
FAQ/Appendix: A Survey on Checkpointing
Techniques in Intermittent Systems

August 25, 2021

This FAQ answers some of the important doubts/questions that might arise while
reading the survey. Some of the answers provide a detailed description of various
points mentioned in the survey. Please note that this document contains additional
information and is not a summary/gist of our survey. We suggest the reader go
through the survey for an exhaustive and comprehensive study of the existing check-
pointing approaches.

(Q.1): What novelty does the survey offer?

Answer: This survey performs a thorough comparison of various checkpointing
approaches. Specifically, we implemented 13 state-of-the-art checkpointing
approaches in an architectural simulator and rigorously compared them. We
showed a detailed time and energy characteristics of different approaches. We
discussed their relative strengths and weaknesses in great detail and made a set
of concrete recommendations. To the best of our knowledge, such a rigorous
experimental study has not been done before. We have also evaluated the
sensitivity with respect to different capacitor sizes and ambient energy profiles.
Finally, we have shown Kiviat plots that compare the approaches on a host of
different metrics and can help the system designer decide which solution to
choose.

In summary, the comparison provides us with dual benefits: (i) it tells the
reader which classes of checkpointing approaches are the best, (ii) it shows the
sensitivity of performance with respect to various external factors such as the
nature of the energy source and the energy storage capacity.

This is undeniably a novel and substantive contribution to the best of our
knowledge.

(Q.2): Considering that primary batteries can last for more than 30 years and over
this period, they can generate much more energy than the EHD scenarios
harvesting small amounts of power, then why are EHDs so favored?

Answer: We agree that a primary battery can have a reasonably high lifetime.
However, various other factors should be considered while choosing the energy
storage unit – batteries or capacitors.

(a) Large size of batteries: Typically, the energy density of lithium-based pri-
mary batteries is 0.8Whcm−3 [4]. Considering a lifetime of 30 years, this

1



would result in a power density of 3µWcm−3, which is much less than the
power densities of various ambient sources (solar:15mWcm−2, vibration:
>50µWcm−3, RF:50mWcm−2). Thus, to power a device, the size of the
battery would be much larger than the corresponding harvesting device.
The large size of the batteries will make the device very bulky.

(b) Much less effective lifetime: There might exist batteries rated with a
lifetime of around 30 years, but in practice, these batteries last for a much
lesser time. The effective lifetime depends upon the duty cycle of the
device using the battery and the environmental conditions under which
the device runs. If the device is executing in continuous mode (i.e., 100%
duty cycle), the lifetime would be much less than its prescribed lifetime.
To run a device in a lesser than 100% duty cycle, we need to use a clock
and a timer. This timer and clock require energy, and thus, this turns out
to be a zero-sum game. Furthermore, a significant cause of reduction in
the lifetime of a battery is self-discharge and chemical decomposition. An
unused and packed battery can lose up to 8-20% of its original charge per
year at a temperature of 20-30°C [8]. These issues do not occur in energy
harvesting-based devices.

In general, if we do not consider the device’s size, the decision of choosing a
battery or an ambient source depends upon the expected time for which the
device will be used. As shown in Figure 0.1, the power density of a battery
decreases linearly with its lifetime. In contrast, the power density is constant
for an ambient source (for a particular ambient source and the harvesting
conditions). A primary battery should be used if the device is to be run for a
time period that is less than the intersection point (indicated by the dashed
line in Figure 0.1); else, we should use an ambient source.

Po
w

e
r 

d
e
n

si
ty

Lifetime (yrs) (logarithmic scale)

Battery

Ambient Source

Figure 0.1: Power density vs. lifetime (adapted from [4]) of a battery and an ambient source.

Apart from these, the cost is yet another factor that favors energy harvesting
over batteries. Though batteries are cheap, they are not preferred where a
battery change is inconvenient due to the large volume of such replacements
and the corresponding high costs. E.g., smart buildings that use EHDs can

2



achieve 60% savings on the average annual costs [8]. In such cases, energy
harvesting solutions are preferred.

(Q.3): One of the reasons behind the discouraged use of batteries is their harmful
impact on the environment upon disposal. But can’t batteries be recycled?
Furthermore, the material used in energy harvesting devices is also often not
environmentally friendly. These devices either use rare earth metals or have
high levels of toxicity. Please comment on this discrepancy.

Answer: We agree that there are recycling programs to recycle substances such
as lead, nickel, and mercury that batteries contain. However, as mentioned
in [7], these substances are extremely expensive to recycle. Furthermore, recy-
cling is not an entirely environment-friendly process; in fact, battery recycling
programs are quite controversial. When the e-waste is sent to developing
countries such as India, where labor is very cheap, recycling pollutes the envi-
ronment and degrades the quality of human life.

EHDs are equal culprits in the sense that they also employ toxic rare earth
metals; however, this is a broader debate, and such ethical issues are beyond
the scope of this paper. Nevertheless, we would like to mention that EHDs
fall in the same class as a large number of electronic components that use
CMOS technologies. Their recycling industry is fairly mature, even though it is
not perfect. At the end of the manufacturer, certain steps are also taken. For
example, these poisonous elements are tightly encapsulated in compounds
such as cadmium selenide and cadmium telluride, which themselves are envi-
ronmentally stable. Hence, the toxic elements are highly unlikely to be released
while the device is in use or upon disposal [5].

(Q.4): What data does a checkpoint (backup) include?

Answer: When the device’s energy is about to exhaust, we backup the applica-
tion state, which is composed of the memory state (includes the runtime stack,
heap memory, and static data memory), register state (i.e., the CPU register
file), peripheral state (both on and off-chip), and the program counter. The
program counter could be a part of the CPU register file as in the case of the
ARM architecture or can be a separate entity as in the x86 architecture. So, in
general, we can consider the program counter a separate component of the
application state.

(Q.5): What is state retention? Can SRAM be used for state retention?

Answer: State retention refers to storing the programâĂŹs state in some data
storage element where it will remain intact with low or no power.

Yes, SRAM can be used for state retention. Jayakumar et al. [3] observed that
with a voltage as low as 220mV , SRAM cells could retain data for infinite time.
Thus, in the low power mode, the SRAM can retain all its contents. Another
observation made by Williams et al. [10] is that most intermittent systems have
very short power-off times(<1s). After a power loss, the remaining charge in the
device is sufficient to maintain the data in the SRAM array. Thus, in some cases

3



where the power-off times are low, SRAM memory can be safely used for state
retention.

(Q.6): Out-of-place state retention backs up the data, either off-chip or on-chip non
volatile memory (NVM). Explain the approaches used for out-of-place state
retention.

Answer: Off-chip checkpointing stores the backup in the external memory.
Accessing the remote NVM is both energy and time-consuming. On-chip
checkpointing gets the proximity benefits by using the NVM that has been
integrated with the processor’s CMOS circuits. However, using on-chip NVM is
still not fully efficient as the data in the processor’s flip-flops has to be copied
to/from the centralized NVM. To solve this, nonvolatile processors (NVPs) have
been proposed, which have nonvolatile flip-flops(NVFFs) [9]. Each NVFF is
attached to a standard volatile flip-flop, enabling a parallel bit-to-bit transfer,
resulting in energy and time efficiency [6]. However, this enhancement has an
increased area cost due to the NVFFs and a slight increase in overall leakage
energy.

(Q.7): In differential checkpointing, we checkpoint only the data that has changed
after the previous checkpoint, rather than checkpointing the entire SRAM.
Describe the various ways to compute this differential.

Answer: The various approaches to track the modified SRAM regions are as
follows:

(a) Word-by-word comparison requires reading a large amount of NVM, i.e.,
equal to the SRAM size. Reading such a considerable amount of data
is comparatively easy in Flash memory than in other byte-addressable
NVMS such as FRAM. With Flash memory, reads are much cheaper than
writes; thus, we can read and compare the blocks and then write only the
modified data. In contrast, byte-addressable NVMs such as FRAM, where
reads cost roughly the same as writes, could have directly written the
entire SRAM. Thus, FRAM is not suitable for word-by-word comparison.
Furthermore, performing block reads in Flash is cheaper than reading
a block in byte-addressable NVMS (FRAM). We experimentally verified
that performing a word-by-word comparison on 2K B of FRAM would
take around 125µs, while it would roughly take roughly 50µs to read Flash
memory. Thus, Flash memory is appropriate for this approach.

(b) Hash comparison: This approach does not require reading the entire
NVM memory but only a few bytes, corresponding to the block’s hash
value. Therefore, this approach might be beneficial in the case of slow and
power-hungry memory. However, due to the compute-intensive nature
of the hash function, we also need to analyze its computation overhead.
The summation of the compute and NVM overheads determines the
total overheads of this approach. We ran the SHA-1 hash algorithm on
our simulator to compute the energy and time overheads for computing
the hash of 256 bytes of data. The experiment showed that computing

4



one hash value consumed on average around 38.6µJ of energy and took
around 1.7ms. Considering that FRAM writes take only 125ns for 2 bytes
and FRAM writes are as fast as FRAM reads, the total time for reading the
20-byte hash digest for SHA-1 hash would only be 1.25µs. Hence, the hash
computation overhead is prohibitive and is thus not the best choice for
EHD-based systems.

(c) Tracking changes in volatile memory: Since this approach does not access
the NVM to compute the changed data, this approach appears to be the
least expensive. Furthermore, this approach has very low space and time
overheads. It uses an in-memory bit array that results in a slight main
memory overhead (at max 12.5%), and the bit array can be updated in
constant time (O (1)).

(Q.8): The survey mentions three criteria - forward progress, correctness, and effi-
ciency to compare various checkpointing approaches. Are all of these metrics
important? Please comment on this.

Answer: Yes, all three criteria: forward progress, correctness, and efficiency
are important. Among these, forward progress and correctness are necessary
criteria that should be followed by all the checkpointing approaches, as they
avoid non-termination and incorrect execution, respectively. Forward progress
and correctness are non-negotiable; they are mandatory.

Efficiency, in contrast, is desirable. Ideally, an efficient checkpointing approach
should (i) consume a very little amount of energy, (ii) take minimum time, (iii)
have a small memory footprint, (iv) have minimal programmer intervention,
and (v) have very infrequent re-executions; however, it is not often possible
to satisfy all these requirements at the same time. Thus, we need to prioritize
these requirements as per the application. Out of these, time and energy are
the most important metrics that are considered in the EHD literature.

(Q.9): In energy harvesting systems, memory consistency issues arise when an EHD
writes directly to the NVM. If this possibility is removed, won’t the memory
consistency issues disappear?

Answer: Yes, if an EHD is not allowed to write directly to the NVM, the memory
consistency issues can be avoided. However, preventing an EHD from writing
data directly to the NVM is not preferred as it would make checkpointing more
frequent (mandatory in some cases).

Checkpointing has its issues.

(a) The energy and time overheads of taking a checkpoint are proportional to
the size of the program state [1]. Hence, frequent checkpointing is often
not a scalable strategy.

(b) Taking a checkpoint is not always feasible, e.g., when the total energy
of executing a code segment between two checkpoints and taking the
checkpoint is more than the energy stored in the device’s capacitor.

5



(c) Checkpointing requires halting the executing program.

(d) Sometimes we only need to track a few variables across failures, and
checkpointing the entire system state is not preferred. Due to these rea-
sons, applications need to have nonvolatile variables that are directly
written to NVM memory.

(e) Please note that checkpointing could be avoided by storing all the re-
quired data in NVM. However, this is also not preferred since for each
read/write operation, we need to access the slow and power-hungry NVM.

Hence, considering the two ends of the spectrum: (i) no nonvolatile variables
and (ii) all variables stored in NVM, EHD applications prefer to have a system
with mixed variables - volatile and nonvolatile. They basically find a hybrid
strategy to be the most optimal.

(Q.10): Why does this survey compare the various checkpointing approaches in a
simulator and not in actual hardware?

Answer: We have accurately simulated the microcontroller, considering the
processor configuration and power values according to the device’s datasheet.
This is a standard approach (followed by existing works [2]) for doing research
since these EHD devices are not always available easily, and their hardware
implementation cannot be modified. Furthermore, when new hardware is
proposed, it is practically infeasible to modify, fabricate, and characterize it.
Therefore, simulation is a valid approach and is widely accepted in the whole
embedded systems and computer architecture communities.

(Q.11): Please explain why does the survey paper follow the current organization? Also
explain, Why have the existing checkpointing techniques been categorized in
this way?

Answer:

• Organization: Our organization of various research proposals is based on
their complexities, which roughly is in the chronological order in which
the works have been proposed. E.g., In the past, let say 6-7 years ago,
compiler-based approaches were more prevalent. Now, researchers are
moving towards new areas such as learning-based approaches. We follow
the same pattern and organize the survey based on the time (the year the
main set of approaches were proposed) and complexity of the proposed
approaches. Our approaches are built on top of each other, i.e., if two
approaches are causally related, their order has been taken into account,
and the parent approach is described first.

• Categorization: We looked at various existing survey papers and found
how taxonomies are created. They all follow a standard practice: all the
approaches are taken and clustered either by performance or design. Sim-
ilarly, we initially clustered the approaches based on their design. When
we analyzed and experimentally compared different approaches based

6



on performance, distinct clusters emerged, which were highly correlated
to those created based on the design. Thus, our categorization is based on
the standard practice of design philosophy and runtime characterization
of the approaches. We basically formed “natural clusters” of approaches
and discussed them together.

REFERENCES

[1] Alexei Colin and Brandon Lucia. Chain: Tasks and Channels for Reliable Inter-
mittent Programs. In Proceedings of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, 2016.

[2] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and Thiemo
Voigt. Mspsim–an extensible simulator for msp430-equipped sensor boards. In
Proceedings of the European Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session, volume 118, 2007.

[3] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. HYPNOS: An
Ultra-Low Power Sleep Mode with SRAM Data Retention for Embedded Mi-
crocontrollers. In Proceedings of the 2014 International Conference on Hard-
ware/Software Codesign and System Synthesis, pages 1–10, 2014.

[4] Maria Teresa Penella, Joan Albesa, and Manel Gasulla. Powering Wireless Sensor
Nodes: Primary Batteries versus Energy Harvesting. In 2009 IEEE Instrumenta-
tion and Measurement Technology Conference, pages 1625–1630. IEEE, 2009.

[5] Peter Harrop. Environmental issues with energy harvesting, 2009.
https://www.printedelectronicsworld.com/articles/1245/
environmental-issues-with-energy-harvesting.

[6] Jean-Michel Portal, Marc Bocquet, Mathieu Moreau, Hassen Aziza, Damien
Deleruyelle, Yue Zhang, Wang Kang, Jacques-Olivier Klein, YG Zhang, Claude
Chappert, et al. An Overview of Non-Volatile Flip-Flops Based on Emerging
Memory Technologies. Journal of Electronic Science and Technology, 12(2):173–
181, 2014.

[7] Runar Finanger. Here’s why energy-harvesting trumps batteries. https://www.
onio.com/article/energy-harvesting-trumps-batteries.html, 2020.

[8] Simon Aliwell. Batteries Not Enough - A Case for Energy Harvesting. http:
//eh-network.org/resource6.php?id=128, 2011.

[9] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vijaykrishnan
Narayanan. Nonvolatile Processors: Why is it Trending? In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.

7



[10] Harrison Williams, Xun Jian, and Matthew Hicks. Forget Failure: Exploiting
SRAM Data Remanence for Low-overhead Intermittent Computation. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 69–84, 2020.

8


