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Abstract—Small sub-mW sensor devices that rely on energy
harvesting often have limited computation capability to locally
process, query, and update data. Such energy harvesting devices
(EHDs) need to operate under a strict power constraint and
are also extremely cost-sensitive. Based on current costs and
estimated near-term trends, we observe that the price of the
nonvolatile memory component dominates (in ≈ 20 USD devices).
Hence, there is a pressing need to reduce the overall memory
footprint in a data-intensive setting.

This paper is the first to propose a generic hardware archi-
tecture, CmpctArch, for implementing compact data structures
(CDSs) on such devices. They reduce the memory footprint by
up to 3.5× without significantly increasing the overall energy
consumption or time taken (max. additional energy 1.04× and
time 1.18×). The hardware implementations are 160-1200× more
energy-efficient and 280-620× faster than the corresponding
software implementations of CDSs. Our generic template can be
used to instantiate a wide variety of data structures commonly
used in EHD applications.

Index Terms—Compact data structures, Hardware accelera-
tors, Memory footprint, Resource-constrained, System on chip

I. INTRODUCTION

Energy harvesting devices (EHDs) that rely on ambient
power sources such as vibrations, solar, and RF radiations [1;
2] are increasingly gaining prominence. As of today, their
market size is estimated to be 468 million dollars, with a
growth rate of 8.4% per year [3]. These devices are being
used in a wide variety of applications ranging from smart
homes to environmental and structural health monitoring in
hazardous and remote locations. They sense large amounts
of environmental parameters and perform local computations
(e.g., determine the frequency of different values or find
anomalies). The data is then stored locally or transmitted to
remote base stations [4]. Given that communication requires
a lot of energy, it makes sense to do some local computation.

Different data structures such as hash tables [4], tries [5],
and lists [6] are used to locally store data. An issue with these
data structures is that they use a lot of memory, a critical
resource for EHDs. A typical commercial EHD compute node
is equipped with only 2 − 8KB of SRAM and 64KB of
FRAM (e.g., TI MSP430FR5969). Such a device costs around
20 USD [7]. Increasing the amount of memory in these devices
is not a viable solution due to the high prices of nonvolatile
memories (NVMs) (see Fig. 1(a)); they account for more than
50% of the overall cost. Moreover, the large-scale deployment
of these devices aggravates the problem even further because
of the net increase in the overall cost. Thus, there is a pressing

need to devise data structures that efficiently use the available
memory in these devices. Additionally, with efficient memory
utilization, we can also have devices with reduced memory
sizes, thus, making the devices cheaper and reducing the total
cost. Even if NVMs were to reduce in price by 50%, which is
unlikely to happen immediately, this problem will still remain
because NVMs already account for a large fraction of the
overall cost (≈ 50%).

Please note that we considered this class of devices, whose
total cost is between 15-25 USD (at current prices), because
they are very popular choices in the area of EHDs, and have
been used in numerous prior works [2; 4]. A key constraint
with these devices is that we have a power budget of 500-750
µW. Additionally, we can assume that programs run correctly
in such processors where the ambient power is variable, and
crashes can happen (please refer to Singla et al. [1] for a
survey of checkpointing techniques for EHD devices). We thus
consider this a solved problem.

Our aim is to minimize the memory footprint while staying
within the power constraints and not significantly increasing
the processing time. ¶ We propose to use compact implemen-
tations [8] of various data structures that primarily rely on
bitwise operations. · Second, our proposed implementations
allow accessing and updating the data in the compact form
itself, without any decompression. ¸ Our third contribution
is to propose a generic template for designing such compact
data structures on ASICs. This generic template idea has
been motivated by existing literature that targets other data
structures [4; 9]. A generic template provides us with the
flexibility of instantiating different kinds of data structures in
a broad family. ¹ Fourth, with an instantiation of our generic
template, we show the feasibility of reducing the on-chip
memory requirements by up to 3.5×, indicating that we can
have devices with much smaller memory size, thus reducing
the price of the devices while obeying all power constraints.

The paper is organized as follows: we provide the necessary
background in §II followed by our proposed generic architec-
ture in §III. We evaluate our implementation in Section §IV,
discuss related work in §V, and finally, conclude in §VI.

II. BACKGROUND

We chose three of the most popular data structures used in
EHD applications [4; 5; 6]: hash tables (HT), lists, and tries.
We consider the compact representations of these structures.
In terms of implementation complexity, power, and perfor-



Memory Type Price per 64KB (USD)
NV SRAM 10.21

FeRAM 13.62
MRAM 15.96
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Fig. 1: (a) Cost of commercial NV memories used in EHDs/IoT [7],
(b) Regular HT, (c) Compact HT, (d) Efficient rank computation, (e)
Two-level rank computation, (f) Compact list, (g) Accessing the list,
(h) Regular trie, (i) Compact trie

mance overheads, they represent three different extrema of
the spectrum of compact data structures (CDSs) [8]. These
compact representations support reads and limited updates,
i.e., the updates that do not change the underlying structure.
For example, in a hash table with a fixed key set, only the
values of the keys can be updated. This notion of read mostly
and limited updates is well accepted in the CDS commu-
nity [8], as changing the underlying structure would result
in a lot of complexities and overheads. Furthermore, most
EHD applications fit this model as their data distributions are
generally fixed. For example, a temperature sensor deployed in
a smart home will have a bounded set of temperature values
with a median of roughly 25◦C (room temperature). In the
following descriptions the calligraphic font (e.g. B) refers to
structures that will be implemented in hardware.

A. Hash Tables (HT)
Fig. 1(b) shows the implementation of a hash table using

two arrays – Ak and Av – to store the keys and values,
respectively. A typical hash table implementation reserves
extra space to handle collisions. For example, in Fig. 1(b),
a table with m keys is realized by having n entries (n > m)
for each array. This wastes 2 ∗ (n−m) entries. This wastage
can be eliminated using a compact representation, as shown
in Fig. 1(c). The occupied key-value entries in the original
arrays (Ak and Av) are stored in two new arrays, A′k and A′v
(of size m), in the same order as they appear in Ak and Av ,
respectively. A bit-vector B[0 : n − 1] captures the occupied
and free indices in Ak (or Av). B can be formally defined as:

B[i] =

{
1, if Ak[i] 6= NULL ∀i ∈ [0, n− 1]

0, otherwise

A function rank1(B, i) that returns the number of 1 bits in
B[0 : i] is formally defined as:

rank1(B, i) =
∑i

j=0 B[j] ∀i ∈ [0, n− 1]

An entry at a random index, i, in Ak (or Av) can now be
accessed as follows:

Ak[i] =

{
NULL, if B[i] = 0

A′k[rank1(B, i)− 1], otherwise

This representation considerably reduces the space used;
however, it comes at the cost of the sequential scanning of B
for computing the rank. Sequential scanning can be avoided
by storing the rank for each index in a separate array R. But,
it would add a lot of space overhead. A better way is to store
the rank after every k bits (k = 16 in Fig. 1(d)). Let us call
this set of k bits a superblock. Thus, the rank is given by,

rank1(B, i) = R[bi/kc] + cntOnes(B, i, k)

Here, R[0] = 0 and R[l] denotes the total number of 1s in
the superblocks [0 . . . (l − 1)]. cntOnes counts the number of
1s in the current superblock of size k (i.e., from B[bi/kc× k]
to B[i]).
We can further extend the design to a 2-level structure
(Fig. 1(e)), where we divide a superblock into equal-sized sub-
blocks of p bits (p = 4 in our example in Fig. 1(e)), and have
an additional array R′ that stores the rank values for these
smaller blocks. These values are relative to the superblock
containing them. For example, for i = 21, k = 16, p = 4,
R′[5] contains the number of 1s in only the 4th sub-block
(sub-blocks start from 0). The counts in sub-blocks 0 . . . 3 are
accounted for in R. Using R′ reduces the number of bits that
need to be stored. cntOnes(B, i, k) can be defined as:

cntOnes(B, i, k) = R′[bi/pc] + cntOnes(B, i, p)
Here, cntOnes(B, i, p) is computed by linearly scanning p.
Using our formalisms, the update and query operations are as
follows.
¶ Update(k,v): A′v[rank1(B, h(k)%n)− 1]← v
· Query(k): v ← A′v[rank1(B, h(k)%n)− 1]

Here, h() is a hash function. We use three hash functions
(akin to double hashing), where if there is a collision with one
hash function we try the next one.
Observation: Note that accessing the compact HTs comprises
three key steps. First, an index is computed using a hash
function, which is then used to access the bit-vector B. Then,
using B, a rank is computed, which is finally used to access
an array to retrieve the data. In case the retrieved data does
not match the required data (due to a hash collision), these
three steps are repeated using a different hash function. These
steps are summarized as the following regular expression:

((Index)(Rank)(Array Access)(Match))+

B. Lists
This is a compressed list of values that follow a certain

distribution. Instead of assigning the same number of bits
to every value, we can encode them more efficiently using
Huffman encoding. We divide a hexademical output of a
sensor into its corresponding digits. Since the distribution is



fixed, we learn it and generate Huffman codes for the digits.
Huffman codes form a prefix tree, where the codeword is
the path from the root to a leaf node. We store the digit
→ codeword mapping as a dictionary in memory. Fig. 1(f)
shows a list, Data (with n sensor samples), which is stored
in compressed form as a bit-vector B, and the code lengths
of the samples are stored in an array L[0 : n − 1]. The
code lengths are stored in a compact form by concatenating
the binary representations of all the length values. Though
different samples would have different code lengths, we made
them of the same length (maximum length, depending upon
the application) by prefixing 0 bits to the smaller code lengths.

To access the value at an index, i i.e., Data[i] (∀i ∈ [0, n−
1]), we first need to get the corresponding code (denoted by
codei) from B, which can be retrieved as follows (the notation
x : y refers to the subarray from index x to y (both included)).

codei = B[j : j + L[i]− 1],where j =
∑i−1

k=0 L[k]
Here, the computation of j requires the sequential scanning

of L to compute the sum of the code lengths. This scanning
can be avoided by logically dividing B into blocks of k values
(k=4 in Fig. 1(g)) and storing the sum for each block in array
P (akin to the previous algorithm). j can now be computed
as follows.

j = P[bi/kc] +
∑i−1

w=bi/kc×k L[w]

Here, P[0] = 0, and P[m] indicates the sum of code lengths
for blocks [0 . . . (m−1)]. Once we have codei, we can access
the ith sample in Data as follows.

¶ Query(i): v ← get code(codei)

get code needs a traversal of the Huffman tree, which is
a slow operation. To optimize this, we maintain a reverse
dictionary (codeword → digit) in a CAM structure. This still
requires a sequential search. Instead of searching one bit at a
time, we set the minimum code size to α bits and maximum
to β bits. Now, we consider the first α bits of codei, then α+1
if there is no match, and so on (until β). After the digits are
retrieved we concatenate them to generate the value. Using α
and β reduces the searching overheads.
Observation: Similar to the HT, lists follow a sequence of
steps. Given an index i (from the application) a rank like
functionality (comprising summation of values at various array
indices) is performed to compute j. Then, an array is traversed
to retrieve codei. Finally, either a tree or a CAM traversal is
used to retrieve the matching data sample. The corresponding
regular expression is:

(Rank)(Array Traversal)((Tree|CAM Traversal)(Match))+

C. Tries
1) Basic structures: A trie is a prefix tree data structure

that stores a set of strings. The strings are stored as edge
labels: an edge label is a character from the string, labeling
the edge that connects a node to a particular child. A string is
represented by the edge labels starting from the root to a leaf.
Fig. 1(h) shows a trie data structure where a chain of nodes
without branches have been coalesced into a single node (only
done at the leaves). For example, in the string ‘wikipedia’,

the characters ‘w’,‘i’,‘k’,‘i’,‘p’ form the edge labels, while
the remaining characters are merged into a leaf. The compact
representation of this trie is shown in Fig. 1(i). It comprises
four arrays: a bit-vector C (for children), two character arrays
E (edges) and L (leaves), and another bit-vector M (used to
iterate through L).
C encodes the structure of the tree. We generate it by

performing a preorder traversal of the tree. At every node,
we count its children (cnt), and append cnt 1s followed by a
0 to the bit-vector C. For example, in Fig. 1(i), the root node
0 has two children, 1 and 5 , so we append 110 to C. The

edge labels corresponding to the children are stored in array
E . The leaf labels (strings in the leaves) are concatenated, left
to right, and stored in array L. The bit-vector M stores their
corresponding sizes (of the leaf labels). For a leaf label with
‘l’ characters, we add a 0 followed by l 1s. Note that the
order of entries in E , L, and M is exactly the same as that
enumerated by the preorder traversal (refer to Fig. 1(i)).

2) Index of the jth child: Now, the problem is, given a
node’s list of children (let us call it, the node’s description) at
index u in C, can we find the index to the description of its jth

child (i.e., child(u, j))? Let c be the number of children of the
node whose description is stored at u. We need to compute
child(u, j). To start with, note that child(u, 1) = u+ c+ 1.

To compute child(u, 2) we need to find the sum of the sizes
of the descriptions of the sub-tree rooted at child(u, 1). The
basic insight is that for any sub-tree, the number of 0s exceeds
the number of 1s by 1 (in the description of the sub-tree); this
is because for every node in the sub-tree, there is a 1 for it in
its parent’s description and a 0 in its description. For the root,
we are only counting a 0, not a 1. To find child(u, 2) we have
to start from child(u, 1), and find the size of the prefix of C
for which this property holds.

Let us now generalize this. We start traversing C from
child(u, 1) and maintain two counters: cnt0 (number of 0s)
and cnt1 (number of 1s). The moment we find cnt0 = cnt1+1,
we note that we have reached child(u, 2). We reset the coun-
ters and continue in this manner until we reach child(u, j).

3) Matching an edge label: Let us now discuss the
Query(P ) operation for checking the existence of a pattern
P in the trie. Beginning from the root, we check if P ’s first
character (P [0]) is an outgoing edge label of the root and
continue so on and so forth traversing the tree.

To check if a character p (from the pattern P ) is an outgoing
edge label of a node (whose description begins at u), we
compute the following.

1. pos← rank1(C, u)− 1

2. idx← find index(E , pos, p)
3. j ← idx− pos+ 1 /* then visit child(u, j) */

Note that entries in E , L, and M are stored in the same
order as that generated by the preorder traversal. We thus have
a one-to-one correspondence between 1s in C and entries in
E . In Line 1, we set pos to the rank of u minus 1 (number
of entries before u in the preorder traversal, or its position in
E counting from 0). We then use the find index function in
Line 2 to traverse the array E from position pos till we find



the character p, i.e., E [idx] = p. The caveat is that we will
only look at the first c entries because the node at u has only
c children. We then move to the jth child using the algorithm
in Section II-C2.

4) The full algorithm: Let us now describe the full tree
traversal algorithm. We start at the root. Then we keep on
matching consecutive characters in P and traversing outgoing
edges with the corresponding edge labels as described in the
previous paragraph. This process can either terminate at an
internal node (entire pattern matches), or we may find that
there are no outgoing edges with the given edge label at
an internal node. The latter case would indicate a failure
(no pattern match). The interesting case is when we reach a
leaf node. Consider the pattern “wikipedia” in Fig. 1(h). The
remaining characters (“edia”) are within the leaf node (because
of the node coalescing optimization). We then need to traverse
the characters in the leaf node (left to right) and search for a
match.

Finding the location of the leaf node within M and L is
complicated. The edge traversal will give us the index of the
description of the leaf node in C. Let this be index u, we now
need to find the corresponding indexes in M and L. We need
to know how many leaf nodes preceded the leaf node at u in
the preorder traversal. Any leaf node has a 0 in its description,
and is also preceded by a 0 in C. We thus need to find the
number of 00 patterns that precede it in C. This can be found
out using a generalized rank function referred to as rank00. It
will give the leaf’s number (un) in the preorder traversal. Now,
we need to find the index of the uthn 0 inM. By traversingM
we can find the corresponding index um. Now, the required
location (index) in L is equal to ul = um − un. We need to
start searching L from this index ul for matches and declare
a success or failure accordingly.
Observation: First, starting from the root (i.e., index = 0),
the rank function is computed to find pos. Then, array E is
traversed to find the location (idx) of the character matching
p. Finally, idx is used to compute child(u, j), i.e., the bit-
vector C is traversed till the property cnt0 = cnt1 + 1 is
matched. These steps are repeated till we reach a leaf node.
Subsequently, the rank (rank00) is computed, then the arrays
M and L are traversed one after the other to match the leaf
labels. Its regular expression is:

((Index∗)(Rank)((Array Traversal)(Match))+)+

III. CDS ACCELERATORS FOR EHDS

The data retrieval from most of the compact representations
follows a similar sequence of steps, which can be summarized
as the following general regular expression.
((Index∗)(Rank)(Array Traversal)((Tree|CAM |Array

Traversal)∗(Match))+)+

We can leverage this common pattern to create a generic
architecture. This generic template is primarily a core set of
IP blocks with specific functionalities. This template can be
suitably modified and integrated into any EHD’s SoC (System
on Chip) as an accelerator. Such templates are commonly used
to implement a family of similar algorithms [4; 9].

A. Generic Architecture
Based on the general regular expression, we propose our 3-
stage architecture (see Fig. 2). The stages are: Index, Rank,
and Evaluate. The required functionality of a compact data
structure can be realized by traversing these stages (single-
pass or in a loop iteratively).
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Fig. 2: Generic architecture
1) Index Stage: This stage has two inputs: (i) the sensor

value(s) or the application-specific input and (ii) an internal
state. The output is an index that will be used to access the
stored arrays. Let us explain with examples. In HT, it computes
h(k)%n: it essentially implements the hashing function and
the logic for computing a logical AND (to compute %n, when
n is a power of 2). For lists, it is an empty IP block that outputs
the input element itself. For tries, it is a 2− to− 1 mux that
outputs 0 in the first iteration and the input element in the
successive iterations. The Indexer module can be instantiated
to either be empty or implement a hashing function or a mux.

2) Rank Stage: This is a generic rank computer that uses
an array, a pattern, and an index. The rank is defined as the
number of occurrences of the pattern (in the array) up till the
index. The pattern can also be a wildcard ‘*’. In this case, the
function computes the sum of the array entries.

Since computing the rank by sequentially scanning an array
is expensive, precomputed values are stored in various arrays
and are used for the rank computation (discussed in §II). Each
of these arrays would have their own indexes, relative to the
index received from the previous stage. For example, lists use
P and L arrays with indexes bi/kc and bi/kc×k, respectively
(here i is the input received from the previous stage). The
indexes for different arrays are computed by the local indexer.
Then, an array fetcher computes the corresponding memory
addresses, and fetches the data at those addresses. The fetched
data is stored in a temporary buffer (buff0) as the data from
other arrays might not have arrived. Subsequently, when all
the required data is available, the sum computer adds them all
and sends the corresponding result to the evaluate stage. Please
note that instead of storing all the data and then computing the
summation, we could also compute the summation iteratively,
thus, storing only the partial sums. This would keep the
temporary buffer small.

3) Evaluate Stage: This stage reads the output from the
rank stage and uses it to fetch data from the stored arrays.
Then a property matcher checks if the fetched data satisfies
some data structure-specific property. Now, three cases are
possible: (i) the property does not match, (ii) the property
matches partially, i.e., for some part of the fetched data the
property holds while not for the remaining (we will describe
this later with an example), and (iii) the property matches



completely. For the first case, we either access the array again
until we fetch data with the matching property, or we store
the mismatch information in a temporary buffer (buff1). In the
second case, we store the partially matched information in
buff1 and continue to access the array or CAM (in lists) till we
entirely match the data. In the third case, we store the match
information. Subsequent to matching the property, the state
information is either used to handle the input request (query
or update) or sent back to the index stage to perform another
pass of the entire structure. In the former case, depending upon
the request type, the state information is either returned as the
query result or a value updater uses it to update a stored value.

In the above discussion, depending upon the data structure,
different property matcher implementations are possible.
¶ HT: This uses a comparator to check if the fetched data
is the same as the required key. A mismatch indicates a hash
collision, and double hash probing is performed by iterating
over the entire set of stages (using a different hash function
in the index stage).
· Lists: Here, the property matcher is the content addressable
memory (CAM) structure, which checks if the data (i.e., the
codeword retrieved from the bit-vector B) matches the codes
stored as keys in the reverse dictionary. This is an example of
partial matching. The first α bits of the data are checked in
the CAM. If a match is found, the corresponding digit (from
the code → digit mapping) is stored in the state buff1, and
then the next α bits are matched. In the case of a mismatch,
α + 1 bits are matched. The property is iteratively matched
until we reach the end of the data. Please refer to the get code
functionality in §II-B for reference.
¸ Tries: Tries need to satisfy two types of properties dur-
ing the entire query operation. The first property, used in
find index, is to match a character with a given array entry,
and is realized via a comparator. The second property is used
in the child(u, j) function: we traverse the array (C) while
maintaining the counts of 0s (cnt0) and 1s (cnt1). Upon each
array access, the property checked is cnt0 = cnt1 + 1.

B. Instantiating the Architecture
The described architecture can be used to realize most of

the CDSs [8] and data structures used in EHD applications.
However, the data structures might skip some stages. For
example, in lists, the index stage outputs the input element
itself; thus, it can be skipped. Further, different components in
various stages can have different data structure-specific imple-
mentations (such components are marked with a * in Fig. 2).
For example, the local indexer in the HT and tries is realized
by a left-shift and an adder component, while lists require an
additional right-shift component. Different components of the
generic architecture are designed in VHDL and synthesized
using the Cadence Genus tool in 28nm technology. Table I
summarizes the estimated area, power, and time overheads of
these components.
Shared Area: HT and tries share around 3, 925µm2 of hard-
ware, i.e., 89% of HT’s area and 82% of trie’s area. All the
CDSs share 3153µm2 of the total hardware. This corresponds

TABLE I: Overheads of components in the generic architecture
Block Area (µm2) Power (mW) Time (ns)

HT Lists Tries HT Lists Tries HT Lists Tries
Indexer 1396 N.A† 11 0.17 N.A† 0.001 33 N.A† 0.06

Local Indexer 100 670 100 0.01 0.15 0.01 3 25 3
Array Accessor 97 63 97 0.01 0.01 0.01 3.5 2.3 3.5
Sum Computer 25 25 25 0.003 0.003 0.003 1.6 1.6 1.6

Structure Accessor 63 87 1084 0.008 0.01 0.07 2.3 3.9 31.2
Property Matcher 13 207 38 0.001 0.02 0.004 0.2 0.2 1.8

Value Updater 50 N.A‡ N.A‡ 0.004 N.A‡ N.A‡ 1.7 N.A‡ N.A‡
N.A-Not Applicable, †-No such component, ‡-data structures do not support update requests

Total Area (µm2) HT: 4395 Lists: 8389 Tries: 4767

to 71%, 37%, and 66% of the areas of HT, lists, and tries,
respectively.

C. Extending the Architecture
Our proposed architecture can be easily extended to support

various other functionalities. For example, the find index
function (in tries) requires the traversal of array E till we
find a matching character. This could also be done by using
a hashtable, where the characters in E are the keys, and the
list of indexes of the characters are the values. Similarly, a
leaf’s location can be computed using a hashtable instead of
traversingM. Here, the key is the number of the leaf, and the
index is the position in M.

Let us now see how well our architecture generalizes.
We consider a set of popular data structures used in sensor
devices [6]. For each data structure, Table II specifies the cor-
responding regular expression and the primitive data structures
(HT, lists, or tries) whose implementation closely resembles
the implementation of the data structure under consideration.
Details are omitted due to a lack of space.
Apart from the sensor application-based data structures, our
architecture also supports implementing most of the other
compact data structures [8].

TABLE II: Realizing various sensor application-based data struc-
tures [6] using our generic architecture

Data Regular Closest primitive
structure expression data structures

Tree ((Index∗)(Rank)(Array Traversal)(Match))∗ Tries
Key-value store (Index)((Index∗)(Rank)(Array Traversal) HT+(HT/Lists/Tries)

((Tree|CAM |Array Traversal∗)(Match))+)+

Queue ((Array Traversal)(Match))+ Lists
Positional Index (Index)((Array Traversal)(Match))∗ HT + Lists

IV. EXPERIMENTS
A. Setup
System Configuration: We modeled a 16-bit, 5-stage in-order
processor using 28nm technology on a cycle-accurate architec-
tural simulator, Tejas [10]. Tejas has been previously used to
simulate EHDs using the same processor configuration [2; 4].
The modeled processor operates at a constant frequency of 16
MHz, and the simulated device is equipped with a 32B set-
associative cache, 2 KB of SRAM, and 64 KB FRAM. Tejas
includes power and cache timing models, which have been
validated with native hardware. In our hardware, all the input
signals are 16 bits wide.
Datasets: Similar to prior works on sensor applications [11],
we used the Intel Lab Dataset [12], comprising samples of
different ambient parameters (e.g., temperature and humidity)
collected from various sensors. We considered only the tem-
perature samples; the other parameters follow similar trends.



B. Results
Memory Savings: Fig. 3(a) presents the compaction ra-
tio (mem footprintregular/mem footprintcompact) of the
three data structures. The ratios are between 3.44X (Tries) and
1.3X (HT). The term regular refers to an implementation of a
traditional, non-compact data structure.
Energy Consumed and Time Taken: In this case we compute
the ratio of compact to regular (reverse). Fig. 3(b) shows
the relative energy consumed (EPA: energy per access) and
the relative time taken (CPA: cycles per access) for soft-
ware implementations. The results show that the software
implementation of the compact representations of HT and
tries consume around 2.34 − 37.17× more energy and take
2.41−34.75× more time. We observed that certain operations
such as cntOnes and child (in tries) involve linear scanning
of the bit vectors, resulting in large overheads.

The hardware results are however significantly better
(shown in Fig. 3(c)) owing to parallelism and reduced mem-
ory/register usage. The results show that the compact repre-
sentation of tries is much more energy-efficient (0.53×) and
took almost similar time. Similarly, for HT, the hardware im-
plementation of the compact representation consumed similar
energy (1.04×) with a time overhead of 1.18×.

In contrast to HT and tries, the compact software imple-
mentation of lists is very inefficient (see Fig. 3b), with the
energy and time overheads being 320 − 334×. The reason is
the multiple memory accesses involved while performing the
linear scanning in the get code function. However, this scan-
ning could be easily done by implementing the dictionary as a
CAM structure in hardware. Fig. 3(c) shows the corresponding
performance improvement, with compact lists consuming only
0.31× the energy and taking a similar amount of time.

We observed that, in general, the hardware implementations
of CDSs are 160 − 1200× more energy-efficient and 280 −
620× faster than the corresponding software implementations.
Preferable Ambient Source: We observed that our hardware
implementations of the considered data structures (HT, lists,
and tries) consume power in the range of 180µW − 700µW,
which is much lower than that provided by various ambi-
ent sources. Commercially available solar harvesters (e.g.,
MAX20361) and piezo transducers (e.g., S118-J1SS-1808YB)
can harvest the required power [7], making vibrational and
solar sources preferable ambient sources.

V. RELATED WORK

We are not aware of any other approach (bespoke or generic)
that implements compact data structures in hardware for EHD
devices (operate using < 1 mW power). There is some work
in processing sensor data using 10− 100× more power.

The existing literature achieves space efficiency either by
reducing the number of samples being sensed (based on the
correlation between the samples) [13] or by compressing
the sampled data using lossy or lossless compression tech-
niques [14; 15]. Generic compression and decompression are
not feasible with such low power budgets (see [16] that uses
≈ 100 mW of power at 16 MHz), and it is not possible

HT Lists Tries
Compaction Ratio

(
MFR
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)
1.31 1.36 3.44

MFR,MFC : Memory Footprints of regular and compact representations.
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Fig. 3: Comparison between compact and regular data structures
(a) Memory gain, (b-c) Energy and time results for (b) the software
implementations and (c) the hardware implementations

to query these structures without maintaining uncompressed
versions in memory. Second, it is hard to find and leverage the
temporal relationships in a data stream [15] in EHD devices.
Our approaches are agnostic to the data, are lossless, and allow
efficient querying.

VI. CONCLUSION

We propose a generic architecture for implementing differ-
ent compact data structures used in sensor devices, notably
EHDs. The results show that all of them can operate within
a power budget of 700 µW and, in many cases, are more
time and energy-efficient than their regular data structure
counterparts. The generic template can be used to instantiate
a large number of popular CDSs and data structures that are
used in a wide variety of sensor devices.
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