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1. Self-Reference

About Adjectives
Definition 1.1
• An adjective in a language is autological iff it describes itself or can be

applied to itself i.e. the meaning of the word is also a property of the
word.
• Every adjective in English which is not autological is said to be hetero-

logical.

Example 1.2
• “poly-sylla-bic” is a word consisting of 3 syllables, so it describes itself.

Hence it is autological.
• “mono-sylla-bic” consists of more than 1 syllable, so it does not describe

itself. Hence it is heterological.
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Examples
Autological Heterological
adjectival adverbial
single multiple
polysyllabic monosyllabic
English French
olde
unambiguous ambiguous
man-made

For any adjective “adj” ask the question
Is the word “adj” a(n) adj word?

If the answer is yes then it is autological, otherwise it is heterological.
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Autological?
Is the word “autological” autological or heterological?
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Autological?
Is the word “autological” autological or heterological?

• Suppose “autological” is an autological word. Then it describes itself.
Therefore it is autological.
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Autological?
Is the word “autological” autological or heterological?

• Suppose “autological” is an autological word. Then it describes itself.
Therefore it is autological.
• Suppose “autological” is not an autological word. Then it does not de-

scribe itself. Therefore it must be heterological.
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Autological?
Is the word “autological” autological or heterological?

• Suppose “autological” is an autological word. Then it describes itself.
Therefore it is autological.
• Suppose “autological” is not an autological word. Then it does not de-

scribe itself. Therefore it must be heterological.
• But then can it be both autological and heterological?

autological ⊕ heterological
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Heterological?
Is the word “heterological” autological or heterological?
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Heterological?
Is the word “heterological” autological or heterological?

• Suppose “heterological” is an autological word. Then it describes itself.
Therefore “heterological” must be a heterological word. But if it is het-
erological then it cannot be autological.
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Heterological?
Is the word “heterological” autological or heterological?

• Suppose “heterological” is an autological word. Then it describes itself.
Therefore “heterological” must be a heterological word. But if it is het-
erological then it cannot be autological.
•On the other hand if “heterological” is a heterological word, then it obvi-

ously does describe itself and hence by definition it must be autological.
But then it cannot be heterological.
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Heterological?
Is the word “heterological” autological or heterological?

• Suppose “heterological” is an autological word. Then it describes itself.
Therefore “heterological” must be a heterological word. But if it is het-
erological then it cannot be autological.
•On the other hand if “heterological” is a heterological word, then it obvi-

ously does describe itself and hence by definition it must be autological.
But then it cannot be heterological.
• But “heterological” is an adjective. So it must be either autological or hetero-

logical!

autological ⊕ heterological
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2. Countability and Uncountability

Countability
Definition 2.1 An infinite set is countable or countably infinite if it can
be placed in 1-1 correspondence with N. otherwise it is uncountable or
uncountably infinite .

Theorem 2.2 The setsN and Z are countably infinite.

�

Theorem 2.3 Prove it!
1. The setN2 is countably infinite.
2. The setNn for any n ≥ 0 is countably infinite.

3. The setN∗ =
⋃
n≥0
Nn is also countably infinite.

4. For any (finite or) infinite set of arbitrary symbols, the set of all finite
length sequences that can be formed is countably infinite.

�
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Uncountability
Theorem 2.4 (The Powerset theorem). There is no 1-1 correspondence
between a set and its powerset.

Proof
Theorem 2.5 Prove it!
1. 2N the powerset of the naturals is uncountably infinite.
2. The number of unary boolean functions b : N → {0, 1} is uncountably

infinite.
3. The number of unary functions f : N → N is at least uncountably

infinite.
�
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Programs and Functions
Consider programs implementing unary functions onN
• There are only countably many programs that can be written
• There are uncountably many unary functions that exist.
•Hence there are unary functions which cannot be programmed in any

programming language. These functions are called incomputable
functions.
• The functions for which programs can be written are the computable

functions.
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Proof of Powerset Theorem
Proof of theorem 2.4
Proof: Let A be any set and let 2A be its powerset. Assume that g : A→
2A is a 1-1 correspondence between A and 2A. This implies for every
a ∈ A, g(a) ⊆ A is uniquely determined and further for each B ⊆ A, g−1(B)
exists and is uniquely determined.
For any a ∈ A, a is called an interior member if a ∈ g(a) and otherwise a is
an exterior member. Consider the set

X = {x ∈ A | x < g(x)}

which consists of exactly the exterior members of A. Since g is a 1-1
correspondence, there exists a unique x ∈ A such that X = g(x).
x is either an interior member or an exterior member. If x is an interior
member then x ∈ g(x) = X which contradicts the assumption that X con-
tains only exterior members. If x is an exterior member then x < g(x) = X.
But then since x is an exterior member x ∈ X, which is a contradiction.
Hence the assumption that there exists a 1-1 correspondence g between
A and 2A must be false.
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3. Universality

Universal Machines
In a digital computer all programs and data (input and output) are represented
as sequences of bits.

Digital computers with infinite memory are universal machines.

That is,
Given a digital computer with infinite memory one can write programs
• to simulate the working of any other digital computer with finite or infi-

nite memory
• to simulate many discrete and continuous natural processes upto some

approximation.
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Simulation
Example 3.1 If there is an integer adding machine AM such that

AM(x, y) = x + y

then the working of this adding machine can be simulated by a program
PAM on a universal machine.

PAM(x, y) = AM(x, y) = x + y

In general, given a universal machine UM, it is possible to write a pro-
gram PUM which for every (unary) function f that UM is capable of com-
puting will yield

PUM( f , x) = f (x)
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Compilers & Interpreters
•Universality makes it possible to write compilers and interpreters.
• For any program PL written in a languge L which takes an input x, the

machine takes the language L, the program PL and the input x and
executes it.
• The universal machine essentially simulates a machine for PL.
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Universal Functions
1. There are only a countably infinite different programs that can be writ-

ten in any programming languge L.
2. The set of all programs in any language L (that take a single natural

number as input) can be enumerated by an algorithm.
3. Each program in the above enumeration implements a unary function

onN.
4. The set of all computable unary functions on N can be enumerated

(since they are at most countably infinite).

h0, h1, h2, . . . (1)

5. Some of the functions in the enumeration could be undefined on some
or all ofN.

Definition 3.2 A binary function u : N2
→ N is universal for all com-

putable unary functions onN, if for all (x, y) ∈N2, u(x, y) = hx(y).
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Undefinedness
Let

h0, h1, h2, . . . (2)
be an enumeration of all the (unary) computable functions onN.
Theorem 3.3 There is no computable function which will determine
whether hi(i) is defined.
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Proof: The characteristic function for this problem is

f (x) =

{
1 if hx(x) ∈N
0 if hx(x) <N

Suppose f is computable. Let

g(x) =

{
0 if f (x) = 0
⊥ if f (x) = 1

Since f is computable, so is g. Since g is a unary computable function on
N, g must occur in the sequence (2). Suppose g = hm. Then g(m) = 0 ∈N
iff f (m) = 0 iff hm(m) < N iff g(m) < N which is a contradiction. Hence
the assumption that f is computable must be false. �
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Totality of Functions
Definition 3.4 A function f : A→ B is total if it is defined for every a ∈ A.

Theorem 3.5 There is no computable function which can determine
whether any unary computable function is total.
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Proof: Let

g(x) =

{
1 if hx is total
0 if hx is not total

Assume g is computable. Let

f (x) =

{
hx(x) + 1 if hx is total
0 if hx is not total

=

{
u(x, x) + 1 if g(x) = 1
0 if g(x) = 0 (*)

Since u is computable and g is computable, f must be computable. But f
is total and different from every function in the sequence (2) since for each
x ∈ N, f (x) , hx(x). Hence f is not computable, which is a contradiction.

�
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4. Conclusion

Computers and Unsolvability
1. Programmers often try to solve unsolvable problems.
2. A problem is unsolvable if there is no algorithm which solves the prob-

lem in finite time even with unbounded resources.
3. There are fundamental limitations of computers as we know them.
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The Problem of Incomputability
• To prove a problem can be solved one is required to write a program

(or algorithm) to solve the problem in a (pseudo-)programming language
and prove that it works.
• But to prove that a problem cannot be solved requires a more indirect

method.
•We have shown that there are unsolvable problems using a diagonaliza-

tion and proof by contradiction.
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Exercises
1. Prove all the parts of therorem 2.3
2. Prove all the parts of therorem 2.5
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Thank You!
Any Questions?
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