Diagonalization, Self-Reference & Incomputability

http://www.cse.iitd.ac.in/~sak

S. Arun-Kumar

Department of Computer Science and Engineering I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

August 4, 2011

Home Page	
-----------	--

44

•

CSN110 Go Back

FULL SCREEN CLOSE

Contents

1	Self-Reference	4
2	Countability and Uncountability	10
3	Universality	16
4	Conclusion	25

		Home Page	44	•	►	**	CSN110	Go Васк	FULL SCREEN	Close	2 OF 28	Quit	
--	--	-----------	----	---	---	----	--------	---------	-------------	-------	---------	------	--

Home Page	 •		>>	CSN110	Go Васк	FULL SCREEN	Close	3 of 28	Quit	

About Adjectives

Definition 1.1

- An adjective in a language is autological iff it describes itself or can be applied to itself i.e. the meaning of the word is also a property of the word.
- Every adjective in English which is <u>not</u> autological is said to be heterological.

Example 1.2

- *"poly-sylla-bic"* is a word consisting of 3 syllables, so it describes itself. Hence it is autological.
- *"mono-sylla-bic"* consists of more than 1 syllable, so it does not describe itself. Hence it is heterological.

Home Page	44	•	•	**	CSN110	Go Васк	FULL SCREEN	Close	4 OF 28	Quit	

Examples

Autological	Heterological
adjectival	adverbial
single	multiple
polysyllabic	monosyllabic
English	French
olde	
unambiguous	ambiguous
man-made	

For any adjective "adj" ask the question

Is the word "adj" a(n) adj word?

If the answer is yes then it is autological, otherwise it is heterological.

Home Page	
-----------	--

44

•

**

CSN110 Go Back

FULL SCREEN

Is the word "autological" autological or heterological?

Home Page	44	-		44	CSN110	Go Васк	FULL SCREEN	Close	6 OF 28	Quit	

Is the word "autological" autological or heterological?

• Suppose "*autological*" is an autological word. Then it describes itself. Therefore it <u>is</u> autological.

Home Page	44	•	•	**	CSN110	Go Васк	FULL SCREEN	Close	6 OF 28	Quit	

Is the word "autological" autological or heterological?

- Suppose "autological" is an autological word. Then it describes itself. Therefore it <u>is</u> autological.
- Suppose "*autological*" is not an autological word. Then it does not describe itself. Therefore it <u>must</u> be heterological.

Home Page	44	•	►	**	0001110	Go Васк	Full Screen	Close	6 of 28	Quit	
					CSN110 _						4

Is the word "autological" autological or heterological?

- Suppose "autological" is an autological word. Then it describes itself. Therefore it <u>is</u> autological.
- Suppose "*autological*" is not an autological word. Then it does not describe itself. Therefore it <u>must</u> be heterological.
- *But then can it be <u>both</u> autological and heterological?*

	-	_		-							
Home Page	44	•	►	**	CSN110	Go Васк	FULL SCREEN	Close	6 of 28	Quit	

Is the word "heterological" autological or heterological?

1	- I			_							
Home Page		•	►	**	CSN110	Go Васк	FULL SCREEN	Close	7 of 28	Quit	

Is the word "heterological" autological or heterological?

• Suppose "*heterological*" is an autological word. Then it describes itself. Therefore "*heterological*" must be a heterological word. But if it is heterological then it cannot be autological.

Home Page 44 A I I I CSN110 Go Back	FULL SCREEN CLOSE	7 of 28 Quit
-------------------------------------	-------------------	--------------

Is the word "heterological" autological or heterological?

- Suppose "*heterological*" is an autological word. Then it describes itself. Therefore "*heterological*" must be a heterological word. But if it is heterological then it cannot be autological.
- On the other hand if *"heterological"* is a heterological word, then it obviously *does* describe itself and hence by definition it must be autological. But then it cannot be heterological.

	_										
Home Page	44	•	•	**	CSN110	Go Васк	FULL SCREEN	Close	7 of 28	Quit	

Is the word "heterological" autological or heterological?

- Suppose "*heterological*" is an autological word. Then it describes itself. Therefore "*heterological*" must be a heterological word. But if it is heterological then it cannot be autological.
- On the other hand if *"heterological"* is a heterological word, then it obviously *does* describe itself and hence by definition it must be autological. But then it cannot be heterological.
- But "heterological" is an adjective. So it must be either autological or heterological!

 $autological \oplus heterological$

Home Page	44	•	•	**	CSN110	Go Васк	FULL SCREEN	Close	7 of 28	Quit	

Номе Раде	 •		>>	CSN110	Go Васк	FULL SCREEN	Close	8 of 28	Quit	

Номе Раде	44	-	•	 CSN110	Go Васк	FULL SCREEN	Close	9 of 28	Quit	

Countability

Definition 2.1 An infinite set is countable or countably infinite if it can be placed in 1-1 correspondence with \mathbb{N} . otherwise it is uncountable or uncountably infinite .

Theorem 2.2 The sets \mathbb{N} and \mathbb{Z} are countably infinite.

Theorem 2.3 Prove it!

- **1**. The set \mathbb{N}^2 is countably infinite.
- **2.** The set \mathbb{N}^n for any $n \ge 0$ is countably infinite.
- 3. The set $\mathbb{N}^* = \bigcup_{n \ge 0} \mathbb{N}^n$ is also countably infinite.
- 4. For any (finite or) infinite set of arbitrary symbols, the set of all finite length sequences that can be formed is *countably infinite*.

Номе Р	e ••	•	•	••	CSN110	Go Васк	FULL SCREEN	CLOSE	10 of 28	Quit	

Uncountability

Theorem 2.4 (The Powerset theorem). There is no 1-1 correspondence between a set and its powerset.

Proof

Theorem 2.5 Prove it!

- 1. $2^{\mathbb{N}}$ the powerset of the naturals is uncountably infinite.
- 2. The number of unary boolean functions $b : \mathbb{N} \to \{0, 1\}$ is uncountably *infinite*.
- **3.** The number of unary functions $f : \mathbb{N} \to \mathbb{N}$ is at least uncountably *infinite*.

Home Page	44	4	•	44	CSN110	Go Васк	FULL SCREEN	Close	11 OF 28	Quit	

Programs and Functions

Consider programs implementing unary functions on ${\rm I\!N}$

- There are only *countably* many programs that can be written
- There are *uncountably* many unary functions that exist.
- Hence there are unary functions which cannot be programmed in any programming language. These functions are called incomputable functions.
- The functions for which programs can be written are the computable functions.

Home Page	44	4	Þ	>>	CSN110 G	Go Васк	FULL SCREEN	Close	12 of 28	Quit	

Proof of Powerset Theorem

Proof of theorem 2.4

Proof: Let *A* be any set and let 2^A be its powerset. Assume that $g: A \rightarrow 2^A$ is a 1-1 correspondence between *A* and 2^A . This implies for every $a \in A$, $g(a) \subseteq A$ is uniquely determined and further for each $B \subseteq A$, $g^{-1}(B)$ exists and is uniquely determined.

For any $a \in A$, a is called an *interior* member if $a \in g(a)$ and otherwise a is an *exterior* member. Consider the set

$$X = \{x \in A \mid x \notin g(x)\}$$

which consists of exactly the exterior members of *A*. Since *g* is a 1-1 correspondence, there exists a unique $x \in A$ such that X = g(x). *x* is either an interior member or an exterior member. If *x* is an interior member then $x \in g(x) = X$ which contradicts the assumption that *X* contains only exterior members. If *x* is an exterior member then $x \notin g(x) = X$. But then since *x* is an exterior member $x \in X$, which is a contradiction. Hence the assumption that there exists a 1-1 correspondence *g* between *A* and 2^A must be false.

Home Page	44	•	►	**	CSN110	Go Васк	FULL SCREEN	Close	13 of 28	Quit	

Home Page		
44		
4		
•		
••		
CSN110		
Go Васк		
Full Screen		
CLOSE		
14 of 28		
Quit		

Universal Machines

In a digital computer all programs and data (input and output) are represented as sequences of bits.

Digital computers with infinite memory are **universal machines**.

That is,

Given a digital computer with infinite memory one can write programs

- to simulate the working of any other digital computer with finite or infinite memory
- to simulate many discrete and continuous natural processes upto some approximation.

Home Page	44	•	►	**	CSN110	Go Васк	FULL SCREEN	Close	16 of 28	Quit

Simulation

Example 3.1 If there is an integer adding machine AM such that

AM(x, y) = x + y

then the working of this adding machine can be simulated by a program P_{AM} on a universal machine.

$$P_{AM}(x, y) = AM(x, y) = x + y$$

In general, given a universal machine UM, it is possible to write a program P_{UM} which for every (unary) function f that UM is capable of computing will yield

 $P_{UM}(f,x) = f(x)$

Home Page	44	4	►	**	CSN110	Go Васк	FULL SCREEN

SCREEN

CLOSE

QUIT

17 OF 28

Compilers & Interpreters

- Universality makes it possible to write *compilers* and *interpreters*.
- For any program *P_L* written in a languge *L* which takes an input *x*, the machine takes the language *L*, the program *P_L* and the input *x* and executes it.
- The universal machine essentially simulates a machine for P_L .

•

••

CLOSE

Universal Functions

- 1. There are only a countably infinite different programs that can be written in any programming languge *L*.
- 2. The set of all programs in any language *L* (that take a single natural number as input) can be enumerated by an algorithm.
- 3. Each program in the above enumeration implements a unary function on \mathbb{N} .
- 4. The set of all computable unary functions on \mathbb{N} can be enumerated (since they are at most countably infinite).

$$h_0, h_1, h_2, \dots$$
 (1)

5. Some of the functions in the enumeration could be undefined on some or all of \mathbb{N} .

Definition 3.2 A binary function $u : \mathbb{N}^2 \to \mathbb{N}$ is universal for all computable unary functions on \mathbb{N} , if for all $(x, y) \in \mathbb{N}^2$, $u(x, y) = h_x(y)$.

Home Page	44	•	•	 CSN110	Go Васк	Full Screen	Close	19 of 28	Quit

Undefinedness

Let

$$h_0, h_1, h_2, \dots$$
 (2)

be an enumeration of all the (unary) computable functions on \mathbb{N} .

Theorem 3.3 There is no computable function which will determine whether $h_i(i)$ is defined.

_	Home Page	44	•	•	••	CSN110	Go Васк	FULL SCREEN	Close	20 OF 28	Quit	

Proof: The characteristic function for this problem is

$$f(x) = \begin{cases} 1 & \text{if } h_{\chi}(x) \in \mathbb{N} \\ 0 & \text{if } h_{\chi}(x) \notin \mathbb{N} \end{cases}$$

Suppose f is computable. Let

$$g(x) = \begin{cases} 0 & \text{if } f(x) = 0 \\ \perp & \text{if } f(x) = 1 \end{cases}$$

Since *f* is computable, so is *g*. Since *g* is a unary computable function on \mathbb{N} , *g* must occur in the sequence (2). Suppose $g = h_m$. Then $g(m) = 0 \in \mathbb{N}$ iff f(m) = 0 iff $h_m(m) \notin \mathbb{N}$ iff $g(m) \notin \mathbb{N}$ which is a contradiction. Hence the assumption that *f* is computable must be false.

Qui

Totality of Functions

Definition 3.4 A function $f : A \rightarrow B$ is total if it is defined for every $a \in A$.

Theorem 3.5 There is no computable function which can determine whether any unary computable function is total.

Home Page	44	•	►	44	CSN110	Go Васк	FULL SCREEN	CLOSE	22 OF 28	Quit

Proof: Let

$$g(x) = \begin{cases} 1 \text{ if } h_x \text{ is total} \\ 0 \text{ if } h_x \text{ is not total} \end{cases}$$

Assume *g* is computable. Let

$$f(x) = \begin{cases} h_x(x) + 1 & \text{if } h_x \text{ is total} \\ 0 & \text{if } h_x \text{ is not total} \end{cases}$$
$$= \begin{cases} u(x, x) + 1 & \text{if } g(x) = 1 \\ 0 & \text{if } g(x) = 0 \end{cases}$$
(*)

Since *u* is computable and *g* is computable, *f* must be computable. But *f* is total and different from every function in the sequence (2) since for each $x \in \mathbb{N}$, $f(x) \neq h_x(x)$. Hence *f* is not computable, which is a contradiction.

					1						1
	Lisse Dire						E 0	0	00 00	0	1 1
	Home Page	44	▲	▶		Go Back	FULL SCREEN	CLOSE	23 OF 28	Quit	4
					CSN110						1 1
-										·	4

Home Page	 -	•	••	CSN110 _	Go Васк	FULL SCREEN	Close	24 of 28	Quit	

Computers and Unsolvability

- 1. Programmers often try to solve unsolvable problems.
- 2. A problem is unsolvable if there is no algorithm which solves the problem in *finite* time even with *unbounded* resources.
- 3. There are fundamental limitations of computers as we know them.

Home Page	44	•	•	**	CSN110	Go Васк	FULL SCREEN	CLOSE	25 of 28	Quit

The Problem of Incomputability

- To prove a problem *can* be solved one is required to write a program (or *algorithm*) to solve the problem in a (*pseudo-*)programming language and *prove* that it works.
- But to prove that a problem cannot be solved requires a more indirect method.
- We have shown that there are *unsolvable* problems using a *diagonaliza-tion* and proof by contradiction.

HOME PAGE 44 A IN CONTINUE GO BACK FULL SCREEN CLOSE 26 OF 28 QUIT
--

Exercises

- 1. Prove all the parts of therorem 2.3
- 2. Prove all the parts of therorem 2.5

Номе Раде 🔫 🖣	+ +	Go Back	Full Screen	Close	27 of 28	Quit	
---------------	-----	---------	-------------	-------	----------	------	--

Thank You! Any Questions?

Home Page	44	•	>	>>	CSN110	Go Васк	FULL SCREEN	Close	28 of 28	Quit	