lemma is immediate from the following stronger
statement. Let us assign a unique rank between 1 and n to
each trader using a topological sort of the graph G. Trader
with rank 1 is a trader with no incoming edge.

Lemma 10. If there is no price rise till d rounds of bid-
ding, then all the traders with rank less than or equal to d
have zero surplus. Moreover, the surplus of these traders
cannot increase later until there is a price rise.

Proof. Assume that there is no price rise. We prove
this result by induction on the number of rounds d. We first
establish the base case.

Let k be the trader of rank 1. Trader k has no incoming
edge in G. rk becomes zero in the first round after a call to
assign() or an incomplete call to outbid2(). rk can become
positive again only through a call to outbid2(i, j, k), such
that ykj > 0 and j 6∈ Dk i.e. (j, k) ∈ B. Such a call will
be made only if j ∈ Di i.e. (i, j) ∈ D. This is not possible
since k is a maximal trader in G.

Note that as the bidding progresses without a price rise,
D remains unchanged. Moreover, the sets Y and B shrink.
Therefore, the ranks defined at the beginning of the first
round remain consistent with the modified G until there is
a price rise.

Now consider round d. In every round every trader ex-
hausts its surplus once. Therefore, in the dth round the
trader of rank d will also exhaust its surplus. This traders
can acquire surplus again only through the traders with rank
less than d (from construction of G). However, by induction
hypothesis, all the traders of rank less than d will have zero
surplus after round d − 1. Therefore, the trader of rank d
cannot acquire a surplus in round d or later. Therefore, it
will have a zero surplus at the end of round d and there-
after.

Lemma 11. The algorithm main2 terminates in
O(1

ǫ
m log pmax) iterations of the outer loop.

Proof. From Lemma 9 it follows in each iteration of the
outer loop, either there is a price rise within n rounds of
bidding or the total surplus r goes to zero. The algorithm
terminates if the total surplus goes to zero. There can be at
most O(1

ǫ
m log pmax) price rises. Hence the result.

Theorem 2. The algorithm main2 terminates in
O(1

ǫ
(nm2 + mn2) log(vmax/vmin)) steps.

Proof. A call to assign() either raises the price or sets
ri = 0. Therefore it may be called at most n2 times in
every iteration of the outer loop. So, total number of calls
to assign is bounded by O(1

ǫ
mn2 log pmax).

From Lemma 7, there can be at most O(1
ǫ
mn log pmax)

complete calls to outbid2(). There can be at most O(n)
incomplete calls (one for each trader) to outbid2() in every
round. Therefore, the total number of calls to outbid2() is
bounded by O(1

ǫ
(mn + mn2) log pmax).

Demand set computation take O(nm) time and there can
be at most O(1

ǫ
m log pmax) such computations. Therefore

the total time in demand set computations is bounded by
O(1

ǫ
nm2 log pmax). This gives the required bound.

Lemma 12. When the algorithm main2 terminates con-
ditions (4), (15) and the following

nX
i=1

mX
j=1

aijpj =
nX

i=1

mX
j=1

xijpj (18)

are satisfied.

Proof. Condition (15) is satisfied because ri ≥ 0. The
algorithm main2 terminates either when all the goods are
assigned or when there is no surplus left. In the former case
condition (4) will be satisfied and hence (18) will also be
satisfied. In the latter ∀i : ri = 0. Summing (17) over i and
using the fact that

Pn

i=1 xij ≤
Pn

i=1 aij for all j and yij ≥ 0
for all i and j, we get yij = 0 for all i, j and

Pn

i=1 xij = aj for
all j. Therefore conditions (15) and (18) will be satisfied.

6. PERTURBATION BOUNDS
Non-zero utility functions can be obtained by perturbing

the valuations by small amounts. We first scale the endow-
ments such that aj ≥ 1 for all j. We also scale the utility
functions such that the smallest positive utility is at least
unity.

The zero co-efficients of the utility function are modified
to be δ = ǫ/(na). Now, the error on the sum of all the in-
dividual objective functions of the traders is bounded by
utmost ǫ. Further, the relaxed complementary slackness
constraints (10) is satisfied to within an error of ǫ. The
complexity of the algorithm remains bounded since the per-
turbation modifies the term log pmax which is bounded by
log vmax + log(na) + log(1/ǫ).

7. A WEAKER MODEL FOR APPROXI-
MATE MARKET CLEARING

In this section we show that with the model of [9], our
algorithm becomes strongly polynomial. For the purpose of
this section we will assume that each aj , the amount avail-
able of good j is unity. This can be achieved by scaling
[9]. We modify our terminating condition so that the algo-
rithm stops when there is an item with price greater than
m/ǫ. An analysis of the excess money demand/supply gives
the approximation bound and a polynomial algorithm with
improved time complexity.

Consider the following approximating condition [9]: An
allocation satisfies the ǫ-approximate market clearing con-
dition if neither deficiency nor surplus is too high in value
i.e.,

|ξ(p) − p| ≤ ǫ, ||p|| = 1 (19)

where ξ() is the demand in terms of money, ξj(p) =
Σi∈T xijpj and p is the price vector.

We show that when pj ≥ m/ǫ for any j then our algorithm
could be stopped satisfying the condition (19).

If pj > 1 in our algorithm then the good numbered j
is cleared, i.e. ξj(p) = pj . If pj = 1 then pj − ξ(p) =
pj −
Pn

i=1 xijpj = 1 −
Pn

i=1 xij ≤ 1. This implies that
|p − ξ(p)| ≤ m. If there is a j such that pj ≥ m/ǫ then

1Pm

j=1 pj

|p − ξ(p)| ≤ ǫ

Now the normalized price vector p̂ = p/
Pm

j=1 pj satisfies:

|p̂ − ξ(p̂)| ≤ ǫ, ||p̂|| = 1

Thus the algorithm main2 terminates in O(1
ǫ
(nm2 +

mn2) log pmax)) where pmax = m/ǫ and is strongly poly-
nomial.

8. CONCLUSIONS
In this paper we described a parametrized linear-

programming formulation for the market clearing problem.
The formulation naturally leads to an auction algorithm
which approximates market clearing efficiently. The for-
mulation is of independent interest as it could lead to an
efficient exact algorithm for the market clearing problem.

Improving the complexity of the approximations should
be possible by a careful choice of the bidding order.

9. REFERENCES
[1] K. Arrow and G. Debreu. Existance of an equilibrium

for a competitive economy. Econometrica, 22:265–290,
1954.

[2] V. Bansal and R. Garg. Simultaneous Independent
Online Auctions with Discrete Bid Increments.
Electronic Commerce Research Journal: Special issue
on Dynamic Pricing Policies in Electronic Commerce,
To Appear.

[3] D. P. Bertsekas. Auction Algorithms for Network Flow
Problems: A Tutorial Introduction. Computational
Optimization and Applications, 1:7–66, 1992.

[4] W. C. Brainard and H. E. Scarf. How to compute
equilibrium prices in 1891. Cowles Foundation
Discussion Paper (1272), 2000.

[5] J. Cheng and M. Wellman. A convergent distributed
implementation of general equilibrium outcomes.
Computational Economics, 12(1):1–24, 1998.

[6] G. Demange, D. Gale, and M. Sotomayor. Multi-item
Auctions. Journal of Political Economy,
94(4):863–872, 1986.

[7] X. Deng, C. Papadimitriou, and S. Safra. On the
complexity of equilibria. In 34th ACM Symposium on
Theory of Computing (STOC 2002), Montreal,
Quebec, Canada, May 2002.

[8] N. Devanur, C. Papadimitriou, A. Saberi, and
V. Vazirani. Market equilibrium via a
primal-dual-type algorithm. In 43rd Symposium on
Foundations of Computer Science (FOCS 2002), pages
389–395, Nov. 2002.

[9] N. R. Devanur and V. Vazirani. An improved
approximation scheme for computing the
arrow-debreu prices for the linear case. In Foundations
of Software Technology and Theoretical Computer
Science (FSTTCS 2003), 2003.

[10] K. Jain, M. Mahdian, and A. Saberi. Approximating
market equilibrium. In Workshop on Approximation
Algorithms for Combinatorial Optimization
(APPROX 2003), 2003.

[11] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[12] C. H. Papadimitriou. On the complexity of the parity
argument and other inefficient proofs of existence.
Journal of Computer and System Sciences,
48(3):498–532, June 1994.

[13] P. Samuelson. Foundations of economic analysis.
Harward University Press, Cambridge, Mass., 1947.

[14] L. Walras. Elements of pure economics, or the theory
of social wealth (in French). Lausanne, Paris, 1874.

