
Handling Overloads with Social Consistency

A Thesis

Submitted for the Degree of

Master of Science(Engineering)

in the Faculty of Engineering

by

Priyanka Singla

Department of Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

JUNE 2018

c© Priyanka Singla

June 2018

All rights reserved

DEDICATED TO

My Family, Teachers and my Friends

Signature of the Author: .

Priyanka Singla

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore

Signature of the Thesis Supervisor: .

K. Gopinath

Professor

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore

Acknowledgements

I would like to take this opportunity to express my gratitude to my guide Prof. K. Gopinath

for his exemplary guidance and encouragement throughout the course of this work.

I would also like to thank Prof. Lorenzo Alvisi and Prof. Allen Clement with whom I started

working on this project. I am greatly indebted to Dr. Smruti Sarangi for his help, guidance,

and support which was very crucial during the tough times of the program. I also acknowledge

my colleague, Shubhankar Singh, for great and wonderful discussions.

I am extremely grateful to my family and friends for being my strong support pillar and

motivating me to work more efficiently. This accomplishment would not have been possible

without them.

Priyanka Singla,

IISc

i

Abstract

Cloud computing applications have dynamic workloads, and they often observe spikes in the

incoming traffic which might result in system overloads. System overloads are generally handled

by various load balancing techniques like replication and data partitioning. These techniques

are effective when the incoming bursty traffic is dominated by reads and writes to partitionable

data, but they become futile against bursts of writes to a single hot object. Further, the systems

which use these load balancing techniques, to provide good performance, often adopt a variant

of eventual consistency and do not provide strong guarantees to applications, and programmers.

In this thesis, we provide a solution to this single object overload problem and propose a new

client based consistency model – social consistency – that advocates providing a stronger set of

guarantees within subsets of nodes (socially related nodes), and providing eventual consistency

across different subsets. We argue that by using this approach, we can in practice ensure

reasonably good consistency among the clients and a concomitant increase in performance.

We further describe the design of a prototype system, BLAST, which implements this model.

It dynamically adjusts resource utilization in response to changes in the workload thus ensuring

nearly constant latency, and throughput, which scales with the offered load. In particular, the

workload spikes for a single hot object are handled by cloning the object and partitioning

the clients according to their social connectivity, binding the partitions to different clones,

where each partition has a unique view of the object. The clones and the client partitions are

recombined when the spike subsides. We compare the performance of BLAST to Cassandra

database system, and our experiments show that BLAST handles 1.6× (by performing one

split) and 2.4× (by performing three splits) more workload. We also evaluate BLAST against

another load balancing system and show that BLAST provides 37% better QoE.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivating Example . 3

2 Background and Related Work 6

3 Social Consistency 11

3.1 Strong Consistency . 12

3.2 Weak Consistency (Eventual Consistency) . 13

3.3 Social Consistency . 13

3.4 Partitioning the Clients into Clusters . 15

4 System Design 21

4.1 System APIs and the Split-Merge Protocols . 22

4.2 The Split-Merge Strategy . 23

4.2.1 The Split Protocol . 23

4.2.2 The Merge Protocol . 25

4.2.3 System Goals and Semantics . 29

5 Evaluation 30

iii

CONTENTS

6 Discussion 44

6.1 Possibility of different preference orders . 44

6.2 Significance of Social Partitioning . 45

6.3 Modeling Object’s State by its Operation Log 47

6.4 Extending Splittable Logs to Generic Applications 47

7 Conclusion 49

7.1 Future Work . 49

Bibliography 51

iv

List of Figures

1.1 A system with social consistency . 2

1.2 Data displayed by Facebook, Quora and Goodreads 4

2.1 Existing overloading solutions and issues with them 10

3.1 Example: Strong consistency . 12

3.2 Example: Weak consistency . 13

3.3 Damping function . 17

3.4 Social graph . 18

4.1 System Architecture . 22

4.2 Split protocol . 24

4.3 Time diagram for split protocol . 25

4.4 Merge protocol . 26

4.5 Time diagram for merge protocol . 27

4.6 Hierarchical split . 28

4.7 Flat merge . 28

5.1 Write-Only workload . 33

5.2 Read-Mostly workload . 33

5.3 Mixed workload (1 split) . 34

5.4 Number of communications per 1000 incoming requests (1 split) 35

5.5 Read latency with number of comments (Read-Mostly workload) 35

5.6 Number of communications per 1000 incoming requests (3 splits) 36

5.7 Mixed workload (3 splits) . 36

5.8 Summarizing all 3 splits . 37

5.9 Twitter dataset . 38

5.10 Facebook dataset . 39

v

LIST OF FIGURES

5.11 Quality of response . 40

5.12 Social graph . 41

5.13 Static vs dynamic performance . 42

5.14 Static vs dynamic quality . 43

vi

List of Tables

1.1 Different consistency types during an execution 3

3.1 Valid relaxations in the social consistency model 15

3.2 Social consistency example . 15

4.1 Messages in the Split protocol . 25

4.2 Messages in the Merge protocol . 27

4.3 System unavailability time . 27

6.1 Different feasible models based on social partitioning 46

vii

Chapter 1

Introduction

There has always been a trade-off between performance, flexibility, and programmability in dis-

tributed consistency models. For example, sequential consistency is an excellent model for the

programmer; however, implementing it in practice is difficult, and most of its implementations

have a very low performance. On the other hand, a more relaxed model such as eventual consis-

tency provides high performance; however, it is hard to provide accurate correctness guarantees

or ensure a minimum quality of experience. Hence, finding a consistency model somewhere in

between has been the focus of a lot of current work [1, 2]. Most of the relaxed consistency

models are more restrictive than eventual consistency, and depending upon the business case,

they prioritize a given set of operation orders. For example, the memory model in Amazon’s

Dynamo [3] prioritizes writes over reads, because the aim here is to ensure immediate logging

of all the additions to the shopping cart. Similarly, in the case of an e-mail server, it is to be

ensured that the reply is visible only after the original e-mail.

In this thesis, we look at a novel consistency model for cloud computing environments

particularly for the scenarios that involve large-scale data storage. These applications have

dynamic workloads and often observe spikes in incoming traffic [4, 5], which result in hot-spots.

For example, a simple reference to a web page in a popular news feed or a particular post

on a social-networking site by a celebrity [6], or any major worldly event [7] can result in a

deluge of requests, which might possibly overwhelm the system. Such scenarios are particularly

pernicious for interactive systems [8], and it is important to ensure that most of the clients get

a minimum Quality of Experience (QoE).

Our main insight is as follows: Most of the social networking sites have fairly lax QoE

guarantees which are reflected in their consistency models and methods of operation [9, 10].

They try to ensure a good quality of experience on a best-effort basis. Given the fact that

they are not dealing with mission-critical workloads, it is possible to ensure an equitable trade-

1

off between power, performance, and reliability. We leverage such scenarios and propose a

novel consistency model that is particularly germane to load balancing. We observe that there

might be certain objects (e.g. popular Twitter feed) that are heavily accessed and a situation

might arise where the system gives up on performance or consistency. However, none of the

clients like to have a degraded performance or quality of experience. To handle such situations,

we propose a novel consistency model – social consistency, which provides good quality of

experience without any performance degradation. The word is derived from the fact that a set

of socially related clients are grouped together and can view each others’ updates without any

decrease in performance. Several such subsets can be formed; within each subset clients see

strongly consistent data with respect to each other, and for the clients across subsets, we opt

for a more relaxed consistency such as eventual consistency.

In this thesis, we provide a theoretical definition of social consistency. Along with this,

C1 C3C2 C1 C3C2 C1 C3C2

S1 S1 S1S2 S2

a) b) c)

Figure 1.1: A system with social consistency

we describe a practical realization of the idea and name it BLAST (Best-effort Latency And

Scalability Together). BLAST takes into cognizance the dynamic nature of workloads and it

provides different consistency types, adapting to different workloads. It spans the consistency

continuum from strong consistency to eventual consistency, with load on the system being the

tuning knob. In particular, initially an object is stored on a single server and is accessed by all

the clients, who see a consistent value of the object, i.e all the clients in the system are strongly

consistent (Figure 1.1-a: the object is stored on server S1 and is accessed by clients C1, C2, and

C3). With the passage of time, as the object starts to get heavily accessed, this hot object is

cloned and stored on another server (server S2 in figure 1.1-b), and the client set is partitioned

into 2 groups (clusters) on basis of social relationships among the clients (Figure 1.1-b: sets

{C1, C2} and {C3}). Hereafter, each set of clients accesses different clones, and the clones

do not communicate (Figure 1.1-c) until the workload spike gets over. The clones diverge as

time progresses and we call them splits. If the request rate increases further, new splits are

2

created resulting in more sub-clusters. Only when the request rate decreases, these clusters are

combined back and the splits are merged in an application dependent manner [3, 11]. From the

consistency perspective, all the clients accessing the data of a particular split see a consistent

value and hence are strongly consistent, but the system as a whole is eventually consistent where

the clients (all the clients of the system) see consistent data only after the merge. In essence,

initially the system as a whole is strongly consistent, however, as the load increases it moves

towards weak consistency. Though at different times during the execution, the overall system

might be strongly or weakly consistent, but the clients always see consistent data with respect

to other socially related clients (within the same cluster). This is summarized in Table 1.1.

System consistency Client consistency
(w.r.t an object)

No split exists Strong Social
Split exists Weak Social

Table 1.1: Different consistency types during an execution

1.1 Motivating Example

We argue about the acceptability of social consistency on the basis of following observation

in existing social networking sites such as Facebook, Quora and Goodreads [9, 12, 13]. The

comments (on any post) posted by a user’s friend are displayed on the user’s Facebook wall.

Updates are displayed as “your friend A commented on post X” or “your friend B liked post Y ”

on a user’s wall. (Figure 1.2 represents a combined screenshot from social sites like Facebook,

Quora and Goodreads, showing how these sites display updates from our social connections on

various posts.)

Typically, seeing a friend’s name, the user comments on that post or clicks to see the con-

tent associated with the post. Thus these sites use social relationships to show only the data

that would be more relevant to each user. Similar to this, users are generally interested in the

information provided by their friends. For example, while deciding to visit a particular place

(using a travel website like TripAdvisor [14]) or while purchasing a new mobile phone on an

e-commerce website [15, 16], if a user sees a review by any of her friends, then her decision

about going to that place or buying the same phone would be greatly enhanced. Even in fig-

ure 1.2 (bottom part of the figure, referring to Goodreads data), a user’s decision to read a

particular book will be affected by the reviews provided by her friends. Thus even if these

websites present a lot of data, users mostly prefer to see the data related to their friends. So

3

Figure 1.2: Data displayed by Facebook, Quora and Goodreads

for all practical purposes, users mostly interact with other users, who are socially connected

to them. Our mechanism of overload handling uses the same idea, as the users are partitioned

based on their social relationships. Since a user and other users in her social connection, all

belong to the same partition and can see each other’s data, they are not dissatisfied if they do

not see the data of users who are not in their social circle. Thus showing only the desired data,

rather than the entire data and hence, ensuring consistency within social circles of each user is

4

sufficient for consistency with respect to that user. Note that is not a general statement but is

particular to certain use cases such as social media.

Our Contributions in this thesis are:

• We define a new model of consistency called social consistency, which offers a client-

centric view of consistency in comparison to the existing object-centric consistency models,

namely strong and weak consistency.

• We formally define strong and weak consistency and subsequently formalize social con-

sistency.

• We present a split-merge algorithm to handle single object overloads.

• We introduce a new consistency metrics, quality of response, and use it to compare our

model with various existing systems.

• We implement a basic prototype of a social networking service to simulate single object

overloads and present results which demonstrate the efficacy of our system regarding

performance and quality of user experience.

The thesis is organized as follows: Chapter 2 discusses the related work. Chapter 3 provides

a detailed description of our social consistency model. Chapter 4 presents the architecture of

the system. Chapter 5 implements and evaluates a prototype based on our model. Chapter 6

presents some discussion on a few concepts referred in the thesis, and then provides a list of

various applications that can be modeled by using our approach. Finally, Chapter 7 concludes

the thesis. Please note that the terms clients and users are used interchangeably in this thesis.

5

Chapter 2

Background and Related Work

The CAP theorem [17] states that consistency, availability, and tolerance to partition cannot

be achieved together in a distributed system. Although if a network with good connectivity

and no partitioning is assumed, achieving high availability and strong consistency, thus good

performance, might seem trivial. However in practice, maintaining a good performance is

not an easy task. There can be situations where a workload might overload the system, thus

severely hampering the performance and resulting in high latency. Several approaches have been

proposed in the past to handle the overload issue. Some of these approaches provide trade-

off solutions, in which they compromise consistency to provide low latency, while a few other

approaches provide non trade-off solutions. For example, admission control techniques manage

overloads by handling requests of only certain clients, while rejecting others. Admission control

techniques do not trade-off consistency, but they treat clients differently and do not provide

same performance for all of them. Following we present both types of solutions (trade-off and

non trade-off) in detail, beginning with the former.

Replication and Caching: In this approach, the overloaded data is replicated to other

servers, which then handle the incoming requests, thus reducing the overload. The replicas can

be synchronized according to the application’s requirement (see the survey by Wang et al. [18]).

A few of the major proposals in this area include Bayou [19] distributed database, which uses

selective replication and provides weak consistency guarantees. It provides a per-update de-

pendency check and a merge procedure to detect and resolve conflicts. This work resembles

our work in performing per object split-merge, but they do not form clusters based on social

relationships. There are various other systems which perform replication [20, 21], but most of

them either trades-off performance or consistency thus providing a poor quality of experience.

Our system, on the other hand, provides good QoE without afflicting performance.

6

Data Partitioning: Along with replication, many systems use data partitioning tech-

niques, in which the data is partitioned either horizontally or vertically, and different partitions

are handled by different servers [3, 22, 23]. These systems perform an object based partitioning

by using methods like hash-partitioning, range-partitioning or round-robin. In contrast, our

system uses client-based partitioning, i.e rather than partitioning the objects in the system, the

clients (who are accessing a particular object) are partitioned. This partitioning strategy helps

to provide good quality of experience to the clients.

Amazon dynamo [3] and Cassandra [11] use consistent hashing to uniformly partition a

key-space across the servers. However, a uniform key distribution does not imply a uniform

workload distribution. There can be situations where the access distribution of the keys is

highly skewed, for example, when a single key gets overloaded. This situation cannot be han-

dled by partitioning and it deteriorates the system performance. We have quantified the impact

on performance by evaluating our system against Cassandra (in Chapter 5), and show that Cas-

sandra’s performance is extremely poor in such workloads.

Metadata Partitioning: It is similar to the data partitioning technique, and is used for

overload handling in the file systems. Large scale file systems need to efficiently manage their

metadata [24, 25, 26], as metadata operations make up approximately 50% of the total file

system operations. Most of the distributed file systems (NFS [27], Sprite [28]) use approaches

like directory subtree partitioning (DSP) and hashing as their metadata partitioning strategies.

However, despite these strategies, hot-spots can be formed in a file system. For example, the

DSP technique suffers hot-spot issue when multiple clients open the same file simultaneously or

a large number of users create multiple files in the same directory. Weil et al. [24] address these

issues by performing subtree migration and replication. Weil et al. [25] further extend this work

by integrating it with a caching scheme to adapt to the changing workload. Authors minimize

the hot-spots by limiting the number of clients, who know from where to get the requested

metadata. The incoming requests are randomly sent and forwarded within the metadata server

cluster, which can result in unexpected long response times. This method of random replication

and forwarding leads to inefficient resource utilization. In contrast to random replica selection,

our approach wisely chooses the split and merge servers depending upon the loads on them and

further handles client requests on the basis of the social relationships among the clients.

Wujuan et al. [26] present a Weighted Partitioning and Adaptive Replication (WPAR)

scheme in which metadata servers are weighted on the basis of parameters like CPU power,

memory capacity, network bandwidth, etc., and replicas are managed according to the incoming

variable workload. Concretely, the replicas are created when the request rate increases beyond

7

a particular maximum threshold and are subsequently deleted when the request rate falls below

another minimum threshold. This approach of creating and deleting replicas is similar to our

split merge technique, however like the above approaches, WPAR also handles the requests in-

dependent of the relationships among the clients. Our work also presents the trade-offs related

to consistency and performance, which are not discussed by the previous works, and we believe

that they are important from an overall system perspective.

Relaxed Consistency Models: There have been various attempts to define systems that

are generic, scalable, and possibly stronger than eventual consistency [29, 30, 21]. These systems

either provide different consistency at different times, or depending upon the application’s

requirement, they prioritize a given set of operation orders. For example, Shapiro et al. [30]

propose CRDTs, that rely on commutativity of the operations to ensure system consistency in

presence of concurrent updates, without performing any synchronization or consensus. There is

another work [21], which provides two different levels of consistency (strong and weak), based on

the commutativity. Particularly, if the operations are commutative, they are allowed to execute

concurrently, thus providing fast responses but eventual consistency. If the operations are not

commutative, then the system is slow and strongly consistent. Our system, on the other hand,

provides two different levels of consistency based on the social relationships among the clients

and the frequency of their operations, rather than commutativity between the operations. Our

work partitions the clients into different clusters based on the social distance between them,

and the clients within the cluster are strongly consistent while across the clusters are eventually

consistent.

Though the idea of user partitioning and cluster identification in social networks has been

explored in a significant body of research [31, 32, 33], these works focus on other goals and

unlike our work, they do not propose to handle overloads. For example, SPAR [31] uses the

concept of social partitioning to minimize replication and focuses on storing the entire data

of social clients in one group. Our work, in contrast, is independent of the client placement

and follows an object based lightweight split at runtime (during overloads). To the best of our

knowledge, none of the previous works concentrate on the relationships between the clusters

and the impact of shared data accesses on system performance.

Some prior works, like WALTER [34], include various geo-replicated key-value stores that

offer linearizability for replicas that are deployed in the same data center and weak consistency

across the replicas in different data centers. This can be considered as a special case of our

architecture, where consistency is dependent on physical proximity. Our model is far more

generic and has an abstract social parameter. If the location of the replicas is chosen as the social

8

parameter, it would result in the above-mentioned system. Similarly, different applications can

have other social parameters. For example, Chapter 3 describes a use case where friendship and

the intensity of communication between the clients are considered as the social parameters.

Eiger [2] is another system which focuses on providing good consistency (restrictive than

eventual) along with low latency. It proposes a novel system that provides causal consistency,

which is relaxed in some cases. However, the main drawback of such works is that they are

very specific, and it is hard to enforce causality at all times, and in all scenarios.

Next we discuss the solution which does not trades-off performance or consistency.

Admission Control and Load Balancing Techniques: Various approaches based on

these techniques have been proposed in the past. In one of the approach, non-critical requests

are dropped to limit the amount of load entering the system. The remaining requests are opti-

mally distributed among different servers, such that all the servers perceive an equitable load.

Another approach favors certain clients over others [35]. Randles et al. [36] present an extensive

survey of load balancing algorithms in the cloud computing environments. They classify the

design space of algorithms into two categories: coordinated and uncoordinated. The former

class of algorithms [37, 38] uses a variety of work-stealing based techniques to steal work from

the overloaded nodes. The other class of algorithms, uncoordinated load balancing, primarily

rely on random sampling. For example, Rao et al. [39] rely on simple Bernoulli sampling for

distributing jobs to the servers. All of the above approaches perform load balancing primarily

considering the workload on the servers and are entirely oblivious to social relationships among

the clients, which might result in poor satisfaction of the clients. Our approach keeps a track

of social strengths among the clients and the the response contains updates by a client’s social

connections, resulting in high client QoE.

9

Figure 2.1: Existing overloading solutions and issues with them

Figure 2.1 summarizes all the solution categories, and also mention the main problem with

each of them. In conclusion, the existing solutions can’t handle write dominated single object

overloads along with providing good quality of experience to all the clients. Our proposed model

of social consistency handles these issues and aims at providing good consistency among the

clients without any performance degradation. In the next chapter we begin by formalizing our

model, followed by a detailed description of social consistency.

10

Chapter 3

Social Consistency

This Chapter introduces a formal definition of social consistency. We begin by formalizing the

existing forms of consistency: strong and weak, in order to exhibit the association of social

consistency with them.

In a distributed system, the data is replicated and any update should propagate to all the

replicas to maintain consistency. Since the propagation takes time, so depending upon the

application’s latency requirements, the response to the clients can be sent either after updating

all the replicas (synchronous replication, high latency) or immediately after updating the local

replica (other replicas are updated asynchronously, low latency). These two replication mech-

anisms respectively result in strongly and weakly consistent distributed systems.

A 4-tuple, Γ=〈C,O,w, r〉, is used to define a generic system:

• C={c1, c2, c3, ..., cn} is a finite set of n clients in the system.

• O={o1, o2, o3, ..., ok} is a finite set of k objects, on which operations are performed by the

clients.

• w represents a write operation issued by a client. Concretely, wc(o, t)=v, denotes that a

value v is written to object o at time t by client c.

• r denotes a read operation, and rc(o, t)=v, represents a read request issued by a client c

to an object o at time t, and it returns a value v.

Note: For simplicity of notation, we assume that operations occur instantaneously, i.e., for

strong consistency, the request issuance, propagation to replicas and return to the client, all

happen instantaneously at time t (assuming propagation delay is zero). In weak consistency,

11

the request issuance and return happen instantaneously at time t (but with asynchronous

propagation, hence there is no need to assume zero propagation delay). In weak consistency, if

the propagation (asynchronous) to all replicas does not finish and another update request for

the object comes, then the two updates are considered to be concurrent.

Below we formalize the strong and weak consistency systems.

3.1 Strong Consistency

It states that after the update completes, any subsequent access will return the updated value.

Thus we have the following set of formal conditions that should be satisfied by strongly consis-

tent systems:

• ∀ci, cj, ck ∈ C, ci 6= cj, ∀t1, t2, t′ : t2>t1, t′ ∈ (t1, t2):

wci(o, t1)=v ∧ @ wcj(o, t1)=v′ ∧ @ wck(o, t′)=v′′ ⇒
rck(o, t2)=v.

When there are no concurrent updates, then after an update returns to the client, any

subsequent access will return the updated value, provided there is no new update between

the current update and its corresponding read. Figure 3.1a presents a pictorial view of

the definition.

• ∀ci, cj, ck, cl ∈ C, ci 6= cj, ∀t1, t2, t′ : t2>t1, t′ ∈ (t1, t2):

wci(o, t1)=v1 ∧ wcj(o, t1)=v2 ∧ @ wck(o, t′)=v′ ⇒∨
rck(o, t2)=v1 ∧ @ rcl(o, t2)=v2∨
rck(o, t2)=v2 ∧ @ rcl(o, t2)=v1

In case of overlapping updates, there is a non-determinism in the values observed by

clients. However, all clients will see the same value (corresponding to the updates), pro-

vided there is no new update in between. Figure 3.1b shows that both the clients read

the value x2. Although, both of them could also have read the value x1.

W(x1) R(x1)P1:
P2: R(x1)

(a) No concurrent updates

W(x1) R(x2)P1:
P2: W(x2) R(x2)

(b) Concurrent updates

Figure 3.1: Example: Strong consistency

We further formalize eventual consistency as this form of weak consistency is guaranteed by

major cloud applications [3, 40, 41, 42].

12

3.2 Weak Consistency (Eventual Consistency)

It guarantees that if no new updates are made to an object, eventually all the reads will return

the last updated value. Thus we introduce the following formal conditions:

Assuming v0 to be the initial value of the object o before any update.

• ∀ci, cj, ck ∈ C, ci 6= cj, ∀t1, ∃t2 : t2>t1,∀t′ ∈ (t1, t2):

wci(o, t1)=v ∧ @ wcj(o, t1)=v′ @ wck(o, t′)=v′′ ⇒
rck(o, t2)=v

∧
∨ rck(o, t′)=v

∨ rck(o, t′)=v0

When there are no concurrent updates, then after an update returns to the client, any

subsequent access can return either the updated value or an old value, but eventually,

all the accesses will return the updated value, provided there are no new updates (Fig-

ure 3.2a).

• ∀ci, cj, ck, cl ∈ C, ci 6= cj, ∀t1,∃t2 : t2>t1,∀t′ ∈ (t1, t2):

wci(o, t1)=v1 ∧ wcj(o, t1)=v2 ∧ @ wck(o, t′)=v′ ⇒∧
rck(o, t′)=v1 ∨ rck(o, t′)=v2 ∨ rck(o, t′)=v0∧ ∨
rck(o, t2)=v1 ∧ @ rcl(o, t2)=v2∨
rck(o, t2)=v2 ∧ @ rcl(o, t2)=v1

In case of concurrent updates, the subsequent accesses can return either the updated

value or the old value, but eventually, all the clients will see the same value (by either of

the updates), provided there are no new updates (Figure 3.2b).

W(x1) R(x1)P1:
P2: R(x0) R(x1)

(a) No concurrent updates

W(x1) R(x1)P1:
P2: R(x2) R(x1)W(x2)

(b) Concurrent updates

Figure 3.2: Example: Weak consistency

3.3 Social Consistency

Social Consistency is a hybrid of the above two consistency models. In social consistency,

upon an object overload, the clients in the set C are divided into different clusters based on a

partition function %: C ×O → Cl, where Cl is a set of all cluster ids ({Cl1, Cl2, ..., Clm}), and

O is the set of objects. This function maps the client id to the corresponding cluster depending

13

on the overloaded object. In a socially consistent system, all the clients within a cluster Cli

are strongly consistent and follow the conditions defined in section 3.1. The clients across the

clusters Cli and Clj form an eventually consistent system, in which after some time all the

clients, c ∈ (Cli ∪ Clj), see the consistent data upon merge, thus satisfying the conditions

mentioned in section 3.2.

We append the partition function % to our system definition defined at the beginning of this

Chapter 3. Thus, the updated system definition is a 5-tuple, Γ
′
=〈C,O,w, r, %〉. The read and

the write definitions for this system are also modified slightly. We consider that the objects

maintain lists rather than variables, and any write (value v) operation to the object o, appends

the value v to the list maintained by this object. Similarly, any read operation to the object o

returns the entire list of values, maintained by the object.

Following we present the modified definition of our system, Γ
′
=〈C,O,w, r, %〉, where

• C and O represents the finite set of clients and objects respectively (same as above).

• w represents a write operation, and wc(o, t)=v appends the value v to the list maintained

by object o.

• r denotes a read request, and rc(o, t)=[v] represents a read request issued by a client c to

an object o, which fetches the entire state of object o, atomically. Please note that we

have denoted a list of values by a square bracket, [].

• A partition function % defined above (described in detail in section 3.4).

Our system provides different types of consistencies within and across the clusters, and like

any weak consistency model, it can be obtained by applying various relaxations to a strong

consistency model [43]. These are basically the program order relaxations for operation pairs

accessing different locations. Already existing weak consistency systems include the following

relaxations: a) Write to Read b) Write to Write c) Read to Read and d) Read to Write, e) Read

own write early f) Read others’ write early. For our socially consistent system, we introduce a

new relaxation: any client can read the writes within its cluster earlier compared to the clients

in the other cluster (Read own cluster’s write early). Table 3.1 lists the relaxations that are

valid in our social consistency model.

We describe these relaxations by the following example. Let x be a shared object in a

system, with three clients {P1, P2, P3} accessing it. The clients first issue a write request to

the object x (see Table 3.2); they write (1), (2), and (3) respectively, but at different times.

Then while reading, the clients P1 and P2 read the value [1,2], while P3 gets [3]. As all the

clients do not read a sequentially consistent value, the system is not sequentially consistent.

14

Relaxation Yes/No
W → R/W Order Yes
R → R/W Order Yes
Read Own Write Early No
Read Other’s Write Early No
Read Own Cluster’s Write Early Yes
Read Other Cluster’s Write Early No

Table 3.1: Valid relaxations in the social consistency model

Time P1 P2 P3
t = 0 w3(x) = 3
t = 1 w1(x) = 1
t = 2 w2(x) = 2
t = 3 r1(x) = [1,2] r2(x) = [1,2] r3(x) = [3]

Table 3.2: Social consistency example

However, this result is valid in the case of social consistency: if the clients P1 and P2 are

considered to be in a single cluster while the client P3 in the other cluster, then both P1 and

P2 will be able to read the writes of each other early, but they cannot read the updates from

the other cluster containing P3. It should be noted that in the socially consistent model, all

the three clients will eventually read the same value, which happens upon a merge.

Theoretically, let the set of socially consistent executions for a given program be E. An

execution e ∈ E, is socially consistent if the following conditions hold:

Condition 1: Within a cluster, all the writes are atomic. Writes are not visible atomically to

the nodes outside of the cluster.

Condition 2: All writes are eventually visible across all the clusters.

Condition 3: Within a cluster, the following additional properties are obeyed: monotonic reads

and writes, and read your own reads/writes early. Please refer to the following reference [44]

for a deeper exposition of these topics.

3.4 Partitioning the Clients into Clusters

This section describes the partition function %. The set, C, of clients accessing the object

is represented as a weighted graph G=G(C,E), where E represents the set of edge weights

(i.e., the strength of the connections among the clients). A larger edge weight represents

strongly connected clients. Along with the weighted edges, the graph also has weighted nodes.

15

Gpmetis [45], a graph partitioning tool is used, which partitions the graph balancing both

types of weights (edge weights and node weights). The edge weights broadly have two types of

components: global and per-object dynamic. The global component reflects the general measure

of social strength among the clients, and is independent of any object, whereas the per-object

dynamic component is specific to the overloaded object and it varies with time, depending

upon the intensity of communication between the clients. In contrast to edge weights, the

node weights have only a per-object dynamic component. Hereafter, for simplicity, we refer to

‘global component ’ as ‘static weight ’ and ‘per-object dynamic component ’ as ‘dynamic weight ’.

Following we describe these weights in detail:

• Static Weight of the edges (SW): This weight depends upon various parameters

(provided by the application), each of which reflects a social behavior. Each parameter,

i, has a boolean value, xi ∈ {0, 1}, and an associated priority, pi ∈ [0,1], which reflects

its importance relative to other parameters (higher value of priority means more impor-

tance). It is assumed that the application provides these priorities (though in general

other scenarios are possible which are discussed in the Chapter ‘Discussion’).

The static weight of an edge e, SWe, is computed as:

SWe =
s∑

i=1

pi ∗ xi, (3.1)

where s is the number of static parameters. To understand this definition, let us consider

an example of a Facebook-like application, where the parameters can be friendship, work-

ing place and interest. If an application assigns the following priority values: friendship:

p1 = 0.5, working place: p2 = 0.3, interest: p3 = 0.2, then for any two clients, depending

upon the values of these parameters, the corresponding edge weight can be calculated.

For instance, an edge’s weight would be (0.5 ∗ 1) + (0.3 ∗ 0) + (0.2 ∗ 1) = 0.7, if the cor-

responding clients are friends (x1 = 1) with same interests (x3 = 1) but work at different

places (x2 = 0).

It is to be noted that the parameters should reflect social behavior and hence contribute in

enhancing the client-client relationships. If a particular parameter represents anti-social

behavior, it would not be considered in the computation, i.e. its priority would be set

to zero. For example, if two clients are “friends” but like “solitude”, i.e., they like to

be alone, then the latter parameter will not be considered in the computation. Thus

such parameters won’t have any impact on edge weight. This is because if the clients like

16

0 5 10 15 20 25
∆t (sec) -------------->

0.0

0.2

0.4

0.6

0.8

1.0

f(
∆

t)
 -

--
--

--
--

--
->

Figure 3.3: Damping function

solitude, it is highly unlikely that they would be accessing the object. They would be

oblivious towards their placement in the clusters, and hence can be placed in any cluster

(same or different). So considering only the ‘friendship’ parameter for their placement is

sufficient.

• Dynamic Weight of the edges (DW): This weight captures the impact of the client-

client interaction on the total edge weight. If two clients are interacting a lot on an object,

they should continue to do so, even after partition. Hence upon partition, they should

not be separated, and should be placed in the same cluster. This situation is practically

realized by increasing their corresponding edge weight, thus increasing the probability of

these clients being in the same cluster.

Calculation of Dynamic weights: Our calculation is based on the assumption that if two

requests arrive consecutively at the server, then the corresponding clients are interacting

and their dynamic edge weight, (DW), is updated. Initially DW = 0 for all the edges.

Upon an interaction between two clients, their DW is updated as:

DWnew = 1 + f(∆t) ∗DWold (3.2)

where, DWold represents the previous dynamic edge weight, which loses its contribution

with time according to a damping function, f(∆t). ∆t is the time difference between two

consecutive interactions of these two clients. The value of this function should be close to

1 for small ∆t and should decrease with an increase in ∆t and approach 0 asymptotically

(resembling the graph in Figure 3.3).

17

A variant of the Sigmoid function, f(∆t) = 1/(1 + e∆t−b) where b is a tunable parameter,

is chosen as the damping function. This pattern appropriately captures (observed empir-

ically) the client behavior such that if ∆t is high then the corresponding clients are not

interacting much and hence their edge weight should be small.

We use a weighted matrix, wt, to represent the weights, and wt(cicj) represents the total

weight of an edge between clients ci and cj. These weights are computed as follows:

wt(cicj) = α ∗ SW + β ∗DW (3.3)

where α and β are the normalization parameters and are tunable. They are provided by

the application according to its requirement.

Upon overload, this graph is partitioned into different subgraphs by using Gpmetis [45].

After the partition, the clients across the clusters do not see each others’ data. But there

might be certain clients who would wish to see all the data at the cost of higher latency

(e.g the owner of the post) and would like to be in both the clusters. Such clients are

called as “global nodes”, and in our current prototype implementation, the application

specifies this set of global nodes. Since these global clients would be present in both the

partitions, they can be omitted from the graph while performing partitioning, and can be

later added to both the clusters. We present an example, with 9 clients ({1, 2, ..., 9} in

Figure 3.4a) to explain the formation of clusters. The edge weights shown in the graph

represent the combined weight of the static and dynamic components.

2 3 4 5

1

6 7 8 9

9 2 9

9 2 9

(a) Client Connectivity

2 3 4 5

6 7 8 9

9 2 9

9 2 9

(b) Connectivity after removing the owner

Figure 3.4: Social graph

Figure 3.4a shows that the client pairs {(2, 3), (4, 5), (6, 7), (8, 9)} are strongly connected.

In the graph, node 1 is the owner of the post and hence is connected to all other nodes.

Initially, when there is no overload, all the clients can see each others’ data, and are

strongly consistent. After some time when the post becomes viral and causes a system

18

overload, the split operation is invoked (after removing the owner, Figure:3.4b), which

partitions the clients into two clusters: {2, 3, 4, 5} and {6, 7, 8, 9}, based on the min-cut

algorithm. Later the owner is added to both the partitions.

• It is possible that the partition set created above might not be optimal. For example,

when there are clients who send a disproportionate number of requests. Specifically, let

us consider a situation in which the clients {2, 3, 4, 5} are the hot clients and they are

contributing the maximum to the load, while the remaining clients send very small number

of requests. Our current partitioning mechanism does not offer any benefit as the data

server with this partition is still overloaded, while the data server with other partition is

lightly loaded, nullifying the effect of partitioning. This situation is handled by trading off

social consistency with load balancing. So in such cases when there is a choice of favoring

social consistency or overload handling, our system favors the latter. This is done by

assigning weights to the nodes, called Dynamic Node Weights (DNW), which vary

with time and represent each node’s contribution in overloading the object. Dynamic

node weights are computed similarly to dynamic edge weights, i.e., whenever a client

comments, it’s node weight is updated as follows:

DNWnew = 1 + f(∆t) ∗DNWold (3.4)

Here, ∆t represents the time difference between two consecutive comments by a client,

and f(∆t) is the same function but with a different value of b. Thus the node weight is

based on the frequency of a client’s comments and also captures the recency of comments.

Similar to α and β for edge weight normalization, node weight has γ as its normalization

factor, which is also provided by the application. Thus, upon normalization the node

weight becomes γ ∗DNW .

In summary, the partition function %, which is described above, should satisfy the following

conditions:

(1) Maximize social consistency and load balancing:

|
∑
∀ci,cj∈Cl1

wt(cicj)−
∑
∀ck,cl∈Cl2

wt(ckcl)| < ε , where
∑
wt(cicj) denotes the com-

bined weight of all the edges and nodes in a partition. This condition states that, the

sum of edge and node weights in two partitions are roughly equal. (ε is a relatively small

number).

19

(2) Minimize the loss in social connectivity:

∀ci ∈ Cl1, ci 6∈ Cl2, cj ∈ Cl2, cj 6∈ Cl1, cicj ∈ E:
∑

wt(cicj) is minimized at all points

of time. This condition states that the partition should be a min-cut, thus minimizing

the total weight of edges across the partitions.

Please note that the conditions are defined for only a pair of clusters (Cl1 and Cl2),

though these conditions can be generalized to any number of clusters.

Please note that the partition should provide social consistency and should concomitantly

perform some load balancing, but it should prioritize load balancing when the load becomes pro-

hibitive. Referring to our running example, the set of possible partitions can be {(2, 3, 6, 7), (4, 5, 8, 9)}
or {(2, 3, 8, 9), (4, 5, 6, 7)} (assuming that the clients (2,3,4,5) are contributing equally to the

overload and hence have same node weights). Then, the partitions in which (2 and 3) or (4

and 5) are in different clusters are not chosen, as it would result in a socially weak cluster.

Later, if any of the partitions, let say, {2, 3, 6, 7} gets overloaded due to the clients 2 and 3,

then social consistency is traded-off for load balancing, and {(2, 6), (3, 7)} or {(2, 7), (3, 6)} are

the possible partitions. Thus, our system tries to provide good consistency on a best effort basis.

20

Chapter 4

System Design

Our system is based on the log data-structure, and adapts to the incoming workload by per-

forming split and merge protocols. This Chapter presents the design and implementation of the

system. Initially, the system architecture is described, followed by the split-merge protocols.

The system (Figure 4.1) comprises of:

(1) The Clients, which are added to the system via the client initialization messages.

(2) The Data Servers, which form a persistent storage layer. They monitor the incoming

request rate and initiate a split protocol during overload, and subsequently initiate a

merge protocol as the request rate reduces.

(3) The coordinator, which coordinates the split and the merge protocols. During the split

operation, it chooses a least loaded helper server among the available servers. During the

merge protocol, when there exists several split data servers with the reduced load, the

coordinator chooses a set of data servers that are most efficient to merge. It also generates

the routing information corresponding to the object’s state (split-merge), which is used

by the proxy servers for redirecting the client requests to the appropriate data servers.

The coordinator also stores the information of all the clients in the form of a social graph.

Upon a split, this graph is partitioned into different social clusters, and the coordinator

performs a reverse operation of combining the graphs during the merge protocols.

(4) The Proxy Servers, that act as a mediator between the clients and the data servers, and

route the client requests according to the routing information provided by the coordinator.

They also add the clients to the system, with the help of the coordinator.

21

The clients have a many-to-one mapping with the proxy servers, and are connected to them

in a round-robin manner. The proxy servers are further mapped to the back-end data servers

with a many-to-many mapping (the connections are not shown to keep the figure simple). The

entire communication between the data servers and the clients happens via the proxy servers.

This design is opted in contrast to the design, where the clients contact the proxy servers only

to find the corresponding data servers, and then directly contact the particular data server for

the data exchange. This alternate design decision would require the clients to maintain the

object-to-dataserver (object’s location) mappings. Upon every reconfiguration (split-merge),

these mappings would change, and the clients would need to be informed about the updated

mappings. These factors might result in the scalability issues. Thus to avoid these issues, the

proxy servers are used as the mediator for all the data exchanges. Furthermore, since the proxy

servers and the data servers both belong to the same data center, they have a small network

latency which has a minimal impact on the performance. To prevent the proxy servers from

becoming the bottleneck, multiple proxy servers are installed.

Data Server1 Data Server 2

Data Server 3

Coordinator

Routing Routing Routing

Coordinator

Proxy Server 1 Proxy Server 2 Proxy Server 3

C1 C2 C3 C4 C5 C6

send to DS() send to PS()

send to PS() send to client()

client
initialization
messages

split-merge
messages

Data Server 4

Figure 4.1: System Architecture

4.1 System APIs and the Split-Merge Protocols

The following algorithms show, how clients interact with proxy servers (PSs), and how the

proxy servers further communicate with the data servers (DSs).

Algorithm 1: Write Client

1 send to PS(c id,W, data, o id);

2 recv from PS(Ack, o id);

Algorithm 2: Read Client

1 send to PS(c id, R, o id);

2 recv from PS(data, o id);

In the Algorithms 1 and 2, c id denotes the client id, W/R denotes the request type

(write/read), Ack is the acknowledgment received, and data is the information sent/received,

22

for the object whose id is o id.

Algorithm 3: Proxy Server

1 while true do

2 recv from client(c id, cmd, data, o id);

3 cl id = get client cluster(c id, o id);

4 s id = get server id(cl id, o id);

5 send to DS(s id, cmd, data, o id);

6 recv from DS(s id, ret val, o id);

7 send to client(ret val, o id);

8 end

Algorithm 4: Data Server

1 while true do

2 recv from PS(cmd, data, o id);

3 if cmd = R then

send to PS(data, o id);

4 if cmd = W then

update value(data, o id);

5 send to PS(Ack, o id);

6 end

Similarly in the Algorithms 3 and 4, cmd represents a read/write request type, cl id denotes

the cluster id, s id is the server id and is retrieved from the routing information stored at the

proxy servers using get server id(cl id, o id), ret val represents either the data or the Ack.

In Algorithm 3, get client cluster(c id, o id) returns the id of the cluster to which a partic-

ular client belongs.

The next section describes the split and the merge protocols.

4.2 The Split-Merge Strategy

During an overload, the object-based splitting is performed, which affects only the clients who

are accessing the hot object. Upon a split, the clients belonging to different clusters are not

allowed to access each others’ data. However, all the clients can still interact over any other

non-split object. Object-based splitting is favored rather than an entire system split, as the

latter is expensive and also prevents the user interactions on different objects.

4.2.1 The Split Protocol

In the following algorithm, only a single split is considered, and the split of an object creates two

sub-objects which can further overload, resulting in another split. This splitting can continue

to any level. The protocol is described below (Figure 4.2):

(1) Each data server continuously tracks the incoming request rates on its objects. When

the request rate for a particular object, let say “o”, goes beyond a predefined threshold,

the overloaded data server (Data Server1 in Figure 4.2), initiates the split protocol by

requesting the coordinator for a split (represented by 1 in the Figure) and this data server

23

Data Server1 Data Server 2

Data Server 3 Data Server 4

Coordinator

Routing Routing Routing

Coordinator

Proxy Srever 1 Proxy Server 2 Proxy Server 3

C1 C2 C3 C4 C5 C6

1,6

2

4
5

4
5

4

5

3

Figure 4.2: Split protocol

(DS1) is referred as the master server.

(2) The coordinator, upon receiving the split request assigns a helper data server DS2 (re-

ferred as slave server), from the list of available data servers. It then partitions the

existing set of clients into two clusters, and each cluster is bounded to one server, master

and slave, respectively. This information is encapsulated in the form of a routing function

and is sent back to DS1. In the case of unavailability of free data servers, the coordinator

is unable to fulfill the split request, and rejects it.

(3) When DS1 receives the reply from the coordinator, it connects to the slave server (DS2),

and iteratively transfers the data object to it. During the last iteration of the transfer,

when the amount of data to transfer is sufficiently small, DS1 pauses its incoming requests

and transfers the remaining data. After the transfer completes, DS2 sends an ACK to

DS1.

(4) Upon receiving theACK, DS1 resumes the previously paused requests, and asynchronously

informs the proxy servers about the updated routing information. Asynchronous updates

to the proxy servers do not impact the performance, since DS1 itself has the routing in-

formation. So, if a stale proxy server (following the old routing function) sends a request

to DS1, which should have been handled at DS2 as per the new routing information,

then DS1 forwards the request to DS2.

(5) After updating the routing information, the proxy servers reply to DS1 with End of Epoch

(EoE) messages, indicating that all the subsequent requests will be routed according to

the new routing function. Upon receiving the EoEs from all the proxy servers, the master

24

disconnects from the slave.

(6) Finally, DS1 informs the coordinator about split completion.

Figure 4.3 and Table 4.1 summarizes the protocol.

Coordinator DS1 PSDS2
m1

m2
m3

m5

m4

m6
m7

tim
e

Figure 4.3: Time diagram for split protocol

Message Content
m1 Split request
m2 New routing information

and slaveid
m3 Cloned data
m4 Ack
m5 New routing information
m6 EoE
m7 Split done

Table 4.1: Messages in the Split protocol

4.2.2 The Merge Protocol

Figure 4.4 represents the merge protocol.

1) Every DS monitors the incoming request rate on its split objects, and report it to the

coordinator when it falls below the merge threshold. As shown in the figure 4.4, DS1 and

DS4 detect a low request rate and inform the corresponding rates to the coordinator.

2) The coordinator then sorts the received request rates (for a particular split object), in

ascending order. Then the servers for whom the summation of request rates is less than a

25

Data Server1 Data Server 2

Data Server 3 Data Server 4

Coordinator

Routing Routing Routing

Coordinator

Proxy Srever 1 Proxy Server 2 Proxy Server 3

C1 C2 C3 C4 C5 C6

1

1

2 2
3

4
4 4

5
5 5

6

Figure 4.4: Merge protocol

specified global threshold, are considered for merging and are called slaves. One of them

is chosen as the merge-master (DS1 in the example), on which the merged data will be

stored. All the slaves are notified to begin the merge (represented by 2 in the figure).

3) Upon receiving the merge notification, these slave data servers (DS1 and DS4) iteratively

transfer their data to the master (DS1). Master performs an iterative merge (merge-sort)

on the incoming data. When the amount of data to be transferred is very less (δ), then

the slaves block the incoming requests and transfer the state atomically to the master.

Upon reception of these δ requests, the master temporarily pauses the requests on this

object and merges them. Iterative merging increases the system availability as the system

is blocked only during the last iteration which has a small amount of data to be merged.

It also has minimal impact on performance since the merge protocol is initiated when the

incoming load is small.

4) Once the merging is done, the master asynchronously informs all the proxy servers about

the new routing function.

5) Proxy servers update their routing information and reply with EoE messages. After

receiving all the EoEs, the master closes the connection with the slaves.

6) Master informs the coordinator about the merge completion.

Figure 4.5 and Table 4.2 summarizes the merge protocol. Please note that the current example

considers only two servers, however multiple servers can be merged. Also, the current imple-

mentation performs merging only when the spike subsides. Though a background merger can

be started, which will speed-up the merging.

26

Coordinator DS1 PSDS2
m1

m2

m3
m4

m5

m6

m7
m8

tim
e

Figure 4.5: Time diagram for merge protocol

Message Content
m1, m2 Merge request
m3, m4 New routing information,

masterid and slaveids
m5 Data
m6 New routing information
m7 EoE
m8 Merge done

Table 4.2: Messages in the Merge protocol

System Unavailability time: Since both the protocols perform an iterative data transfer,

the incoming requests are paused only during the last iteration, to perform an atomic transfer.

The corresponding unavailability time for split (Usplit) and merge (Umerge) protocols can be

represented as follows:

• During the split protocol, the system is unavailable when the data for the last iteration is

sent from DS1 to DS2. This time includes reading the data at DS1, sending it to DS2

(network delay), writing data to DS2 and finally returning to DS1. Usplit in Table 4.3

represents this, where RTT denotes the Round Trip Time, Read corresponds to the time

taken to read on DS1 and Write is the time taken to write on DS2.

Unavailability time Value
Usplit 1 Read + 1 RTT + 1 Write
Umerge 1 Read + 1 RTT + 1 Write + δ time

Table 4.3: System unavailability time

27

• During the merge protocol, the system is unavailable when the slaves send the data of their

last iteration, and also when the δ requests of this iteration are merged. Correspondingly,

Umerge is defined in Table 4.3 , where Read is the time taken to perform reads at the

slaves (all done in parallel), Write is the time taken to write on the master server and

δ is the time spent in merging the data of the last iteration.

Logical Split Tree: The formation of various clusters during the split protocol follows a

tree-like pattern, as shown in Figure 4.6. The leaf nodes of the tree structure (at any point in

time) represent the existing clusters (at that time), and each cluster is mapped to a data server.

Referring to the figure, initially all the clients belong to cluster 1, which is mapped to DS1.

Upon the first split, cluster 1 is partitioned to cluster 2 and 3 which are mapped to DS1 and

DS2, respectively. The process of splitting can continue to any level, with each split following

a hierarchical structure.

1

DS1

1

2 3

1

2 3

4 5

DS1 DS2

DS1 DS3

DS2

Figure 4.6: Hierarchical split

On the other hand, a flat merge technique (Figure 4.7), irrespective of the split structure,

is followed. Particularly, after any split, all the clusters in the system are considered to be at

the same logical level and merging is performed on any set of leaves (clusters), depending upon

the workloads on them.

1

2 3

DS1 DS3

DS2

4 5 4

3

1

Figure 4.7: Flat merge

28

As shown in figure 4.7, the split state has three clusters: 3,4, and 5, mapped to data servers

DS2, DS1, and DS3, respectively. During a merge, it is not necessary to merge the clusters

4 and 5 (i.e., DS1 and DS3), but the clusters 4 and 3 (or 5 and 3) can also be merged, if

the workload on these servers is low. This merged data is then stored on any one of the two

servers (let it be DS1). Further, when the workload on DS3 reduces, it can be merged with

the previously merged data server (DS1), and finally, the entire data can be stored on DS1.

This approach provides more flexibility as an arbitrary set of under-utilized versions can be

merged to reduce the resource usage. However, this flexibility comes at the cost of merging a

large amount of data. Precisely, if a hierarchical merge is done (i.e merging clusters 4 and 5 in

Figure 4.7), it would require merging only the data differences which originated after cluster 2

was split, i.e the data created during the paths [2 - 4] and [2 - 5]. But in the case where 3 and

4 are merged, the logical paths [1 - 2 - 4] and [1 - 3] are merged. Later when another merge

happens (from cluster 5), then the part [1 - 2] from path [1 - 2 - 5] is re-merged (though it was

already considered in the previous merge), which is redundant. However, since the request rate

is quite low during a merge, this additional work has a minimal impact on performance.

4.2.3 System Goals and Semantics

• Adaptability and Scalability: The system is self-optimizing, and efficiently adapts to the

variations in the workloads. It is scalable and dynamically adds more servers when the

workload increases, and removes additional servers in the case of reduced load.

• Semantics: As mentioned in section 3.3, the system provides the following guarantees:

– Read your own reads/writes: The clients can read their previously read/written data

in the same order. Upon a split, a clone of the object is created and transferred, so

irrespective of the client’s cluster, it can read all of its past data. Similarly, after

a merge, it can view its entire data in the same order. Though there can be some

additional data as a result of merging, however, the client’s order remains intact.

– Monotonic reads/writes: If a client reads/writes a value v from/to an object, any

successive read operation on that object by the same client will always return, either

the value v or a more recent value.

29

Chapter 5

Evaluation

The proposed system is favorable for the applications that are based on log data structure (for

example, a user’s Facebook wall, a Twitter page, or a list of comments for a social media post).

So, this thesis mainly focuses on social-networking applications and implements a mock social

application, BLAST (Best-effort Latency And Scalability Together), based on the architecture

described in chapter 4. BLAST targets to handle overloads and achieve scalability, and it

supports multiple clients, who issue read/write requests to the posts and comments. A post

combined with its comments forms a log-structured object. The system provides the following

APIs:

• Add-Me: Connects the clients to the system and assigns unique ids to each of them.

• Write-Post: Issued by the clients to create a new post. In the current implementation, a

post is considered as an object.

• Write-Comment: Allows the clients to comment on the existing posts. A comment is not

considered as an object in itself but is appended to the corresponding post object.

• Read-Post: Reads the post along with its 50 latest comments from the data server.

The prototype is implemented over the open-source Cassandra [11] database and it stores

the posts as key-value pairs: post-id is the key, and the comment-list forms the corresponding

value.

In this chapter, we present the cost-benefit analysis of the proposed paradigm with respect

to performance and social consistency. BLAST is compared against Cassandra to show the

performance benefits. For comparing the benefits of social partitioning, BLAST is evaluated

against another load balancing system which performs random partitioning of the clients.

30

The experiments presented in this chapter initially evaluate the system on a synthetic bench-

mark with three types of workloads: i) Write-Only, ii) Read-Mostly (95% Reads, 5% Writes)

and iii) Mixed (50% Reads, 50% Writes) for a single split. Next, they show the results for

a multi-split scenario, pointing towards the scalability of the prototype. Further, the results

against two real-world datasets are presented. The datasets are collected using i) Facebook’s

API: comments on a famous live video and ii) Twitter: Higgs dataset [46], which also provides

the connectivity information among the clients in terms of “who-follows-whom” relationship.

This who-follows-whom relationship is considered as bidirectional, i.e if a client A follows client

B, it is assumed that B also follows A, and the two clients are considered as friends. This

friendship parameter is used as a static parameter. Only one static parameter (i.e. friendship)

is considered in the social graph, and its priority is set to one. So in this case, the static

edge weight between A and B is set to one. The request rates of these datasets were low in

comparison to that required for the system saturation, so the request rates are scaled to cause

overloading.

After the performance evaluation, the experiments comparing the quality of the system are

performed. Finally, the experiments demonstrating the quality-performance trade-off, while

using the dynamic weights scenario, are presented. In the experiments, Gpmetis [45] (graph

partitioning package), is used to perform the social split. The input to this tool is a weighted

graph, whose static edge weights are provided by the application while dynamic node and edge

weights are computed during the execution.

Experimental Setup: The experiments are performed within a single data center equipped

with Intel Xeon, Core i3, 2nd Generation processors, each having four cores (eight with hyper-

threading), 16 GB RAM, 3 TB Seagate HDDs (7200 rpm) and are connected by Gigabit Ether-

net (GbE). Average ping latency among the machines is ≈ 0.17ms. In each experiment, three

dedicated machines are used for proxy servers, one for the coordinator, three for all the clients,

and one, two, or four for the data servers (depending on the number of clusters created after

splitting).

The data servers run Cassandra 3.9 in the backend, and store data without replication,

with a consistency value of one (i.e. the reads/writes are performed on any one server before

returning). Initially, when there is no split, a single data server handles the incoming workload,

thus allowing all the clients see a consistent value with respect to each other, and makes

the system strongly consistent. Upon an overload, another database with the same schema

is created (on another data server), and the object data is copied. These two servers act as

independent clusters, without any replication (replication factor:1) and consistency value:1, i.e.,

31

they do not communicate. Upon subsequent overloads, this process is repeated without altering

the replication factor and consistency value. The new clusters formed are strongly consistent

within themselves and the system as a whole is socially consistent. As the workload decreases

the clusters are merged resulting in an eventually consistent system.

The performance of the system is evaluated in terms of latency and throughput, and is com-

pared with Cassandra. Cassandra is used in Facebook and is its default load balancer; hence,

it is one of the best candidates for comparison. In the experiments, Cassandra initially has a

replication and consistency value equal to 1. Upon any subsequent overload, the replication

factor is incremented by 1 (after adding another data server to the cluster), but the consistency

value remains 1 throughout, unlike BLAST. This means that the request is satisfied from any

one server rather than multiple servers. The data is replicated to other servers asynchronously

at the backend, which results in an eventually consistent system.

In the synthetic workload, the request rate increases/decreases in steps. In particular, the

clients continuously issue requests at a rate that is approximately constant for some time inter-

val, and the rate changes in the next interval. Each write request appends a comment to a post,

and each read request reads a list of the latest 50 comments from that post and returns them

back to the client. The experiments performed consider only one post, in order to show the

impact of hot-spots. Please note that the system is an open system, i.e. the request arrival rate

at the system is independent of the system performance and there is no feedback mechanism

to control the request rate.

Experiments and Inferences: Initially, the system threshold is calculated for all types

of workloads, by disabling the split protocol. Then the experiments are performed with split

enabled, and the split is done when the incoming request rate reaches x% of the system thresh-

old, where x is tunable, depending upon the workload. Experiments with different values of x

have been performed and it is found that both Cassandra and BLAST finish their split protocol

before the system overloads when the value of x is 60%. Thus, this value is chosen in all the

experiments.

Figures 5.1a, 5.2a, 5.3a show the arrival request rate vs execution time for a Write-Only,

Read-Only and Mixed workloads, respectively. Their corresponding latency graphs (plotted on

log10 scale) are represented in Figures 5.1b, 5.2b, 5.3b. Each latency graph has three curves,

representing the base case (non-split, i.e., the system has only one cluster), Cassandra and

BLAST, both with one split each (i.e., the system has two clusters in each case). After a split,

both Cassandra and BLAST use double system resources to handle the incoming requests.

Figures show that BLAST handles (1.7− 1.9)× more workload in comparison to the base case,

32

0 50 100 150 200 250
Time(s)

0

1

2

3

4

5

6

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

 (
#

R
e
q
/s

)

1e4

Req rate

(a) Request rate

0 50 100 150 200 250
Time(s)

1

0

1

2

3

4

5

lo
g
 (

la
te

n
cy

,
1
0

)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.1: Write-Only workload

0 20 40 60 80 100 120
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

 (
#

R
e
q
/s

)

1e4

Req rate

(a) Request rate

0 20 40 60 80 100 120
Time(s)

0

1

2

3

4

5

6

7

lo
g
 (

la
te

n
cy

,
1
0
)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.2: Read-Mostly workload

and 1.6× more workload in comparison to Cassandra. Cassandra has a negligible performance

gain, (1−1.2)×, showing that it does not perform effective load balancing when there is a single

hot object.

33

0 20 40 60 80 100 120 140 160
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

 (
#

R
e
q
/s

)

1e4

Req rate

(a) Request rate

0 20 40 60 80 100 120 140 160
Time(s)

1

0

1

2

3

4

5

6

7

lo
g
 (

la
te

n
cy

,
1
0
)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.3: Mixed workload (1 split)

If the load is not adequately balanced between the data servers, then these data servers have

to communicate a lot among themselves, to correctly respond to the incoming client requests.

An experiment has been performed, to quantify the impact of load balancing on performance,

in which the communications (that happen when the client requests arrive at the data servers)

between the data servers are tracked. In particular, the total number of read and write requests

that arrive (directly from the clients) at each data server is tracked. Along with this, the total

number of reads and writes which actually happened at them are also tracked. The difference

between the two values represents the corresponding number of internal communications. The

results in Figure 5.4, show that for every 1000 incoming requests, Cassandra performs more

than 450 communications (in case of both the read and write requests). In contrast, BLAST

data servers handle the requests locally without any communication. This huge amount of

difference in the number of communications reflects the difference in the performance numbers.

34

BLAST Cassandra
0

100

200

300

400

500

#
 o

f
co

m
m

.
p
e
r

1
K

 r
e
q
u
e
st

s
Read_Comm

Write_Comm

Figure 5.4: Number of communications per 1000 incoming requests (1 split)

0 20 40 60 80 100 120
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

 (
#

R
e
q
/s

)

1e4

Req rate

(a) Request rate

0 20 40 60 80 100 120
Time(s)

1

0

1

2

3

4

5

6

7

lo
g
 (

la
te

n
cy

,
1
0
)

1 comment

25 comments

50 comments

75 comments

(b) Latency curve

Figure 5.5: Read latency with number of comments (Read-Mostly workload)

Figures 5.1 and 5.2 show that BLAST handles (2 − 2.5)× more Write-Only workload

than Read-Mostly workload. The intuition behind this is that in Read-Mostly workloads,

the performance depends upon on the number of comments that are read from the server, in

response to the issued read request. The latency of a read request increases with increase in the

number of comments read by it. To verify this, a non-split experiment with the Read-Mostly

workload is conducted, in which the number of comments read from the server are varied in

the set {1, 25, 50, 75}. The results in Figure 5.5 confirms the explanation. The read latency

depends on how the underlying storage handles the incoming requests. Since Cassandra is used

35

BLAST Cassandra
0

100

200

300

400

500

600

#
 o

f
co

m
m

.
p
e
r

1
K

 r
e
q
u
e
st

s

Read_Comm

Write_Comm

Figure 5.6: Number of communications per 1000 incoming requests (3 splits)

at the backend, so this work does not focus on the details of how read requests are internally

handled by Cassandra. For all the future experiments, the number of comments to be read is

set to 50, as this value is realistic and provides a reasonable performance.

Henceforth, the Mixed workload is used for all the future experiments as the other workloads

show the same pattern predictably.

0 50 100 150 200 250
Time(s)

0

1

2

3

4

5

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

 (
#

R
e
q
/s

)

1e4

Req rate

(a) Request rate

0 50 100 150 200 250
Time(s)

0

1

2

3

4

5

6

7

lo
g
 (

la
te

n
cy

,
1
0
)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.7: Mixed workload (3 splits)

Figure 5.7 presents the scalability perspective of the system by showing the results of a

multi-split scenario: initially, there is only one cluster in the system, and after subsequent

splits, the number of clusters increases to four (Figure 5.7). The experiments demonstrate that

BLAST surpasses Cassandra by handling 2.4× more workload after performing multiple splits.

36

The number of communications across the clusters in this case follow a similar pattern as in

the single split scenario (Figure 5.6), thus inferring poor performance for Cassandra.

0 1 2 3 4 5
Request Rate(#req/sec) 1e4

1

0

1

2

3

4

5

6

7

lo
g
 (

la
te

n
cy

,
1
0
)

1 Cluster (No Split)

2 Clusters (BLAST)

4 Clusters (BLAST)

2 Clusters (Cassandra)

4 Clusters (Cassandra)

Figure 5.8: Summarizing all 3 splits

Figure 5.8 summarizes the performance of all the systems under the mixed workload, and

clearly shows that Cassandra is unable to handle single object overloads. In contrast, BLAST

scales with the offered load and surpasses Cassandra by handling (1.6− 2.4)× more workload.

37

Further, the experiments are conducted with two real-world datasets. Figure 5.9 presents the

arrival request rate and the corresponding latency graph, considering the Twitter dataset [46].

The graphs show that the results are in line with the previous results obtained in the synthetic

workload scenario. The graph shows a spike in the latency curves, which occurs due to queu-

ing, as the request rate spontaneously increases from 9000 req/s to 18000 req/s (at the time

interval of 160 − 170s). BLAST quickly handles the situation (in ∼ 20s) and becomes stable

after splitting, while Cassandra provides poor performance throughout, and the performance is

improved solely when the request rate decreases.

0 50 100 150 200 250
Time(s)

0.0

0.5

1.0

1.5

2.0

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

(#
R

e
q
/s

) 1e4

Req rate

(a) Request rate

0 50 100 150 200 250
Time(s)

0
1
2
3
4
5
6
7
8
9

lo
g
 (

la
te

n
cy

,
1

0
)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.9: Twitter dataset

Similarly fig. 5.10 shows that BLAST outperforms Cassandra on the Facebook dataset. In

this dataset, Cassandra’s performance (despite a split) is even worse than the non-split scenario.

All the above experiments show the impact of load balancing and clearly demonstrate that

BLAST performs better than Cassandra. Further, the thesis presents the experiments which

demonstrate the impact of social partitioning and claim that BLAST provides a good Quality

of Experience (QoE) to its clients. To quantify the quality experienced by the clients, a new

consistency metric:“Quality” is introduced, which can be computed for the response of each

read request. Theoretically, the quality of a read response is high, if the response contains all

the previous writes done by the client’s social connections. Thus, “Quality” is defined as the

ratio of number of friends’ comments (writes) received (Friends WritesReceived), to the total

number of comments done by client’s friends (Friends WritesDone). Formally, the quality of a

read request, Ri, is:

Qualityi =
Friends WritesReceived

Friends WritesDone

(5.1)

An experiment determining the quality is performed to test the effectiveness of the par-

38

0 100 200 300 400
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

(#
R

e
q
/s

) 1e4

Req rate

(a) Request rate

0 100 200 300 400
Time(s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

lo
g
 (

la
te

n
cy

,
1

0
)

No Split

Cassandra

BLAST

(b) Latency curve

Figure 5.10: Facebook dataset

titioning algorithm. This experiment (Figure 5.11), uses the Twitter dataset and compares

BLAST against another load balancing system model. The new model handles the overloads

by partitioning the clients into clusters, as done in BLAST. However, unlike BLAST, it parti-

tions the clients randomly rather than on the basis of social connectivity. This system is named

‘Random’, and it focuses only on handling the overloads while completely ignoring consistency,

as is the case with general load balancing algorithms. In the experiments, the “Quality” of a

split system (for both BLAST and Random) is computed and then normalized to the quality

obtained for a ‘no split’ system (Equation 5.2). In particular, initially the number of friends’

comments received in a ‘no split’ system are computed. Next, with the same incoming request

rate trace, a partitioning algorithm is applied to compute the number of friends’ comments

received.

NormalizedQualityi =
(Qualityi)split

(Qualityi)no split

(5.2)

Since the normalized quality in equation 5.2, is defined for each read request, the average

normalized quality for all the requests issued during some time interval can be computed. The

AvgNormalizedQuality for an interval (with n requests) is defined as:

AvgNormalizedQuality =

∑n
i (NormalizedQualityi)

n
(5.3)

Figure 5.11a shows that the average normalized quality of BLAST is 1.37× higher than

Random.

Figure 5.11b presents the number of requests that receive a particular quality in BLAST.

39

The quality values are plotted on the x-axis and the number of requests are plotted in the

y-axis. The graph shows that the maximum number of requests have a quality value of 1,

implying that maximum clients get high quality of response. The quality for all requests is in

[0,3]. A value greater than one implies that the clients are able to see more of their friends’

comments in comparison to the number of friends’ comments seen in the base case (no split).

This happens due to social partitioning, which replaces the received comments of non-friend

clients with the comments from friends. In contrast, a value smaller than one indicates that

the quality of BLAST is less than that of ‘no split’ scenario. This is because BLAST provides

social consistency on a best effort basis, and in case of worse situations (when load is very

high), BLAST favors load balancing. Thus the friends are partitioned to different clusters to

effectively balance the load, and this reduces the quality. Figure shows that only 30% of the

requests have a quality reduction by more than 50% which means that only a small percentage

of clients do not get a good quality.

0 50 100 150 200 250
Time(s)

0.8

1.0

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 Q

u
a
lit

y

Random

BLAST

(a) Average quality

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Normalized Quality

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
u
m

b
e
r

o
f

R
e
q
u
e
st

s

1e5

No. of Requests

(b) Clients QoE statistics

Figure 5.11: Quality of response

Finally, this chapter presents the quality-performance trade-offs in the static and dynamic

splits, i.e., BLAST is evaluated in two settings: considering only the static weights (static split),

and considering both the static and dynamic weights (dynamic split). Figure 5.12 shows the

input social graph which is used in the experiment. In the graph, client 1 refers to the owner

of the post and hence is a “global′′ node. The graph partitioning algorithm is performed after

removal of this node (fig. 5.12b). The weights shown in the graph are static, and the nodes

{2,3,4,5} contribute maximum in the system overload. Since there are very few clients, they

could not overload the system so we reduced the number of cores to 1 (from 4 in our previous

40

2 3

4 5
1

6 7

8 9

100

100

100

100

100

100

10

100

100

100

100
100

100

(a) Input social graph

2 3

4 5

6 7

8 9

100

100

100

100

100

100

10

100

100

100

100
100

100

(b) Graph after removing the owner

Figure 5.12: Social graph

setup), thus decreasing the maximum achievable request rate to 4000 req/s. (see Figure 5.13)

If only static weights are considered, then the partitioning algorithm leads to the partitions

{2,3,4,5} and {6,7,8,9}. However, considering the dynamic weights, the partitioning algorithm

can lead to any partition which balances the number of nodes which are causing the maximum

overload. For example, {2,3,8,9} and {4,5,6,7} is one such possibility. The partition will also

depend on the dynamic edge weights, and hence might change depending upon the amount of

interaction among the clients.

41

0 50 100 150 200
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
q
u
e
st

 A
rr

iv
a
l
R

a
te

(#
R

e
q
/s

) 1e3

Req rate

(a) Request rate

0 50 100 150 200
Time(s)

0

2

4

6

8

10

lo
g
 (

la
te

n
cy

,
1
0
)

Static Split

Dynamic Split

(b) Latency curve

Figure 5.13: Static vs dynamic performance

Figure 5.13 shows that the dynamic split provides better performance, though the quality

offered (Figure 5.14) in this case is slightly lower than the static case. This reduced quality is

because BLAST tries to provide both excellent load balancing (leading to better performance)

and good social consistency (leading to better QoE) wherever feasible, however it favors better

performance by compromising upon social consistency in case of critical situations.

42

0 50 100 150 200
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Q

u
a
lit

y
Static Split

Dynamic Split

Figure 5.14: Static vs dynamic quality

Figure 5.14 shows that the average normalized quality (as defined in equation 5.3) of the

static split is 1.2 for some time, and then it suddenly drops to 0. This sudden drop is because as

the request rate increases, the system gets overloaded, which results in extremely high latency

and hence no requests complete. Dynamic split increases the system performance, and the

system runs for a longer duration. Summarizing, the static split provides good quality, while

the dynamic splits provide a slightly reduced quality but at a higher performance.

43

Chapter 6

Discussion

This chapter initially presents some discussion related to the priority order of features which

are used in static weights computation (as referred in 3.4). Later, the chapter discusses various

types of systems which are possible by using the social partitioning technique, and these systems

vary in performance and consistency. Then, the significance of the log data structure is discussed

and the chapter emphasizes on how most of the data objects can be represented by its operation

log. Finally, the chapter briefly describes the various real-world applications that can use the

approach of social consistency.

6.1 Possibility of different preference orders

Section 3.4 describes the computation of the edge weights, based on the priorities assigned to

the features. In the experiments, it has been assumed that the application provides this pref-

erence order, though other scenarios with different preference orders are possible, and multiple

preference orders can exist. For example, it is possible that the clients provide their own pref-

erences, thus each client prioritizes the features differently. In this setting, as each preference

order is a client’s personal choice, it should only impact her social strength with her peers

without affecting the social strength between other clients. The model proposed in this thesis

can easily incorporate this situation as explained below:

The application provides a list of features and seeks clients for their preferences. The features

have a rank range (decided by the application), of the form [a, b] with a < b, higher rank means

more importance for that user. The range has been set to normalize the features, so that no

feature can dominate the other.

Ranks provided by the users are then directly incorporated as edge weights using the

same formula, Edge weight =
∑s

i=1 pi ∗ xi, where pi is the rank of the feature and xi is

44

the value of the feature. For example, consider two clients (c1, c2) and location as a fea-

ture (range [0-1]), with c1 giving a rank of 1 while c2 giving rank 0.2. Then the combined

rank will be the mean of these (i.e., (1 + 0.2)/2 = 0.6), and hence the edge weight will be :

0.6 ∗ (valueif they belong to same location or not).

Apart from this scenario, another scenario is possible in which the application asks the

owner of the post to give her preference about the way she wants her post to be seen by

different clients. Though this is not a practical scenario as an application uses preference

orders to partition the social graph only when an overload situation arises. Overloading is

caused because the application is unable to properly manage the incoming load. Thus the

problem is at the application side and the onus is completely on the application. The owner of

the post should not be bothered to give her preference to handle a situation which arises due

to application’s inability. Moreover, the owner has no incentive to give her preference. Thus

this situation is highly unlikely from a practical perspective.

However, if such a hypothetical case is considered where, upon an overload the application

asks the poster to give her preference, then there would be two possible priority orders (one

by the application and other by the owner) and a global order is to be chosen. According

to the classical Arrow’s Impossibility Theorem [47], this assignment of global ranking over

parameters is not possible. Though there can be some alternatives by which Arrow’s theorem

can be avoided, this work does not go further into the details. In such cases, it is assumed that

the application uses the owner’s preference order rather than assigning its own order. Thus

in summary, only the following three situations are possible and can be easily handled by the

proposed system:

(1) The application provides the preference.

(2) Clients accessing the post can provide their own preferences.

(3) Owner of the post can provide her preference (not very practical).

6.2 Significance of Social Partitioning

The core idea of the social consistency model is the client-client relationships, on the basis of

which the clusters are formed. Clustering helps to quantify the per client consistency and per

client QoE, depending on the data a client would desire to access. Although this thesis uses the

concept of social partitioning to handle overloads, this technique can also be used in general,

45

to develop systems with different performance and different types of consistency among the

clients.

For example, a system targeting high overall performance can have strongly consistent (SC)

clients within the cluster and eventually consistent (EC) clients across the clusters. This is

similar to the system focused in the thesis, but unlike our system where the partition happens

only upon an overload, this system will have such partitions throughout the execution. Another

possible system is where all the clients (even in different clusters) are strongly consistent,

however, this is achieved by trading off performance for some clusters. In particular, the

clusters in this new system are prioritized and the maximum priority cluster has the highest

performance. A recent article [48] describes that the National Stock Exchange (NSE) has a

similar model, where the brokers form a cluster with high priority (priority is on the basis of the

location of their machines from the exchange trading system), benefit a lot from lower latencies

and faster execution of trades.

The cluster priority can be an important parameter for deciding the performance of the

system and the consistency among the clients. If the clusters have different priorities, then

two types of systems are feasible : i) strongly consistent throughout, ii) strongly consistent

within a cluster and eventually consistent across the clusters. On the other hand, if the clusters

have same priorities, they will have similar performance. However, in such a setting, it is not

possible to provide strong consistency to all the clients in the system, and the consistency across

clusters has to be traded-off to maintain high performance. This results in a system with strong

consistency within a cluster and eventual consistency across the clusters. Table 6.1 summarizes

all such feasible systems under different cluster priority and performance setting. (In the table,

SC refers to strong consistency and EC is eventual consistency).

SC within, EC across SC throughout the system
Different priority clusters (different performance) Feasible Infeasible
Same priority clusters (high performance for all) Feasible Feasible

Table 6.1: Different feasible models based on social partitioning

It is also possible to have a composite system in which different approaches can be adopted

at different times during the system execution. For example, when a system gets overloaded for

the first time, the clusters can be created on the basis of priority. Further, if a cluster with the

highest priority gets overloaded then it can be partitioned into same priority clusters, providing

high performance and social consistency. Thus, depending upon the application’s requirement

a corresponding model can be adopted.

46

6.3 Modeling Object’s State by its Operation Log

In the proposed model, the object is assumed to be in the form of a list. However, the approach

can still be applied to a non log structured object, if the object’s state can be modeled by its

operation log. In particular, if the state of an object can be easily recognized by parsing and

replaying its operation log, then the object can be completely replaced with its log, and can be

scaled out by splitting and merging the log.

Logging of the client requests makes merging of the object states extremely easy. Even when

an object is in the split state and has workloads across different data servers, a global logger

can be used to log and forward the requests to the data servers. During merge, this global log

can be read and reconciliation can be done depending on the application.

If rebuilding of the object state is expensive, the object can be maintained in memory as a

view, with an operation log as back-end. Merging can be performed by only replaying the logs

that have been created during split [49].

Further as an optimization, instead of logging the entire request in the global logger, a

global sequencer can be used to assign unique sequence numbers to the request, and perform

the logging locally at the data servers. In the current implementation, timestamps have been

used as sequence numbers. Since the application is assumed to run in a single data center

(4), the clock synchronization of data servers can be easily done using NTP (Network time

protocol) [50].

6.4 Extending Splittable Logs to Generic Applications

The approach of social consistency is generic, and can be applied to various applications other

than Facebook and Twitter:

• Goodreads: An online catalog of books, where the users can review the books, and based

on the reviews, other users decide if they want to read them too. The launch of a new

book can result in a burst of reviews by users which creates the hot-spot. The social

consistency can be applied here, and only the reviews of user’s friends can be shown to a

user, as the reviews will have more impact on the decision.

• Shared word documents: When a large number of users are simultaneously editing a large

online document. Then the users can be partitioned on the basis of the region of the

document they are accessing. In this, the social parameter is the ‘same region’.

• Online Auction: Clones with the same initial value can be created upon the increase in

request rate. As time progresses the clones handle the requests independently and are

47

allowed to diverge. Occasionally the clones can be synced. Once the load decreases, they

can be made consistent and the winner can be declared. Since it is an online system, the

end users will get an impression of someone bidding a higher price suddenly.

• Popular movie ticket: Simple application partition strategy can work here, where the

object (movie tickets) can be fragmented. For example, if there are 100 movie tickets,

they can be divided onto 4 systems (25 tickets at each), each system handling the users

independently.

• Youtube/Quora: Similar to the Facebook/Twitter example described in the thesis.

• Online Shopping Site: Consider an example in which a new phone is launched in the

market, and its review page gets overloaded due to enormous reviews by the users. As in

Goodreads, But a particular user’s decision will be greatly impacted by the positive/neg-

ative reviews of her friends. Thus in this overload situation also, the users can be shown

only partial reviews.

48

Chapter 7

Conclusion

In this paper, we proposed a new distributed consistency model based on social relationships

between the clients. The class of applications that do not require very strong consistency such

as social networking, online reviews (Amazon), and collaborative editing (Google docs) are very

well suited for social consistency.

We implemented a prototype, BLAST, and evaluated it using synthetic and real-world

datasets. BLAST provides extremely low latencies as compared to the state of art techniques

while giving a good QoE to most of the clients. We have leveraged the min-cut graph partition

algorithms to find the best partitioning of the clients based on static and dynamic features.

We compared BLAST to Cassandra database system and our experiments show that BLAST

outperforms Cassandra by a handling higher workload, particularly 1.6× (upon one split) and

2.4× (upon three splits). BLAST provides this performance along with 37% better quality of

experience, unlike many state-of-the-art systems. Our system provides consistency as a best

effort and favors load balancing in critical situations where we have to choose between load

balancing and social consistency.

7.1 Future Work

Currently, BLAST handles single reconfiguration at a time. We intend to extend this work

to handle several reconfigurations simultaneously so that multiple hot objects can be handled

efficiently. We also plan to look at different failure scenarios and deal them efficiently by using

replication. In the current version, we have used static threshold values to perform split-merge

49

operations. We plan to implement machine learning techniques to have a model which will

learn and predict the values for better performance. We intend to explore the various other

possible applications which can benefit from the concept of social consistency which includes

IoT devices, energy harvesting devices used in smart cities, smart grids and health monitoring.

50

Bibliography

[1] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t Settle for

Eventual: Scalable Causal Consistency for Wide-area Storage with COPS,” in Proceedings

of the 23rd ACM Symposium on Operating Systems Principles. ACM, 2011, pp. 401–416.

[Online]. Available: http://doi.acm.org/10.1145/2043556.2043593

[2] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Stronger Semantics

for Low-latency Geo-replicated Storage,” in Proceedings of the 10th USENIX Conference

on Networked Systems Design and Implementation. USENIX Association, 2013, pp.

313–328. [Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482657

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly

Available Key-value Store,” in Proceedings of 21st ACM SIGOPS Symposium

on Operating Systems Principles. ACM, 2007, pp. 205–220. [Online]. Available:

http://doi.acm.org/10.1145/1294261.1294281

[4] T. Stading, P. Maniatis, and M. Baker, “Peer-to-Peer Caching Schemes to Address

Flash Crowds,” Peer-to-Peer Systems, pp. 203–213, 2002. [Online]. Available:

https://link.springer.com/chapter/10.1007/3-540-45748-8 19

[5] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. Long, “Managing Flash Crowds on

the Internet,” in 11th IEEE/ACM International Symposium on Modeling, Analysis and

Simulation of Computer Telecommunications Systems. IEEE, 2003, pp. 246–249. [Online].

Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1240667

[6] NDTV, “Ellen DeGeneres’ selfie crashes Twitter,” 2014. [Online]. Available: http:

//www.ndtv.com/world-news/ellen-degeneres-selfie-crashes-twitter-552579

[7] W. LeFebvre, “CNN.com: Facing a World Crisis,” in Invited Talk on 2002 USENIX Annual

51

http://doi.acm.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://doi.acm.org/10.1145/1294261.1294281
https://link.springer.com/chapter/10.1007/3-540-45748-8_19
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1240667
http://www.ndtv.com/world-news/ellen-degeneres-selfie-crashes-twitter-552579
http://www.ndtv.com/world-news/ellen-degeneres-selfie-crashes-twitter-552579

BIBLIOGRAPHY

Technical Conference, 2002. [Online]. Available: https://www.usenix.org/conference/

lisa-2001/cnncom-facing-world-crisis

[8] J. Brutlag, “Speed Matters for Google Web Search,” 2009. [Online]. Available:

http://services.google.com/fh/files/blogs/google delayexp.pdf

[9] “Facebook,” https://www.facebook.com/.

[10] “Twitter,” https://twitter.com/.

[11] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,”

ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010. [Online].

Available: http://doi.acm.org/10.1145/1773912.1773922

[12] “Goodreads,” https://www.goodreads.com/.

[13] “Twitter,” https://www.quora.com/.

[14] “Tripadvisor,” https://www.tripadvisor.in/.

[15] “Ebay,” https://www.ebay.in/.

[16] “Snapdeal,” https://www.snapdeal.com/.

[17] E. Brewer, “CAP Twelve Years Later: How the “Rules” Have Changed,” Computer,

vol. 45, no. 2, pp. 23–29, 2012. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/6133253/

[18] J. Wang, “A Survey of Web Caching Schemes for the Internet,” ACM SIGCOMM

Computer Communication Review, vol. 29, no. 5, pp. 36–46, 1999. [Online]. Available:

http://doi.acm.org/10.1145/505696.505701

[19] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.

Hauser, “Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage

System,” in Proceedings of the 15th ACM Symposium on Operating Systems Principles.

ACM, 1995, pp. 172–182. [Online]. Available: http://doi.acm.org/10.1145/224056.224070

[20] M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in

Proceedings of the 7th Symposium on Operating Systems Design and Implementation.

USENIX Association, 2006, pp. 335–350. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1298455.1298487

52

https://www.usenix.org/conference/lisa-2001/cnncom-facing-world-crisis
https://www.usenix.org/conference/lisa-2001/cnncom-facing-world-crisis
http://services.google.com/fh/files/blogs/google_delayexp.pdf
https://www.facebook.com/
https://twitter.com/
http://doi.acm.org/10.1145/1773912.1773922
https://www.goodreads.com/
https://www.quora.com/
https://www.tripadvisor.in/
https://www.ebay.in/
https://www.snapdeal.com/
https://ieeexplore.ieee.org/abstract/document/6133253/
https://ieeexplore.ieee.org/abstract/document/6133253/
http://doi.acm.org/10.1145/505696.505701
http://doi.acm.org/10.1145/224056.224070
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dl.acm.org/citation.cfm?id=1298455.1298487

BIBLIOGRAPHY

[21] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,

“Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary,”

in Proceedings of the 10th USENIX Conference on Operating Systems Design

and Implementation. USENIX Association, 2012, pp. 265–278. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2387880.2387906

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage System for Structured

Data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26, 2008. [Online]. Available:

http://doi.acm.org/10.1145/1365815.1365816

[23] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey,

“DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using

a High-Level Language,” in Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation. USENIX Association, 2008, pp. 1–14. [Online].

Available: http://dl.acm.org/citation.cfm?id=1855741.1855742

[24] S. A. Weil, S. A. Brandt, E. L. Miller, and K. T. Pollack, “Intelligent Metadata

Management for a Petabyte-scale File System,” in 2nd Intelligent Storage Workshop,

2004. [Online]. Available: https://www.ssrc.ucsc.edu/Papers/weil-isw04.pdf

[25] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic Metadata

Management for Petabyte-scale File Systems,” in Proceedings of the ACM/IEEE

Conference on Supercomputing. IEEE Computer Society, 2004, p. 4. [Online]. Available:

https://doi.org/10.1109/SC.2004.22

[26] W. Lin, Q. Wei, and B. Veeravalli, “WPAR: A Weight-based Metadata Management

Strategy for Petabyte-scale Object Storage Systems,” in International Workshop on

Storage Network Architecture and Parallel I/Os, 2007, pp. 99–106. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/4438054/

[27] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz,

“NFS Version 3: Design and Implementation,” in In Proceedings of the Summer

USENIX Technical Conference, 1994, pp. 137–152. [Online]. Available: https:

//www.usenix.org/publications/library/proceedings/bos94/full papers/pawlowski.ps

[28] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch, “The

Sprite Network Operating System,” Computer, vol. 21, no. 2, pp. 23–36, 1988. [Online].

Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=16

53

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://doi.acm.org/10.1145/1365815.1365816
http://dl.acm.org/citation.cfm?id=1855741.1855742
https://www.ssrc.ucsc.edu/Papers/weil-isw04.pdf
https://doi.org/10.1109/SC.2004.22
https://ieeexplore.ieee.org/abstract/document/4438054/
https://www.usenix.org/publications/library/proceedings/bos94/full_papers/pawlowski.ps
https://www.usenix.org/publications/library/proceedings/bos94/full_papers/pawlowski.ps
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=16

BIBLIOGRAPHY

[29] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations, Extensions, and

Beyond,” Communications of the ACM, vol. 56, no. 5, pp. 55–63, 2013. [Online].

Available: http://doi.acm.org/10.1145/2460276.2462076

[30] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-Free Replicated Data

Types,” in Symposium on Self-Stabilizing Systems. Springer, 2011, pp. 386–400. [Online].

Available: https://link.springer.com/chapter/10.1007%2F978-3-642-24550-3 29

[31] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and

P. Rodriguez, “The Little Engine(s) That Could: Scaling Online Social Networks,” in

Proceedings of the ACM SIGCOMM 2010 Conference. ACM, 2010, pp. 375–386. [Online].

Available: http://doi.acm.org/10.1145/1851182.1851227

[32] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining Email

Social Networks,” in Proceedings of the International Workshop on Mining Software

Repositories. ACM, 2006, pp. 137–143. [Online]. Available: http://doi.acm.org/10.1145/

1137983.1138016

[33] D. Greene, D. Doyle, and P. Cunningham, “Tracking the Evolution of Communities

in Dynamic Social Networks,” in The International Conference on Advances in

social networks analysis and mining. IEEE, 2010, pp. 176–183. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5562773

[34] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage

for geo-replicated systems,” in Proceedings of the 23rd ACM Symposium on

Operating Systems Principles. ACM, 2011, pp. 385–400. [Online]. Available:

http://doi.acm.org/10.1145/2043556.2043592

[35] K. Li and S. Jamin, “A Measurement-Based Admission-Controlled Web Server,” in 19th

Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE,

2000, pp. 651–659. [Online]. Available: https://ieeexplore.ieee.org/document/832239/

[36] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A Comparative Study into Distributed

Load Balancing Algorithms for Cloud Computing,” in 24th International Conference on

Advanced Information Networking and Applications Workshops. IEEE, 2010, pp. 551–

556. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

5480636

54

http://doi.acm.org/10.1145/2460276.2462076
https://link.springer.com/chapter/10.1007%2F978-3-642-24550-3_29
http://doi.acm.org/10.1145/1851182.1851227
http://doi.acm.org/10.1145/1137983.1138016
http://doi.acm.org/10.1145/1137983.1138016
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5562773
http://doi.acm.org/10.1145/2043556.2043592
https://ieeexplore.ieee.org/document/832239/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5480636
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5480636

BIBLIOGRAPHY

[37] M. Randles, A. Taleb-Bendiab, and D. Lamb, “Cross Layer Dynamics in Self-Organising

Service Oriented Architectures,” Self-Organizing Systems, pp. 293–298, 2008. [Online].

Available: https://link.springer.com/chapter/10.1007/978-3-540-92157-8 28

[38] M. Randles, A. Taleb-Bendiab, and D. Lamb, “Scalable Self-Governance using Service

Communities as Ambients,” in World Conference on Services-I. IEEE, 2009, pp. 813–

820. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

5190726

[39] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load Balancing in

Structured P2P Systems,” Peer-to-Peer Systems II, pp. 68–79, 2003. [Online]. Available:

https://pdfs.semanticscholar.org/0a79/a9692768c5b71f5eeceb1aed83936748960d.pdf

[40] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable Data Storage.

“O’Reilly Media, Inc.”, 2013.

[41] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive Guide: Time to

Relax. “O’Reilly Media, Inc.”, 2010.

[42] “Riak,” http://basho.com/riak/.

[43] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A

Tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=546611

[44] A. S. Tanenbaum, Distributed Systems: Principles and Paradigms. Prentice Hall, 2008.

[45] G. Karypis and V. Kumar, “A FAST AND HIGH QUALITY MULTILEVEL

SCHEME FOR PARTITIONING IRREGULAR GRAPHS,” Journal on scientific

Computing, vol. 20, no. 1, pp. 359–392, 1998. [Online]. Available: https:

//epubs.siam.org/doi/pdf/10.1137/S1064827595287997

[46] “Higgs Twitter Dataset.” [Online]. Available: https://snap.stanford.edu/data/

higgs-twitter.html

[47] K. J. Arrow, “A DIFFICULTY IN THE CONCEPT OF SOCIAL WELFARE,”

Journal of political economy, vol. 58, no. 4, pp. 328–346, 1950. [Online]. Available:

http://www.jstor.org/stable/pdf/1828886.pdf

55

https://link.springer.com/chapter/10.1007/978-3-540-92157-8_28
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5190726
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5190726
https://pdfs.semanticscholar.org/0a79/a9692768c5b71f5eeceb1aed83936748960d.pdf
http://basho.com/riak/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=546611
https://epubs.siam.org/doi/pdf/10.1137/S1064827595287997
https://epubs.siam.org/doi/pdf/10.1137/S1064827595287997
https://snap.stanford.edu/data/higgs-twitter.html
https://snap.stanford.edu/data/higgs-twitter.html
http://www.jstor.org/stable/pdf/1828886.pdf

BIBLIOGRAPHY

[48] “NSE ex-staffer reveals how some brokers got ‘preferential access’ to servers.”

[Online]. Available: https://economictimes.indiatimes.com/markets/stocks/news/

nse-ex-staffer-reveals-how-some-brokers-got-preferential-access-to-servers/articleshow/

58136897.cms

[49] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D. Davis,

S. Rao, T. Zou, and A. Zuck, “Tango: Distributed Data Structures over a Shared Log,”

in Proceedings of the 24th ACM Symposium on Operating Systems Principles. ACM,

2013, pp. 325–340. [Online]. Available: http://doi.acm.org/10.1145/2517349.2522732

[50] D. L. Mills, “Network Time Protocol,” Network, 1985. [Online]. Available: https:

//tools.ietf.org/html/rfc958

56

https://economictimes.indiatimes.com/markets/stocks/news/nse-ex-staffer-reveals-how-some-brokers-got-preferential-access-to-servers/articleshow/58136897.cms
https://economictimes.indiatimes.com/markets/stocks/news/nse-ex-staffer-reveals-how-some-brokers-got-preferential-access-to-servers/articleshow/58136897.cms
https://economictimes.indiatimes.com/markets/stocks/news/nse-ex-staffer-reveals-how-some-brokers-got-preferential-access-to-servers/articleshow/58136897.cms
http://doi.acm.org/10.1145/2517349.2522732
https://tools.ietf.org/html/rfc958
https://tools.ietf.org/html/rfc958

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivating Example

	2 Background and Related Work
	3 Social Consistency
	3.1 Strong Consistency
	3.2 Weak Consistency (Eventual Consistency)
	3.3 Social Consistency
	3.4 Partitioning the Clients into Clusters

	4 System Design
	4.1 System APIs and the Split-Merge Protocols
	4.2 The Split-Merge Strategy
	4.2.1 The Split Protocol
	4.2.2 The Merge Protocol
	4.2.3 System Goals and Semantics

	5 Evaluation
	6 Discussion
	6.1 Possibility of different preference orders
	6.2 Significance of Social Partitioning
	6.3 Modeling Object's State by its Operation Log
	6.4 Extending Splittable Logs to Generic Applications

	7 Conclusion
	7.1 Future Work

	Bibliography

