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Abstract

Most of the existing intrusion detection systems (IDS) often generate large

numbers of alerts which contain numerous false positives and non relevant pos-

itives. Alert correlation techniques aim to aggregate and combine the outputs of

single/multiple IDS to provide a concise and broad view of the security state of

network. Capability based alert correlator uses notion of capability to correlate

IDS alerts where capability is the abstract view of attack extracted from IDS

alerts/alert. To make correlation process semantically correct and systematic,

there is a need to identify the algebraic and set properties of capabilities. In

this work, the potential algebraic properties of capability are identified in terms

of operations, relations and inferences. These properties give better insight

to understand the logical association between capabilities which are helpful in

making the system modular. A variant of correlation algorithm is presented

which uses these algebraic properties. To make these operations more realistic,

existing capability model has been extended by adding time-based notion which

helps to avoid temporal ambiguity between capability instances. We also pro-

pose Attack Capability Modeling language (ACML) used for capability model.

It is a specification and description language that has been utilized to express

the capability gained by attacker at each step in the intrusion process. These

capabilities have been defined using the IDS alerts. The language also pro-

vides for the specification of compete attack scenarios in terms of capabilities

of the intruder. This, in turn, helps to determine the state of the system in



terms of the extent of infiltration. ACML helps to avoid ambiguity in capa-

bility specifications while sharing among developers. We also propose Attack

capability modeling framework (ACMF) which forms the basis of a capability

model-based semi-automated alert correlation process, which has been used to

detect and identify the attack scenarios from IDS alerts. Additionally, the lan-

guage also has features for customizing the definitions of these structures as

well as for customizing the correlation algorithm.
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Chapter 1

Introduction

Even though sustained efforts by information system and network security ex-

perts to protect secure systems from exponentially increasing threats, continue

the hackers tools now include technology that conventional security tools and

services cannot sustain. Even critical systems and networks equipped with

highly sophisticated security techniques are vulnerable to blended and multi-

stage attacks which use stealth and intelligence to strategically compromise a

target, escaping detection and penetrating the defences[? ].

The security of an information system is compromised when an intru-

sion takes places. An intrusion can thus be defined as “any set of actions

that attempt to compromise the integrity, confidentiality, or availability of

a resource”[? ]. Nowadays, intrusions are generally associated with attacks

launched over the network against remote systems. It is difficult to prevent

such attacks by the use of classical information security technologies, such

as authentication and cryptography, because system and application software

typically contain exploitable weaknesses due to design and programming bugs.

It is both technically difficult and economically expensive to build and main-

tain an information system that is free of security flaws and not susceptible to

attacks.



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The surveillance and security monitoring of the network infrastructure is mostly

performed using Intrusion Detection Systems (IDSs). Event streams are used

by IDS in two different ways, according to two different paradigms: anomaly

detection and misuse detection. In anomaly detection systems [? ], [? ], [?

], [? ]),historical data about a system activity and/or specifications of the

intended behavior of users and applications are used to build a profile of the

normal operation of the monitored system. The intrusion detection system

then tries to identify patterns of activity that deviate from the defined profile.

It actually analyzes audit traces in the search of a deviating behavior compared

to a former behavior considered as normal by the system. The main advantage

of this approach, which is the ability to detect previously unknown attacks,

comes with a penalizing high number of bogus alerts known as false positives.

Misuse detection systems take a complementary approach ([? ], [? ],[? ],[? ]).

Misuse detection tools are equipped with a number of attacks descriptions (or

signatures) that are matched against the stream of audit data and look for the

evidence modeled attack. These approaches mainly detect modeled attacks,

and in some cases variations of them. They have the advantage of being less

prone to the generation of false positives, enabling therefore highly focused

analysis of the audit data.

Most of the IDSs generate alerts or detect anomalies independent of the

others, however some logical connections may exist between them. These alerts

signify the attacks. Single step computer attacks are generally described in

terms of the single vulnerability exploited in the attack, for example a buffer



1.1. MOTIVATION 3

overflow in sendmail, a denial-of-service by sending pings to a broadcast IP

address, etc. With the increasing frequency of complex and coordinated, multi-

stage attacks that take the advantage of various single step attacks on enter-

prizes and government systems, these single-point/ single step attacks remain

of little significance in isolation. Intruders also use patterns of intrusion that

are difficult to trace and identify. They frequently use several levels of indirec-

tion before breaking into target systems. These more sophisticated multi-stage

attacks also have the capability to bypass the security mechanisms and hence

motivates the need for better techniques of describing and identifying them.

Consequently, methods to understand, predict and identify the attack scenar-

ios are important challenges for computer security research.

Attack scenarios are typically described by sequence of actions the at-

tacker perform to achieve some specific goal. These kinds of attack scenario

descriptions are very useful in specifying the attack signatures which facilitate

in detecting intrusions/attacks. But these descriptions lack in the ability to

generalize beyond the stated scenario or to be utilized as a sub-goal in more

complex attacks. An alternative way of describing attacks are uses model of

attacks based on the requirements of the abstract components of the attack,

where a complete attack is composed of multiple components. Each compo-

nent requires certain capabilities that must exist for a particular instance of

the component to be entailed. Each component may also provide specific capa-

bilities to satisfy the requirements of some other components. The idea is that

a series of the attacker’s actions has time consecutive association. Specifically,

an earlier attack enables or positively affects the later one. We can predict

the next most likely step when one attack is achieved successfully. With this
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method several unknown attacks can be described as no prior knowledge of

complete scenario is required.

In order to minimize false positives( see section2.1.3) and to automatically

construct attack scenarios from alerts, many alert correlation techniques have

been proposed.

These correlation techniques comes under four categories. In the first cat-

egory, correlation is done on the basis of feature similarity (e.g., Spice [? ], the

probabilistic alert correlation [? ]). However they work well for correlating

some alerts, but they are unable to identify the causal relationships between

related alerts. In the second category(e.g., LAMBDA [? ]), administrator

specifies attack scenarios for the alert correlation. In some of these methods,

to generate automatic attack scenarios data mining approach has been used.

Apparently, these approaches can not detect unknown attack scenarios. Third

category correlation techniques are based on require/provide model in which

consequence of an alert satisfies the precondition of another alert. Fourth

category belongs to the multiple security systems based approaches [? ][? ]

in which log of different security tools such as IDSs, firewall log, router log,

vulnerability scanners etc. are used for attack correlation [? ].

Our work is motivated by Zhou et. al.[? ] which uses capability model for

attack correlation. This capability model uses capability as a basic building

block and uses it for developing several algorithms in correlation based on

alert abstraction and inference rules. Their work also shows that the approach

is capable of handling missing attacks and is promising at alert fusion and

correlation. However it does not discuss the algebraic operations and relations

between capabilities. To make capability model correlation process systematic
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and modular, it is essential to identify and understand algebraic properties of

capability. This will also help to represent capabilities unambiguously.

As capability is an abstract term, therefore it is needed to customize the

model according to network environment and other system preferences. Lan-

guages are the best tools to express these preferences. It formalizes the mean-

ing of elements used in language and make it less ambiguous. Language also

helps in making the correlation process modular and simple. This makes sys-

tem easily understandable for even non security expert. This approach helps

in facilitating the process flexibility and easy enhancement.

1.2 Objectives

The objectives of this thesis are as follows.

1. Algebra for capability based attack correlation: To make a mature

capability model, we need to know basic characteristic of Capability in

context of attack correlation process. These basic characteristics may

include identification of algebraic properties of Capability.

2. Capability based attack modeling language: Capability is an ab-

stract term therefore, there is a need of customization of capability. As

language is the best way to express user’s notion of capability and pro-

vides easy and feasible way for customization, it is a good vehicle for

customizing capability and for modeling the attack scenarios in terms of

capability.
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1.3 Contribution

In this thesis, we propose a model of capability in term of algebraic struc-

tures that are later used to make correlation process modular. We identify the

potential algebraic properties of capabilities in terms of operations, relations

and inferences. These properties give better insight to understand the logical

association between capabilities which are helpful in making the system mod-

ular and systematic. The work also presents variant of correlation algorithm

by using these algebraic properties. To make these operations more realistic,

existing capability model has been empowered by adding time-based notion

which helps to avoid temporal ambiguity between capability instances.

We also propose a novel framework for modeling attack capability using

a language. This framework semi-automates the correlation process based on

capability model. The framework minimizes the human intervention which is

required for processing IDS alerts for the purpose of identifying attack scenar-

ios. The proposed Attack Capability Modeling Language(ACML) is a novel

language which provides flexibility in setting up the security concerns as re-

quired for the customization of capability model. With the customized model,

the system can also be adaptive to optimizations. ACML specifications also

enable the utilization and reusability of the experience and knowledge of se-

curity professionals in the field of attack correlation.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the

background detail and previous work in the area of attack correlation. We
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also give brief overview of some recently developed attack language. Brief de-

scription about capability model is given in the related work section of this

chapter. Chapter 3 contains the proposed capability model. This chapter

also contains detail about Indirect and Direct capability, argument for the

significance of time parameter and the overview of correlation process using

the capability model. Chapter 4 contains the proposed algebra for capability

based attack correlation. Chapter 5 provides the proposed Attack Capabil-

ity Modeling Framework (ACMF) and Attack Capability Modeling Language

(ACML). Chapter 6 concludes the this dissertation and outlines the future

work.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related Work

The major focus of the thesis is design of a systematic model of alert correlation

and provide tool to represent this information so that it can be exchanged

between security administrators without any ambiguity. This chapter provides

a survey in the area of alert correlation. Second part of this chapter gives the

overview of attack languages.

2.1 Intrusion Detection

Nowadays as more sensitive data is stored in computer, security is therefore

one of the major issues. With the wide development of Internet and Network

systems, Intrusion detection become a major threat of all types of organiza-

tions. Idea of Intrusion detection was introduced by James Anderson et. al. in

the early 1980[? ]. In their work they define intrusion detection as “Computer

Security Threat Monitoring and Surveillance”. Anderson defines an intrusion

as “any unauthorized attempt to access, manipulate, modify, or destroy in-

formation, or to render a system unreliable or unusable”. Intrusion detection

attempts to detect these types of activities. Amoroso[? ] defines intrusion

detection as the process of identifying and responding to malicious activity

targeted at computing and networking resources. An intrusion can thus be
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defined as any set of actions that attempt to compromise the integrity, confi-

dentiality, or availability of a resource [? ].

An Intrusion Detection System (IDS) is a security tool that monitors com-

puter systems and networks to detect and alarm on those intrusions that pass

through protection mechanisms. Thus, upon receiving the alarms, administra-

tors or automatic response systems can make quick response to those attacks

to minimize their damage, and understand their behavior.

Intrusion detection systems can be classified in several ways. It is common

to classify an IDS by the detection mode, the audit source, the usage frequency,

and the response mechanism [? ].

2.1.1 Classification of IDS based on Detection Method

Intrusion Detection System(IDS) techniques are classified into two classes

based on their detection mechanism.

Misuse detection techniques Misuse detection techniques try to model the

attacks on a system as patterns, and then systematically scan the system

for the occurance of these patterns. This process involves a specific en-

coding of previous deemed intrusive or malicious behaviors and actions[?

].

Misuse detection approaches include rule-based and state transition based

systems. Rule-based detection compares the audit data with each en-

coded intrusion activity (rule) and its detection engine generates alarms

whenever there is a match . MIDAS (Multics Intrusion Detection and
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Alerting System) [? ], Snort[? ], and Bro[? ] are the IDSs which be-

long to this category. Ghosh et. al.[? ] further classify these into two

categories i.e. expert systems[? ],[? ], model-based reasoning [? ],[? ].

State transition based detection [? ][? ] defines attack patterns with

state transition diagrams in which nodes represent system states and

edge represent actions causing state transitions. Detection engine maps

computer state into these transition states to track the current security

state of system. It generates alarms for security administrator whenever

system reaches the compromised state. USTAT (UNIX State Transition

Analysis Tool) [? ] comes under this category.

Generally, misuse detection techniques are usually fast and accurate (as

compared to anomaly detection), however they are not effective in iden-

tifying the novel attacks, whose signatures have not been specified.

Anomaly detection technique Anomaly detection is based on the devia-

tion from normal activity profile (e.g., a user or a system). Any activ-

ity that significantly deviates from the normal behavior by a predefined

threshold margin is considered to be intrusive. Such profiles can be based

on statistical models on the user’s historical activities and system call

models for the normal execution of programs.

Anomaly detection approaches have been implemented in either learning

based or specification based systems. A learning-based anomaly detec-

tion system utilizes a training period to learn the normal traffic and use

it to recognize anomalous user or program behavior [? ][? ][? ][? ].

Specification-based systems take on a specification of the normal traffic
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either manually or system generated. Specification based systems can

also be classified into two method one which uses statistical models for

user or program profiles [? ][? ][? ] and second uses expert systems that

use rules for normal behavior to identify possible intrusions [? ]. For

instance, Vigna et. al.[? ] used illegal sequences of system calls utilized

by system to make automated reasoning to generate usage profile.

Based on the subjects being monitored, we divide anomaly detection

techniques into two classes[? ]: user activity based techniques and pro-

gram behavior based techniques. User activity based approaches create

statistical models based on the user’s historical data, and raise alerts

when the user’s activity significantly deviates from the statistical model.

Program behavior based approaches create system call models for the

normal execution of the programs, and raise alerts when monitored sys-

tem call sequences deviate from the model.

Examples of anomaly detection systems employing user activity profiles

include SRI’s IDES [? ], ADAM [? ], NIDES [? ], and W&S [? ]. In

IDES [? ] and NIDES [? ], statistics are monitored on subjects such

as CPU utilization, frequencies of specific system events, distribution of

audit records etc. When the deviation exceeds a pre-defined statistical

threshold, it is said to be abnormal and an alarm is raised. W&S[? ]

automatically creates detection rules based on the statistics of historical

audit records, and use these rules to detect abnormal user activities. Ex-

amples of the systems using program execution profiles include [? ] [? ]

[? ] [? ] [? ]. These approaches build their system call profile through ei-

ther program training (monitoring normal program executions), or static
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analysis on programs’ source codes and execution. Current approaches

to building system call models can be roughly classified into two cate-

gories: program training based approaches [? ], and static analysis based

approaches [? ][? ].

There are certain drawbacks of this technique. 1) Anomalous behav-

ior that is not intrusive is considered as an intrusion (false positive).

Anomaly detection suffers from high false alert rate, since it is hard to

define normal behaviors. 2) Also intrusive activities such as stealthy at-

tacks that are not anomalous result in false negatives. Even with the

proper definitions of normal behaviors, an attacker can still gradually

convince the IDS to believe his/her intrusive activities as normal be-

havior. Therefore, the key issue here is to select the threshold levels to

reduce both false positives and false negatives. Anomaly detection sys-

tems are computationally expensive because they requires maintaining

several system profile metrics.

2.1.2 Classification of IDS based on Audit Source

Based on the audit data processing, intrusion detection belongs to network-

based audit data, host-based audit data, and application-based audit data.

1. Network-based IDS :- Network-based IDS gathers raw network pack-

ets as the data source from the secured network for malicious traffic.

These types of IDS can scan complete packets or packet headers, or Net

flow of network data. There are some networks IDS which use firewall

logs as input that contain headers of network packets that have been
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blocked by the firewall [snort[? ]].

2. Host-based IDS :- Host-based Intrusion detection system scans oper-

ating system’s audit data generated log of system calls[? ] in a single

host. Host based IDSs are implemented in four classes[? ] (i) file system

monitors which check the integrity of files and directories [? ], (ii) logfile

analyzers which analyze logfiles for patterns indicating suspicious activ-

ity[? ][? ] (iii) connection analyzers which monitor connection attempts

to and from a host, and (iv) kernel based IDSs that detect malicious

activity on a kernel level.

3. Application-based IDS :- Application-based intrusion detection sys-

tem consumes user space application such as web-server log, mail server

log[? ]. These kind of IDS are used to protect network daemons.

These techniques have their own limitation. For example the network-based

IDS cannot understand what is happening within the host if the network traffic

is encrypted, because the network-based IDSs cannot encrypte the payload.

Whereas HIDS can understand the encrypted traffic after decrypting in the

host, however the host-based IDS can be compromised as a part of the attack.

Also HIDS puts a performance cost on the monitored systems.

2.1.3 IDSs Limitation

Current intrusion detection systems suffer from serious well known problems.

Following are major shortcomings the among them

1. Massive alerts : - Current intrusion detection systems generate enormous

amount of alerts that are not caused by real attacks [? ][? ]. Because of
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these huge data overwhelming security officers, these intrusion detection

system becomes more of a tool for forensic work for the post attack

analysis, rather than as a security monitoring tool.

2. False positive: - The worst thing about massive alerts is that most of

them belongs to false positive and also these alerts may be mixed with

true alerts, which create a challenge to filter out true alerts [? ][? ].

3. Missing Alerts : - As stated in [? ] [? ] [? ] [? ] often IDSs do

not generate any alert for true attacks. This happens because many

attackers frequently change their attack just enough to evade current

signatures or tightly written rules in a signature based system so that it

will only catch a subset of an attack vector. It happens also in anomaly

detection when training data is taken at a compromised state. Another

case when false negative happens is when IDS gets overloaded and it

starts dropping packets.

4. Incomplete Information[? ]:- IDS alerts usually do not contain sufficient

information based on which security administrator can take decision.

Main reason behind it is that their work in limited domain. For example,

NIDS works in network level which scan the traffic, whereas HIDS scan

the activity on a particular host.

5. Truthless :- As it is not necessary that all attempted intrusion will be

successful, IDS usually are not able to discriminate between a successful

attack and failed attack.

6. Irrelevant positive: - Most of the times IDS either generate true alert but



16 CHAPTER 2. BACKGROUND AND RELATED WORK

these may not belongs to the system context or administrator’s interest.

For example, an alert warning about a web-based attack for window

machine, while system OS belongs to Linux. This happens due to IDS

not having enough information about the hosts they are protecting.

7. Unable to handle Novel attack :- In most of the cases IDSs are unable

to protect from attack variants or novel kind of attack. This happens

because either IDS does not have attack signature or specification.

8. Erroneous activity : - IDS especially HIDS also generate alerts for erro-

neous events such as OS failure or software crash which was caused by

bugs in the software.

2.2 Attack Correlation

In order to solve the problem with Traditional intrusion detection systems

(IDSs) several alert correlation techniques have been proposed. As traditional

IDSs concentrates on low-level attacks or anomalies, and raise alerts inde-

pendently, however there may be logical links between them. Therefore, it

is necessary to develop techniques to construct attack scenarios (i.e., synthe-

size attacker steps to make a larger view) from alerts and provide intrusion

analysis.

2.2.1 Types of Attack Correlation

Attack correlation techniques falls in the four categories
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Similarity based approaches Similarity based approaches[? ] [? ] [? ]

[? ] [? ] [? ] cluster the alerts based on the similarity between alert

attributes (e.g., source and destination IP addresses, protocol etc.). A

number of the proposed correlation approaches include a multi-phase

analysis of the alert stream. For example, the model proposed by Valdes

et al. [? ] [? ] [? ] presents a correlation process utilizing an alert

similarity metric. Their correlation process is in three steps (i) attack

threads aggregation based on attribute like sensor field, attack class, at-

tack name, source, and target in the alerts are the same, (ii) multiple

sensors’ aggregation in which they cluster with similar metric except

sensor field, (iii) higher level aggregation in which they aggregate the

alert with relaxing the condition for the similar attack class. In [? ],

Debar&Wespi propose a system which uses both aggregation and corre-

lation of intrusion detection alerts generated by heterogonous sensors.

One major issue comes in these methods is to define similarity measure.

As many attributes are categorical (e.g., TCP/UDP Port numbers) tra-

ditional similarity measures [? ] [? ] may not be suitable. While many

researches has proposed their own methods, Julisch et al. [? ] [? ] use

conceptual clustering and generalization hierarchy to aggregate alerts

into clusters. On the other side, these techniques have serious drawback

like they fail to identify causal relationships between related alerts.

Attack Scenario-based correlation Attack Scenario-based correlation[? ]

[? ] [? ] is a knowledge-based method of well-defined scenarios of at-

tacks either defined manually or learned by training datasets. Example
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of this technique are STATL[? ], LAMBDA [? ], Tivoli approach [? ],

and the data mining approach [? ]. In these models, their own language

is used to express the scenarios which plays an important role in the

applicability of the method. A major limitation of such methods is that

they are restricted to known attack scenarios. As these models are close

to our approach we give the details in the end of this chapter.

Require/provide model Require/provide model (e.g. JIGSAW [? ], the

MIRADOR approach [? ]) also known as the prerequisites (pre-conditions)

and consequences based model [? ] [? ] correlates alerts if the conse-

quence of an alert satisfies the precondition of another alert. Several

work such as [? ] [? ] show that it potentially uncovers the causal

relationship between alerts, and not limited to known attack scenarios.

In the related work section such methods has described in more detail.

Multiple security systems based approaches Multiple security systems

based approaches [? ] [? ] [? ] [? ] keeps logs of different security tools

such as IDSs, firewall log, router log, vulnerability scanners etc and are

used for attack correlation [? ].

2.3 Attack Languages

Attack languages are used to specify/state the signatures of attacks. These

signature specifications help IDS in identifying intrusive actions/attacks in au-

dit data stream. Both approaches of IDS i.e. anomaly detection system and
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misuse detection system make use of attack languages in specifying and identi-

fying patterns of malicious activities. Anomaly detection systems identify the

deviation from the normal behavior in audit data by defining the intended or

expected behavior with the help of attack languages where as misuse detection

systems use the specification of the signatures of known attacks in attack lan-

guages to identify the later in data stream. Attack languages are also used to

analyze the relationships among different attacks and to simulate the attacks

for testing the system.

Attack languages differ in the set of signatures that can be described. A

single attack language cannot specify all aspects of an attack efficiently as they

are different in capabilities to express the various attributes/elements of attack.

That’s why different attack languages have their strength in specifying attack

in different environments/domains. There are some desired characteristics of

attack languages. Some of them are given here. An attack language:

• should have the capability to specify the temporal ordering of the events

because two attack scenarios may constitute the same set of events but

may differ in the order of the their occurrence.

• Should have the feature to describe the different parameters of an event

• Should be flexible enough to handle the change in any attack specification

without much overhead

Vigna et. al. [? ] have identified six different classes of attack languages

based on their scopes and goals. These attack languages are: event languages,

response languages, reporting languages, correlation languages, exploit lan-

guages, and detection languages.
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1. Event languages :- Events are specified by event languages. Event

plays an important role in analyzing security as they serve as input

during analysis generally performed by IDS. Some examples of event

languages are tcpdump[? ] packets, BSM(basic security module)[? ],

syslog messages [? ]etc. Each language provides it’s own format for each

type of event and features.

2. Response languages :- The response languages specify actions to be

predefined in response to detection of intrusion. With the help of re-

sponse languages, responses can be changed and activated dynamically

on progression of attack. Presently there is no standard response lan-

guage used by IDS that may provide full customizability and flexibility.

Functions written in high level languages like C and Java are used by

IDS for this purpose. However ADeLe language proposed by Michel et

at.[? ] has features to specify the responses.

3. Reporting languages :- The purpose of Reporting languages is to de-

fine format of alerts generated by IDS and exchange procedures for shar-

ing information of interest to intrusion detection and response systems,

and to the management systems which may need to interact with them..

(Reporting languages include the specification of attack related informa-

tion) These languages report about the information related to an attack

i.e. source/attack, target/victim, severity of attack, vulnerabilities that

are exploited by attacker, type of attack etc which is generally in the

form of alerts. Common Intrusion Specification Language (CISL)[? ]

and the Intrusion Detection Message Exchange Format (IDMEF)[? ]
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are examples of reporting languages. CISL is part of the Common Intru-

sion Detection Framework (CIDF)[? ]. IDMEF is based on XML and it

builds on much of the previous CIDF work.

4. Correlation languages:- Correlation languages are used to define the

relationships among attacks to provide complete and coordinated at-

tempt of security breach. They are the major focus of ongoing research

in this area. For correlation, these languages use the alerts produced by

various IDS in order to provide succinct and precise view of intrusion

attack, as most IDS generate large number of alerts that make the job

of security analyst harder. Therefore there is a great need of such lan-

guages. Examples, of current approaches to the correlation problem are

the use of Bayesian networks, as demonstrated in Honey-well’s ARGUS

system and SRI s EMERALD, event-based reasoning, as demonstrated

in UCSB s STATL [? ], and rule-based reasoning, as in SRI s P-Best

[? ]. For all these correlation approaches to be implemented, correlation

languages are required.

5. Exploit languages :- Exploit languages specify the intrusion steps. So

these languages are very helpful in testing security of a network and to

test the IDS’s deployment in secure network by simulating the attacks

step by step and by generating various test cases. Exploits are commonly

written in general purpose languages like C, C++, perl etc but they may

make use of some attack specification languages like NASL[? ], Custom

Attack Simulation Language (CASL)[? ] for attack scripting.

6. Detection Languages:- The last category is of Detection languages,
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which are also termed as attack languages, support detection of intrusion.

They provide the mechanism for identifying the instance of attack by

matching the input events with complete description of attacks in some

format. Examples of detection languages are N-code[? ], Russel[? ],

REE[? ] and specification language such as[? ] and [? ].

Most of the correlation approaches require the specification of the attack steps

or of complete attack scenarios in some format. Therefore, the languages used

to specify the attack scenarios are of utmost important. LAMDA, ADeLe and

CAML languages described below serve the purpose.

2.3.1 LAMBDA

Development of LAMBDA[? ] language is part of MIRADOR project[? ] ini-

tiated by French defense agency. LAMBDA is an attack description language.

This language is based on logic and uses a declarative approach. This language

allows the description of an attack operation in generic form. These generic

descriptions are independent of intrusion detection process or computer sys-

tem. They are later annotated with elements of specific detection process and

target computer system.

In this language, an attack is described as a combination of actions, com-

plemented by several statements in relation with the target computer system.

Description of attack contains:Pre-requisites(A set of conditions to be satisfied

in the system target of the attack for this attack to succeed), Consequences (ef-

fects or outcome of the successful attack), Scenario(describes the combination

of different actions to perform the complete attack).
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From the point of view of an intrusion detection system, it is required to

describe separately what operations should be done to detect the occurrence

of an attack. So it also allows the description of the detection process i.e.,

the elementary actions that should be performed in order to detect an attack.

The language also describes how these detection actions are combined. Such

description is similar to the description of the attack scenario. Finally it

has the features to complement detection actions with verification actions.

These actions aim at evaluating the impact of an attack on the computer

system. These detection and verification aspects provide the language user

with means to tailor the description of the attack to the needs of a specific

intrusion detection system or a specific environment.

2.3.2 ADeLe

The ADeLe[? ] language has been developed simultaneously with the Lambda

language within the MIRADOR Project. ADeLe is also an attack description

language and was designed to model the complete database of known attack

scenarios. However, Lambda uses a declarative approach wheras Adele uses a

procedural approach. As stated earlier that a single attack language cannot

specify all aspects of an attack efficiently as they are different in their capabil-

ities to express the various attributes/elements of attack, ADeLe is concerned

with four classes of attack languages: exploit, correlation, response and detec-

tion. Language uses the IDMEF format for inter-operability between different

IDSs. Attack descriptions allowed by ADeLe are more generic and modular

both from the attacker’s as well as defender’s point of view. In this language,

attack description consists of three parts: Exploit, Detection, and Response



24 CHAPTER 2. BACKGROUND AND RELATED WORK

part where correlation is covered in Detection part. The Exploit Part contains

pre-condition, stage description code and post-condition. and the Detection

part is a new language proposed to express the detection of attack. The Re-

sponse part contains the list of functions used for automatic response. Most

of the description itself is written in an XML-like code.

2.3.3 CAML

CAML (Correlated Attack Modeling Language)[? ] is a recent language pro-

posed by SRI International [? ]. It aims at modeling multi-step attacks, in

the modular form, where a module represents an inference step and modules

can be linked together to detect multi-step scenarios. The relationships among

modules are specified through pre- and post-conditions. Thus, modules can

be linked together to recognize attack scenarios.

A module is the basic unit for specifying correlation steps in CAML. A

module specification consists of three sections, namely, activity, pre-condition,

and post-condition. To support event-driven inferences, the activity section

is used to specify a list of events needed to trigger the module. These events

are specified using event templates, which describe the requirements for the

candidate event instances.The structure of CAML events is based on IDMEF.

CAML has been tested within the EMERALD framework. This work is very

similar to those of LAMBDA [? ], JIGSAW [? ] and P. Ning.[? ] However

Cheung et al.[? ] have apparently spent a large effort to solve implementation

issues (modules reuse and modules interfacing with the EMERALD existing).
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2.4 Related Work

2.4.1 JIGSAW

Templeton and Levitt [? ] originally proposed the first requires/provides

model for alert correlation that defines the logical relations using JIGSAW

language between different attacks in the same intrusion incident. They have

shown that JIGSAW language is able to represent complex attacks and also

helps to generalize the unknown attacks by illustrative examples. Rather than

attacks as a series of events, they presented it as a set of capabilities that

provide support for abstract attack concepts that in turn provide new capabil-

ities to support other concepts. As in the model attack, concepts are defined

locally and the model can be constructed without prior knowledge of the at-

tacks. However the method has some limitations. For example, it is hard

to practically enumerate the entire precondition and postcondition of attacks

and model is likely to generate alert for which those conditions which are not

defined. Also as it handles low-level attacks individually, and if attack does

not prepare for (or is prepared for by) other alerts, it will fail to correlate

it, even if the alert is related to others. Ning et al. [? ] [? ] present an

alert correlation technique to overcome these problems by combining cluster-

ing correlation method with causal correlation method. In parallel, Cuppens

et al. [? ] proposed another approach which is able to deal with missed alerts.

Their technique is based on abductive rules. If an alert, which is known con-

sequence of an event that should have generated another alert, is received by

the correlation engine and if that other event has not been received by the

same correlation engine then, by means of a simple abductive reasoning, the
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missed event can be identified. Cuppens et al. [? ], in parallel, had proposed

another approach which is able to deal with missed alerts.

2.4.2 Basic Capability Model

Capability model proposed by Zhou et. al. [? ] models the capabilities ob-

tained by an attacker from her point of view to form basis for require/provide

model and use it for logical alert correlation. They defined capability as a

six-tuple: (source, destination, credential, action, service, property), it shows

that the capability means that the attacker can access the destination from

the source and the access is to perform the action on the property of the ser-

vice as credential. Their model abstracts the capabilities in a consistent and

systematic manner without any ambiguity. Their approach defines all capa-

bilities in different layers of a system abstraction using a single formula. They

applied the model to abstract IDS alerts to capabilities not only from success-

ful attacks, but also from unsuccessful attacks. Their framework is comprised

of three major components: the capability model and capability sets, the in-

ference rules, and the correlation algorithms. Inference rules represent derive

logical relations between different capabilities in terms of inference rules like

comparable, resulting etc. which is used in correlation algorithm .This sepa-

ration of correlation policy (inference rules and correlation algorithms) from

modeling IDS alerts brings great flexibility. For example, one can define cer-

tain inference rules that connect different capabilities via only the relations

of the address fields, e.g., the same source and destination. This will turn

alert correlation into simple alert clustering, based on network addresses. In

addition, they also showed that different algorithms can work together, where
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some act like plug-in to a generic algorithm in order to handle special cases.

Thus, the approach can handle very different situations without altering the

capability model and capability sets of alerts. Their approach is able to handle

missing attacks and capture equivalent effects of different attacks. They have

experimented in modeling hundreds of signatures of three popular NIDSs and

that it facilitates the task of developing the capability sets based on the model

and shown that it works in real-world intrusion detection datasets. However

the model is manual and requires human intervention to execute the process.

It is important note that the paper does not discuss the algebraic operations

and relation between capabilities.
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Chapter 3

Capability Model

A multistage attack is a series of attack where each individual attack’s post

condition serves as the precondition for next stage of attack. However, these

attacks are not always linear in nature. At times more than one attack’s post

condition serves to fulfil the precondition for next step of attack. Therefore

it’s required to segregate attacks from their pre/post condition for it is not

always one to one mapping. The capability modeling provides an elegant

way of segregating attacks from their pre/post conditions by modeling the

post effects (i.e. intruder and network effects) as the capability gained by the

attacker. In a nutshell, capability summarizes these effects irrespectively of

which attack caused it but yet at the same time without missing our purpose of

identifying other attacks that can be launched whose precondition are fulfilled

by the capability gained by attacker. In fact capability is the essence of all

network and intruder effect of the attacks launched.

In the capability model, capability represents facilities and accesses that

an attacker gains by making a connection. Capability describes the ability of

an attacker during an intrusion. An attacker can have many capabilities at a

particular instance that may or may not belong to the same intrusion.
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3.1 Desired characteristic of Capability Model

• Expressiveness: Attributes of capability like service (e.g. software

system, network etc.) should be fine-grained appropriately so that ca-

pability can be represented atomically and unambiguously. For example

granularity for read action can be read, list and know. Here, action

know represents information about file or directory. From this example

it is clear that action know is different from action read however they

belong to same category of actions but with different granularity and

independent from each other.

• Inference: It is not necessary that all attack reported by IDS will be

successful. Moreover failure of an attack may also give some capability.

We need to consider both cases in the capability model. For example, If

attacker’s attempt to write in a file have been unsuccessful due to denial

of permission, the attacker has gained knowledge about the existence

and permission of the file.

• Abstraction: Model should also support different abstraction levels so

that aggregation of capability becomes feasible which will help to define

the possible operations in the capability. For this, it is required to iden-

tify relations between attributes value such as hierarchy, independence

etc. For example action write makes hierarchy in which actions create

and modify are contained.

• Heterogeneous signature support: As security is always a primary
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focus for every organization consequently various kind of advance mon-

itoring tools have been developed. These heterogenous tools often gen-

erate logs in different formats. Capability model should be able to ac-

commodate the capability expressed in different signatures and be able

to incorporate supplementary knowledge provided by other monitoring

tools like host intrusion detection system, integrity checker etc. Intru-

sion detection message exchange format [IDMEF] [? ] provide common

signature but still not all IDSs are supporting it. In some cases, HIDS

also give information about the failure or success about attack. This

information plays important role to define capability, which are hard to

capture by NIDS. For example, suppose NIDS prompted about some

service exploit and later that service has been stopped then in this case

attacker connection will have capability only when service is running

and whenever services are stopped, attacker connection will lose that

capability.

3.2 Definition of Capability

Let D be a set of network addresses, C be a set of credentials, A be a set of

actions, SP be a set of pair of services and their property and [t1, t2] is a time

interval (where t1 and t2 are constant and t2 > t1).

Capability Capability is a six-tuple

capability = (source, destination, credential, action, (service, property), inter-

val)

where source ∈ D, destination ∈ D, credential ∈ C, action ∈ A, service ∈ S,
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property ∈ P , interval ∈ [t1, t2] in which capability is valid. It may be noted

that we have added the attribute interval to the definition of capability given

by Jingmin et. al. [? ].

Example 3.2.1 The capability (pushpa, dblab, user1, read,(‘/etc/passwd’, con-

tent), From : 〈1997 − 07 − 16T19 : 20 : 30 + 01 : 00〉) means there is

capability from host pushpa (source) to host dblab (destination) with creden-

tial user1 for read action of content of the file “/etc/passwd” in interval

[1997− 07− 16T19 : 20 : 30 + 01 : 00,∞].

It is not necessary that capability can be gained only through successful

attempts. Failed attempts can also provide some capability. For example, in

the case where an attacker wants to read a file or a webpage using http connec-

tion and is able to read the file successfully then he will have an information

type capability that the file exist and has a reading permission. In the second

case where the attacker gets the message “Forbidden” i.e. message for denial

message to read the file then the attacker will again have an information capa-

bility that file exists and also that file does not have read permission. In the

third case where attacker gets the message “Not Found” i.e. message for file

does not exist then attacker will have an information type capability that the

file does not exist. This example clearly shows that capability can be gained

from a failed attack as well.

3.3 Attributes of Capability

As shown in the section 3.2, the definition of Capability contains six attributes.

As the service and the property attributes are tightly coupled, therefore we
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Table 3.1: Attributes of Capability
Attribute Description Example

Source source address IP:10.20.3.2,
Ethernet:006097981E6B etc..

Destination destination address IP:10.20.3.2,
Ethernet:006097981E6B etc..

Action Actions that can be
performed by an attacker read, write, communicate etc.

Credential Credential using which
action can be done root, system, user etc.

Service Service used by connection IIS 3.0, \etc\passwd etc.
Property Property of service version, content etc.
Interval Duration in which From:tstamp,

a capability will Between:tstamp+tt,
be valid at:tstamp etc.

Where tstamp is time-stamp
and tt is it’s length

merged them into a single attribute of two tuples. This modification helps

us in defining an operation clearly. Except the interval attribute, rest of the

attributes are almost same as proposed by Zhau et. al. with their details in [?

]. However we are presenting a brief description in the following subsections.

Summary of these attributes is given in Table 3.1.

3.3.1 Source and Destination

Source and destination are the integral components of an attack. Source spec-

ifies the address of origin of an attack. Destination specifies the address of

the target system or victim under attack. Source and destination components

of capability can have IP addresses, ethernet addresses or host names of the

attacker and victim. Therefore it is also required to enter the type of addresses

with their values. A network address is written in the form type: value, e.g.,
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IP: 192.168.0.1. Some single-point attacks generate capabilities with exactly

one source and one destination. But some network attacks have their impact

on the whole network which results in a set of capabilities whose destinations

include all the addresses in the network. For example, an attack crashing

a router gives the attacker the ability to disconnect the network behind the

router from the Internet. In this case, the destination of the capability is the

complete set of network addresses behind the router.

Source and destination addresses are also helpful in modeling the attack

scenarios by connecting the capabilities through the address relations. All

phases of the intrusion could be correlated by the relations between the ad-

dresses in the capabilities.

3.3.2 Action

Actions describe the access method of a capability. This component facilitates

alert correlation as it helps in correctly analyzing the impact of the attacks

in intrusion detection. For example in some capabilities, the attacker obtains

the access for only reading arbitrary files but not writing or executing them.

So a single concept of access is not suitable and not sufficient to describe such

capabilities. This is very crucial while correlating alerts using capability model.

Five types of actions are identified for capability model : Read, Write, Exec,

Communicate, and Block. Each action type is associated with certain values

which are meaningful for appropriate type of objects and their properties in

the systems. Table3.2 shows the action types and their values used in our

model. For example, in Read action type, Read can denote the action to read

the content of a file whereas Know may denote some knowledge or information
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Table 3.2: Actions
Action Type Action Value

Read read, list, know
Write create, modify, append, delete

Communicate send, recv, connect, encrypt, decrypt
Exec invoke, exec
Block block(not permitted to run), delay(slow down),

spoof( can replace), pause ( can be stopped at any time),
abort( forcefully terminate), unbolck

about the file gained by the attacker. Similarly in Write action type, create

specifies the capability of an attacker to create a new file but attacker cannot

modify any existing file which is the ability denoted by modify value of write

action type.

3.3.3 Credential

Credential is the privilege generally used by the attacker to perform some ac-

tions. Root, User, Daemon, System, and None are the five types of credentials

defined for capability model Root signifies the privilege of administrative ac-

count, User signifies the non-administrative interactive account, Daemon is

non-interactive account for executing background processes, the System rep-

resents the access require to run the kernel process, and None symbolizes no

specific privilege. Some actions require or involve only one privilege whereas

certain actions may involve group privilege.

3.3.4 Service and Property

Behind every intrusion step, motive of an attacker is to gain access or infor-

mation of certain objects. These objects are called services. Attributes of
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these objects are known as properties. For example, in the case where the

attacker intrudes to read the restricted file in a webserver, the webserver will

be a service and parameter or attributes such as version, associated port num-

ber etc will be treated as properties of the service webserver. Services are

categorized as active and passive. Examples of active services are RDBMS,

OS etc. whereas example of passive services are file, memory etc. In context

of intrusion detection, these services are of six types i.e. (i) Hardware system

(ii) Software system (iii) Process (iv) Account (v) OS kernel (vi) File system

and each type include sub types. For example, File system service includes

subtypes directories, files, program, scripts etc.

3.3.5 Interval

Time interval is represented by predicate between : [t1, t2] which shows that

capability will exist from timestamp t1 to timestamp t2. It is also true that

some capabilities (e.g. of knowledge type) once gained will always be present

with the attacker. To denote such capability from predicate is used i.e. From :

t1. For example if the attacker gaines that the target machine is running on

Solaris OS at time t1 then interval of this capability is From : t1.

Timestamp can be taken in different formats. In this model following

format of timestamp has been used:-

YYYY-MM-DDThh:mm:ss.sTZD

where YYYY = four-digit year,

MM = two-digit month (01=January, etc.),

DD = two-digit day of month (01 through 31),
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hh = two digits of hour (00 through 23) (am/pm NOT allowed),

mm = two digits of minute (00 through 59),

ss = two digits of second (00 through 59),

s = one or more digits representing a decimal fraction of a second,

TZD = time zone designator (Z or +hh:mm or -hh:mm).

For example, 2007-07-16T19:20:30.45+01:00 represents the time-stamp which

is in +1:00 time zone

3.4 Direct and Indirect Capability

Each Capability can belong to either of the two categories i.e. either direct

capability or indirect capability. Direct capabilities can be defined as the

capabilities gained by directly using the information or credential gained by

some activity. Indirect capabilities, on the other hand, are gained by the

knowledge generated by processing the gained information or implication of

achieved credential. In other words, direct capabilities are those capabilities

which belong to obtaining of direct information or credential after doing some

activity. After processing this information or credential, the attacker is able

to use it as knowledge or credential to do other activity. Capabilities formed

from these inferred knowledge or implicated credentials are called indirect

capabilities. For example, if attacker succeeds to make connection for reading

a file which contains mail or credit card passwords then the direct capability

is being able to read a password file. After reading the password, attacker can
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use the password information to read the victims mail or can misuse his/her

credit cards. These type of inferred capabilities are indirect capabilities.

3.5 Significance of time parameter

Time parameter which is denoted by the interval is a crucial parameter in

reducing the false belief that each capability will last forever during correla-

tion. Some capabilities especially indirect capabilities that depend on service

running in target host and may only be valid under certain conditions. It

is not necessary that these conditions will always be present in the network

or system, for example, in the case where a service is scheduled to run for a

specific duration. Therefore, it is clear that these conditions are bound to the

validity of a session for capability and cannot be assumed that once gained by

attacker they will always be with him/her. Ambiguity due to the assumption

that capability once gained will always exist is called temporal ambiguity.

There are various sources of information that may help in specifying the

closed time interval of the capability e.g. host integrity checker, HIDS etc.

From these sources it can be identified that the capability gained earlier is

no longer valid. Other sources may be administrator knowledge especially

when some service is allowed for a limited period. For example there is one

connection having capability to execute a program in host at time t1 and later

at time t2(where t2 > t1) service has been blocked. In this case, the formerly

established connection will not have same the capability.
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3.6 Correlation process

The correlation process is based on the require/provide model in which capa-

bilities gained from the previous attacks are used to satisfy the prerequisite of

subsequent attacks. The model has following components.

3.6.1 H-alert

An H-alert is a three tuple (require, provide, raw) and represents transformed

object of alert in terms of capability, where

Require is a set of capabilities that are required for alert to be a true attack.

Provide is a set of gained capabilities after an alert has been generated.

Most IDS generate two kinds of alerts for each attack step, one for the

incoming traffic in victim host and the other for the outgoing traffic from

victim host. Alerts that have been generated for incoming traffic may

be either successful or failure. This information is available in outgoing

traffic. Attacker may even gain capability in a failed attack therefore the

provide set contains those capabilities which have been gained by either

successful attack or failure attack whichever is applied.

Raw contains other information available in alert message such as time of

alert generated, traffic direction etc.

3.6.2 M-Attack

An M attack is a three tuple (haset, capset, tmpstmp) which is a collection of

correlated alerts where haset is a set of alerts (h − alerts), capset is a set of
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capabilities provided by h-alerts in haset and tmpstmp is the timestamp of

last correlated alert which can be considered as timestamp of M.

Capabilities are considered as mandatory and optional (can be ignored

while correlation in some conditions) in the capset.

In other words, M-attack represents a set of correlated alerts. The cor-

relation process correlates a newly generated alert (H-alert) with these M-

attack/M-attacks. Overall correlation algorithm has been explained in section

4.4.1.

3.7 Summary

This chapter explains the modified capability model. Based on the desired

characteristic of capability model based ( explained in chapter ??) the capa-

bility model has been modified. The modified capability model is six tuple in

which time notion has been added. Detail of all the tuples is briefly explained.

Adding time notion helps to avoid temporal ambiguity between capability in-

stances which is explained in the significance of time parameter section. Chap-

ter also presented the concept of direct and indirect capability and also shown

that capability can be gained by failure attack. Basic correlation process gives

a brief overview about how correlation is done.



Chapter 4

Algebra for Capability Model

It is necessary to analyze the properties and the characteristics of the capabil-

ity model to modularize the whole correlation process. Capability extraction

from IDS signatures can be automated by identifying the algebraic properties

of capabilities. It gives a better insight and clear demarcation between defi-

nitions of capabilities. This also helps to determine the level of granularity in

defining the capability. Capability algebra can be divided into three groups

i.e. operations, relations and inferences. These are described in the following

section. The work in this chapter has publication in WISTP 2008 [? ].

For comparing two capabilities, it is required to determine the relations

between two capabilities, their inferences and relevant operations. It may be

noted that the attributes of the capabilities form a hierarchy. We identify the

following operations, relations and inferences base on this hierarchy.

4.1 Operations

Operations represent manipulations in the capabilities required in the correla-

tion process. There are four kinds of operations identified for the correlation

process. These are described in the following sections.
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4.1.1 Join

Join operation merges two capabilities in presence of a join condition (see

Algorithm 1). Two capabilities can be joined if both capabilities belong to

the same source and destination. Also other attributes should be same except

an attribute based on which join operation will be performed. For example

capability C1 ( srcS, dstD, daemon, block, (ftp process, port 80), from:2008-07-

16T19:20:30.45+01:00) is result of join of capabilities C2 ( srcS, dstD, daemon,

block, (ftp process, port 80), between:[2008-07-16T20:10:30.00+01:00, 2008-

07-16T21:00:00.00+01:00]) and C3 ( srcS, dstD, daemon, block, (ftp process,

port 80), from:2008-07-16T19:20:30.45+01:00).

Algorithm 1 Joining two capabilities

Require: Two capabilities C1 and C2

Ensure: Resultant capability C3 if C1 and C2 can be joined else NULL.
Let S = (cred, action, (service, property), interval)
procedure Join(C1,C2)

if C1.src = C2.src and C1.dst = C2.dst then
if ∀Ai ∈ S s.t. C1.Ai = C2.Ai then return C1

else if ∃ an attribute Ak ∈ S s.t. C1.Ak 6= C2.Ak and ∀Ai ∈ S −
{Ak, interval},

C1.Ai = C2.Ai then return C3 with C3.Ak = C1.Ak ∪ C2.Ak

else if C1.interval and C2.interval overlaps and other attributes are
same

then return C3 with C3.interval = C1.interval ∪ C2.interval
end if

end if
return NULL

end procedure

Join operation reduces the redundancy which in turn minimizes the number

of comparisons (while finding inferences) between h-alert require set and M-

attacks Capset (see section 5) during the correlation process.
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4.1.2 Split

Split breaks a capability into two capabilities based on the given attribute and

its value. For example (srcS, dstD, userU, modify, (file, content), from:t1)

can be split in (srcS, dstD, userU, append, (file, content), from:t1) and (srcS,

dstD, userU, delete, (file, content), from:t1). It may be noted that split is

semantically inverse of join operation. Split can be performed on the attributes

(a) Action (b) Credential (c) Property (d) Time, if their value is composite1.

After a split resultant capabilities would have same values of src(source), dst

(destination) and service, however a split will not be done on the basis of these

attributes.

Algorithm 2 Split a capability into two capabilities for given attribute

Require: Capability C, Attribute A and value of attribute v
Ensure: Resultant capability C1 and C2 if C can be split else C

procedure Split(C,A,v)
if C.A is not composite1 then return C
else C1.A = v, C2.A = reduce(C,A, v), ∀Ai ∈ S−A set C1.Ai = C2.Ai =

C.Ai

where S=(src, dst, cred, action, (service, property), interval)
return C1 and C2

end if
end procedure

Split is a special case of Reduce (defined in section 4.1.3) in which in which

a capability C when split in two capabilities C1 and C2 can be obtained back

by joining C1 and C2. In other words, split is lossless reduction (see Algorithm

2).

1Attribute A is composite if it contains multiple values or a value that can be divided
into distinct components for eg. RW action can be split into R and W actions.
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4.1.3 Reduce

Algorithm 3 Reducing a capability

Require: Capability C, Attribute A (must be composite) and v is value of A
Ensure: Reduced capability Cd

Let S = (src, dst, cred, action, (service, property), interval)
procedure Reduce(C,A,v)

Create a new capability Cd with Cd.A = Cd.A− v,
∀Ai ∈ S − A set Cd.Ai = C.Ai, return Cd

end procedure

The Reduce operation weakens a capability by reducing strength of any

of its attribute. For example capability (srcS, dstD, root, modify, (program,

code), from:t1) can be reduced to (srcS, dstD, userU, modify, (file, content),

from:t1). Difference between split (Algorithm 2) and reduce (Algorithm 3) is

that split operation always gives two capabilities whereas in the case of reduce

it is not mandatory that the reduced part will be a capability.

4.1.4 Subtract

The Subtract operation takes two capabilities C1 and C2 and returns C3 which

is deduction of capability C2 from C1. For example (srcS, dstD, userU, send,

(IIS, Ftp), from:t1) is result of subtraction of (srcS, dstD, userU, receive, (IIS,

Ftp), from:t1) from (srcS, dstD, userU, communicate, (IIS, Ftp), from:t1).

Subtract is similar to reduce in which minuend capability is reduced by

subtrahend capability. For substraction it is necessary that both capabilities

have same source and destination and only one attribute is different among

the rest (see Algorithm 4).
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Algorithm 4 Capability Subtraction

Require: Capabilities C1 and C2

Ensure: Resultant capability Cs

procedure Subtract(C1,C2)
if C1.src=C2.src and C1.dst=C2.dst then

if ∃ an attribute A ∈ S s.t. C1.A 6= C2.A and ∀B ∈ S − A, C1.B =
C2.B

where S=(action, (service, property), interval) then
Cs= Reduce(C1,A,C2.A)

else Cs = C1.
end if return Cs

end if
end procedure

4.2 Relation

A relation represents a logical association between two or more capabilities.

Following three types of relations are identified for the correlation process.

4.2.1 Overlap

Two capabilities overlap if there exists a common capability between them (see

Algorithm 5). For example capabilities (SLab, Dlab, RW, (/home/user1, con-

tent), user1, from:t1) and (SLab, Dlab, WX, (/home/user1, content), user1,

from:t1) overlap because the capability (SLab, Dlab, W, (/home/user1, con-

tent), user1, from:t1) is common in both. If any of the attributes between (a)

Interval (b) Credential (c) Action and property of service are common in two

capabilities, then there is overlapping: .
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Algorithm 5 Test two capabilities whether they are overlap

Require: Two capabilities C1 and C2

Ensure: true or false
Let S = (src, dst, cred, action, (service, property), interval)
procedure Overlap(C1,C2)

if (C1.interval and C2.interval overlaps) and ∀Ai ∈ S − {interval}
s.t. C1.Ai = C2.Ai then return true

else if ∃ a credential credk s.t. credk ∈ C1.cred ∩ C2.cred and ∀Ai ∈
S − {cred}

s.t. C1.Ai = C2.Ai then return true
else if ∃ an action actk s.t. actk ∈ C1.action ∩ C2.action and ∀Ai ∈

S − {action}
s.t. C1.Ai = C2.Ai then return true

else if ∃ a property p s.t. p ∈ C1.property ∩ C2.property of the same
service and

∀Ai ∈ S − {(serivce, property)} s.t. C1.Ai = C2.Ai then return
true

else return false
end if

end procedure

4.2.2 Independent

Two capabilities are independent if they cannot be joined ( see Algorithm

6). In other words, two capabilities are called independent if either both

have different source/destination or have different values of more than one

attributes among the rest of attributes. For example capabilities (SLab, Dlab,

W, /home/user1, content, user1, from:t1) and (SLab, Dlab, X, httpd, (Apache

3.2, apacU), from:t1) are independent.

4.2.3 Mutually Exclusive

Two capabilities are mutually exclusive if their corresponding attribute’s value

cannot coexist (see Algorithm 7). Mutually exclusive capabilities are less likely
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Algorithm 6 Test two capabilities whether they are Independent

Require: Two capabilities C1 and C2

Ensure: true or false
procedure Independent(C1,C2)

if join(C1,C2) is NULL then return true
else return false
end if

end procedure

to belong to the same attack. This information helps in reducing false correla-

tion. For example capabilities (SLab, Dlab, R,(/etc/passwd, content), user1,

from:t1) and (SLab, Dlab, X, IIS, Ver4.0, user1, from:t1) are mutually exclu-

sive.

Algorithm 7 Test two capabilities whether they are Mutual Exclusive

Require: Two capabilities C1 and C2

Ensure: true or false
procedure Mutual-Exclusive(C1,C2)

if ∃ an attribute A s.t. conflict(C1.A,C2.A) is true then return true
else return false
end if

end procedure

The conflict set used in algorithm 7 is a knowledge base having pair of

attributes that cannot coexist e.g. service of windows and Linux cannot exist

simultaneously in the same IP with the same port.

4.3 Inferences

Inference means causal relationship involved in process of deriving result or

making a logical judgment on the basis of known evidence. Inferences identi-

fied here are used in comparing the capabilities of require set of h-alert with
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capabilities in M-attack’s capability set based on require/provide model dur-

ing the correlation process. Almost all the inferences given in this section are

same as given in [? ].

4.3.1 Comparable Inference

Comparable inference denotes semantic comparability of two capabilities. Two

capabilities can be compared only if they hold same type of service and prop-

erty while other attributes must be same. This inference will be used to

correlate two capabilities to construct attack scenario. Capabilities can be

correlated only if required capability can be satisfied with some of the capa-

bility of M-attack set by comparable inference (see Algorithm 8).

Algorithm 8 Test whether C1 and C2 can be compared directly

Require: Two capabilities C1 and C2

Ensure: true or false
procedure Comparable(C1,C2)

if ∀ Ai ∈ { src, dst, cred, action }, C1.Ai = C2.Ai, with overlapped time
interval

and both have same type of service and property then return true
else return false
end if

end procedure

Service and property belong to the same type when services belong to same

category as given in section 3.3.

4.3.2 Resulting Inference

In many cases logical relations between capabilities cannot be represented by

comparable inference due to strict conditions. One capability is the resulting
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inference of other if it gives the other capability on its execution. These

inferences are nothing but a single step of correlation process and are used in

making an attack scenario through multi step correlations (see Algorithm 9).

Algorithm 9 Test whether C2 is resulting inferable from C1

Require: Two capabilities C1 and C2

Ensure: true or false
procedure Resulting Inferable(C1,C2)

if exercise of C1 logically derive C2 then return true
else return false
end if

end procedure

Administrator knowledge, topology of network are some of the major in-

formation sources to identify the capabilities which can be logically derived by

exercising a capability.

4.3.3 Other Inferences

Several other inferences are also possible along with the given inferences. For

example compromise inference and external inference as given by Jingmin

et. al. [? ]. Through compromise inference one capability can be inferred

from other capability for compromising the destination machine (executing

arbitrary program).Capability C1 can be externally inferred from capability

C2 if C2 is the capability to execute arbitrary program on destination machine

which is the source of C1.
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4.4 Correlating alert using modified capabil-

ity model

4.4.1 Correlation Algorithm

Correlation algorithm correlates new h-alert (created from alert generated by

IDS) with the existing M-attacks. Initially there is a set of M-attacks M.

Whenever a new alert comes, then it is abstracted into an h-alert. Correlation

algorithm searches a minimal and ordered subset of M-attacks from M such

that all the required capabilities of h-alert are satisfied by the capabilities of a

subset of M-attacks. The algorithm then combines h-alert with the identified

subset of M-attacks in a single M-attack. This M-attack contains all capabil-

ities of selected M-attacks along with the h-alert’s provide capabilities. This

new M-attack replaces the subset of M-attacks. The whole correlation process

is presented in Algorithm 10.

Algorithm 11 shows the search procedure of M-attacks that satisfy the

required capabilities of newly generated h-alert.

4.4.2 Case Study

We have extended the existing capability model by adding a new attribute i.e.

time. The modified capability improves the correlation by reducing the cases

of false correlation and by increasing correlation strength. Following cases

arises:

Case1: Case where C1 (srcX, dstX, credX, {RW}, (/home/user1, content),

intvX) is required capability of a h-alert and two M-attacks M1 and
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Algorithm 10 Correlate a new h-alert with M-attacks

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

procedure Correlation algorithm(h1,M)
Find a minimal and ordered subset Mk of set M (as given in Algorithm

11)
such that h1.requires is satisfied by capabilities in M-attacks of set Mk

if Mk 6= φ then Make new M-attack Mnew as
Mnew.capset = CM∪h1.provide where CM =

⋃
iM

k
i .capset and Mk

i ∈
Mk,

Mnew.haset = hM ∪ h1 where hM =
⋃

iM
k
i .haset and Mk

i ∈Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

M2 in M-attack set having capabilities C2 (srcX, dstX, credX, {R},

(/home/user1, content), intvX), C3(srcX, dstX, credX, {W}, (/home/user1,

content), intvX) in their capset respectively. Using former approach ca-

pability C1 cannot be correlated with either of M-attacks (M1 or M2)

capability because the action attribute of C1 cannot directly be compared

with that of C2 or C3. Therefore, the former approach is unable to corre-

late it. But in the modified approach whenever C1 and C2 are correlated,

then C1 reduces to the capability (srcX, dstX, credX, W, (/home/user1,

content), intvX). Then it be directly correlate with C3 which means C1

is correlates by M1 ∪M2. It is clear here that enhanced model is able to

detect these kinds of true correlations that would have gone undetected

in the earlier approach. These kind of cases have been handled in the

modified approach because of flexibility by defined operations such as

join, split and reduce.
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Algorithm 11 Find a minimal and ordered subset Mk of set M

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: M-attacks set M’
1: procedure Find min ordered subset(h1,M)
2: Order all M-attacks based on decreasing Timestamp and let capreq set

is set of capabilities in h1.require, CapMsat = φ and Mresult = φ
3: for all M-attacks Mi ∈ {M1, · · ·Mn} do find subset capsatisfied ⊆
capreq set inferable (see section 2) from Mi.capset, CapMsat = CapMsat ∪
capsatisfied

4: if CapMsat = hreq set then Mresult = Mresult ∪ Mi and return
Mresult

5: else if capsatisfied 6= φ then
6: capreq set =capreq set-capsatisfied and Mresult = Mresult ∪Mi

7: else
8: find capsub ∈ capreq set that can be obtained from Mi.capset by

subtract.
9: if capsub 6= φ then

10: capreq set = capreq set − capsub , and Mresult = Mresult ∪Mi

11: end if
12: end if
13: end for
14: return φ
15: end procedure

Case2: The require set of an incoming h-alert is satisfied by the capset of

M-attacks M1, M2 and there exists a capability in M1 which is mutu-

ally exclusive of other capability that belongs to M2. In this case, M1

and M2 have no correlation. But the former approach would erroneously

correlate these kind of capabilities. Whereas, in the proposed model

such capabilities are not correlated because they are mutually exclusive

and logically donot belong to the same attack. For example, a capabil-

ity C1 (eth0:12ffdd3453, eth0:12ffee1234, credX, {RW}, (/home/user1,

content), intvX) belongs to M1 and other capability C2 (srcX, dstX,
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credX, {RW}, (IIS, content), intvX) belongs to M2. Administrator

knowledge, services running in the network, topology of network are the

major sources of domain knowledge in identifying the mutual exclusive

capabilities discussed in section 4.2.3.

Case3: Modified process also handles the correlation conflicts that arise due

to temporal ambiguity as explained in section 3.5. For example, in the

case where the attacker has a capability to read and write in a host H,

then the attacker can also read and write the mail of a user whenever

he opens his mail account on that machine i.e. attacker will have the

capability of reading/writing mail from a particular user account only for

the duration in which the user is logged in. However in this case, there

is no upper limit of interval for reading/writing other files. To avoid this

ambiguity time attribute has been added with every capability.

Apart from the cases discussed above, there are several other cases where

the proposed model helps in making overall process efficient. For example, Join

operation helps in reducing the redundancy which in turn saves the number

of comparisons during the correlation proecess. In this case, there are two

capabilities C1 (srcX, dstX, credX, {RW}, (/, content), intvX) and C2 (srcX,

dstX, credX, {RW}, (/home/, content), intvX) which can be joined into one

capability as they form contain-ship relation. Therefore it is clear that if two

capabilities of M-attack’s cap set are joined then further correlation needs only

one comparison instead of two. Overlapped and independent relations help in

defining join condition accurately to test unambiguously that two capabilities

can be joined or not.
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4.5 Discussion and other issues

In this section, other possible ways of correlation process are discussed. It is

clear that join algorithm has significant impact in minimizing the number of

comparisons in correlation because it combines the capabilities in M-attacks’s

capset. However join itself is a costlier operation in terms of time as described

below. Following are the alternate methods of doing correlation using various

combinations of join and split.

4.5.1 Alternate Method 1

Algorithm 12 (Alternate Method 1) Correlate a new h-alert which is an
abstract form of recently came alert with M-attacks

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

procedure Correlation algorithmII(h1,M)
Find a minimal and ordered subset Mk of set M such that h1.requires

is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM∪h1.provide where CM =
⋃

iM
k
i .capset and Mk

i ∈
Mk,

Mnew.haset = hM ∪ h1 where hM =
⋃

iM
k
i .haset

and Mk
i ∈Mk and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.haset = h1.provide and Mnew.haset = h1

end if
for all pair of capabilities (Ci,Cj) in Mnew.capset do Ck=join(Ci,Cj)

if Ck 6= NULL then replace Ci and Cj by Ck in Mnew.capset
end if

end for
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

In this method after the correlation, algorithm 12 joins capabilities within
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each M-attack i.e. within each M-attack if two or more capabilities can be

joined then they are joined to minimize the number of capabilities in capset

and remove the redundancy. The minimal set search algorithm is same as

algorithm 11.

It may be noted that the method minimizes the number of comparisons

while searching for the minimal set of M-attacks because of a lesser number

of capabilities in each M-attack’s capset.

However join operation is a costlier operation. For example in a M-attack’s

capset if there are n capabilities then join operation is called for every pair

of subset of capabilities which is exponential because the join operation is

recursive until no more joins are possible.

4.5.2 Alternate Method 2

In this method capabilities in new h-alert’s require set are split into minimal

granularity based on their composite attributes.

In this case, we do not use join operation for correlation as it is costly.

By using split operation, the granularity of each attribute of every capability

will become one. Consequently, this will make the comparisons easier. Also

we do not need the subtract operation as all capabilities are in their minimal

reduced form. Minimal set search algorithm is same as algorithm 11 except

the subtract operation in steps 8,9 and 10.

However in some cases we may end up in split where it may not be required.

For example capability containing action RW can be split into two capabilities

with action R and W in M-attack’s capset. A new required capability with

same RW action comes, then we can split it into R and W, which requires two
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Algorithm 13 (Alternate Method 2) Correlate a new h-alert which is an
abstract form of recently came alert with M-attacks set

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

Let S = {cred, action, {service, property}, interval}
procedure Correlation algorithmIII(h1,M)

for all capabilites Ci ∈ h1.require do
for all attributes A ∈ S do

if A is composite then split Ci into minimal granularity based
on A

end if
end for

end for
Find a minimal and ordered subset Mk of set M such that h1.requires

is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM∪h1.provide where CM =
⋃

iM
k
i .capset and Mk

i ∈
Mk ,

Mnew.haset = hM ∪ h1 where hM =
⋃

iM
k
i .haset and Mk

i ∈Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

comparisons. Indirectly we may be increasing the comparisons unintentionally

as number of capabilities in the capset of M-attack increase in some cases.

4.5.3 Alternate Method 3

This method is a combination of Alternate Method 1 and Alternate Method 2

which splits the capabilities of h-alert’s require set into minimal granules and

after correlation, joins the capabilities in the newly formed M-attacks’s capset

which can be joined.
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Algorithm 14 (Alternate Method 3) Correlate a new h-alert which is an
abstract form of recently came alert with M-attacks set

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

Let S = {cred, action, {service, property}, interval}
procedure Correlation algorithmIV(h1,M)

for all capabilites Ci ∈ h1.require do
for all attribute A ∈ S do

if A is composite then split Ci into maximum granularity based
on A

end if
end for

end for
Find a minimal and ordered subset Mk of set M such that h1.requires

is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM∪h1.provide where CM =
⋃

iM
k
i .capset and Mk

i ∈
Mk,

Mnew.haset = hM ∪ h1 where hM =
⋃

iM
k
i .haset and Mk

i ∈Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
for all pair of capabilities (Ci,Cj) in Mnew.capset do Ck=join(Ci,Cj)

if Ck 6= NULL then replace Ci and Cj by Ck in Mnew.capset
end if

end for
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

The method wipes out pitfalls of pervious methods as split has been used

initially to simplify the comparisons and later on join has been used in each

M-attack’s capset to minimize the number of capabilities which consequently

minimizes the number of comparisons . However this method is more costly

than the previous in time complexity.
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4.6 Summary

This chapters presents the identified algebraic structures of the capability in

context of capability model based attack correlation. These structures give

better understanding of capability characteristics. and help in designing the

correlation process in a systematic and modular fashion. The algebraic struc-

tures are in three classes i.e. operations, relations and inferences. Operations

include join, split etc. which represent basic manipulation using one or more

capability instance. Relations include overlapped, mutual exclusive, indepen-

dent relations between capability instances. These relations help in identifying

the preconditions to allow specific operations. As the whole system is based

on require/provide model therefore to determine whether a capability satis-

fies a required capability, inferences are used. Inferences include comparable,

resulting etc., which enumerate the possible inferences from different real life

views. The chapter also gives three derived versions of the correlation process

from basic correlation process using these algebraic properties.



Chapter 5

ACML : Capability Based

Attack Modeling Language

In this chapter, we propose a novel Attack Capability Modeling framework

(ACMF) to semi-automate the whole capability model based correlation pro-

cess with the help of algebra for attack capability. The framework minimizes

the human intervention which is required for processing IDS alerts for the

purpose of identifying attack scenarios.

We also propose Attack Capability Modeling language (ACML), which

is a specification language of capability model. The objective of developing

ACML is to provide flexibility to security concerns in customizing the capabil-

ity model. With a customized model, the performance of the system can easily

be enhanced. ACML specifications help to avoid ambiguity which enables the

utilization and reusability of the experience and knowledge of security profes-

sionals in the field of attack correlation. With this, the system can also be

adaptive to optimization.

In the section next section(3) we explain the Attack Capability Modeling

framework (ACMF) and its components. Then section 5.2 presents the detail

of Attack Capability Modeling language (ACML) which is major component

of the ACMF. The work in this chapter is accepted to publish in the IAS 2008

conference.
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Figure 5.1: ACM Framework.

5.1 Attack Capability Modeling Framework

The main objective of the Attack Capability Modeling framework is to detect

intrusion scenarios using the capability model. The framework consumes first

level security alerts and reports that identified multistep attack scenarios dis-

covered in the alert stream. Figure 5.1 shows an integrated correlation process

using capability model. The whole process can be divided into five modules

as given below-

1. Attribute specification :- In this module, the specifications and tax-

onomy for capability and its attributes are collected from the user. This

module contains two parts as shown in example 5.2.1. First part of the

specification contains declarations of the attributes of capability like ac-

tion, credential etc while the second part contains the relations between

these attributes. This specification is first of part of whole program

written by user in the ACML (see section 5.2). After passing this speci-

fication through syntax-checking and parsing modules, It is provided to

the H-alert specification module and the Correlator module.

2. H-alert specification module :- The system takes IDS alerts to con-

struct an attack scenario. In this module, alerts which are generated

by IDS (in IDMEF format) will be converted into H-alerts. Figure 5.2

shows the details of this module. In this module H-alert db is a relational

database which contains the valid H-alerts corresponding to raw alerts.

Initially it may be empty and whenever a new H-alert comes in, it is

checked against H-alert database. If the corresponding H-alert exists in
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the database then its reference id of corresponding H-alert is send to the

next module. If it is not in H-alert database, then programmer would

have to write a H-alert specification for this raw alert in the ACML.

After parsing, the valid H-alert is stored in H-alert db and its reference

id is sent to next module.

3. Attack Scenario specification :- This module contains specifications

of known attack scenarios in terms of capabilities. It comprises of a set of

alert IDs (of all alerts that could possibly represent any of the steps in the

complete attack) along with the set of require and provide capabilities.

Each require capability is tagged with its sequence number which is

assigned in chronological order for each multi-step attack scenario. Detail

about H-alert specification is given in section5.2.4.

4. Standard algebraic library :- This module contains the different alge-

braic structures defined in chapter 4. Framework contains three different

file i.e. each for operations, relations, and inferences algorithm. It con-

tains two relational databases i.e. Conflict knowledge base and Inference

knowledge base. These databases is used by the relation and inference

library. These libraries are loosely coupled modules. Various APIs is

provided in the language to make the customization of these libraries

feasible. Detail of this module has been discussed in section 5.3.1.

5. Correlator module :- Correlator module contains all four kind of stan-

dard algorithms for correlation as shown in section and . However, the

objective of making it a separate module is to provide flexibility and plug

or embed their own modules. As shown in figure 5.2, This module also
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Figure 5.2: H-alert specification module.

requires a attribute specification from the Attribute specification mod-

ule and H-alert stream from H-alert specification module for correlation.

Correlator module also makes use of Attack scenario specifications to

identify the threat level of an attack. As an output, this module gener-

ates the attack scenarios after correlation.

5.2 Attack Capability Modeling Language

5.2.1 Lexical Details

The lexical structure of a programming language is the set of elementary rules

that specify how you write programs in the language. The description of

the lexical structure of the Attack Capability Modeling Language (ACML)

language specifies the format of comments, set of keywords, delimiters, sepa-

rators to specify how one program statement is separated from the next and

the generic identifiers and constant matching patterns used in identifying in-

structions during program parsing.

Identifiers in ACML are unquoted strings beginning with a letter, followed

by any combination of letters, digits, and the characters ’, reserved words

excluded. These identifiers are of two types, first which start with a upper

case letter and the other one that start with a lower case letter. For example,

Read is first type of identifier and write is of second type.

The set of reserved words is the set of terminals appearing in the grammar.

Those reserved words that consist of non-letter characters are called symbols,
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and they are treated in a different way from those that are similar to identifiers.

The lexer follows rules familiar from languages like C and Java, including

longest match and spacing conventions.

Language allows both kind of comments single line i.e. ‘//’ using symbol

at the start of the line and multiple line comments (any text between /* and

*/ including the delimiter) same as in C++ language.

5.2.2 Data Types

ACML provide several additional built-in data types and literals along with

that available in C Language such as String literals String (for example "x",

where x is any sequence of any characters except " unless preceded by \),

IP4Address, IP6Address, Ethernet Address, Port number (WellKnownPorts,

RegisteredPort, DynamicPort ), Time, Interval etc.

Moreover, language also support user defined types. This feature has a

significant role in implementation of generic and abstract model because im-

plementation of such model needs lots of customization which is very hard to

incorporate. User can define new data types in declaration and specification

section 5.2.3. The language also supports Structure and Union data types (as

defined in C-Language) which will build over built-in data types.

5.2.3 Attribute Specification

To make a customized capability model, first step is to define terminology

of the attributes of capability. Some instances of these attributes can be

semantically interconnected and can form some association. A specification
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is required to capture such notion. These specifications contain capability

attributes and relations between them. After syntax checking, attributes and

their relations are fed to the H-alert and Correlator modules as shown in

framework (see figure 5.1).

Following is the syntax of Attribute specification.

AttributeSection ::= attributes AttributeID

‘{’

actions ":-" ListOfActionNames ‘;’

credentialGroup ":-" ListofCredGroups ‘;’

credentialUser ":-" ListofCredUsers ‘;’

{ServiceDeclaration}

[AddressDeclaration]

[IntervalDeclaration]

‘}’

ConnexionsSection ::= connexions

‘{’

[ActionConnexionDeclaration]

[CredentialConnexionDeclaration]

[ServiceConnexionDeclaration]

‘}’

Detail of the syntax is given in Appendix 1. In above syntax, optional items

are enclosed in square brackets‘[’, ‘]’, items that may appear zero or more times

are enclosed in curly braces ‘{’,‘}’, literals start with lower case letters repre-

sent keywords whereas those starts with upper case letters are non-terminals,

literals enclosed in single quotation marks represent symbols/terminals of the

language. Literals enclosed in angular braces represent placeholders for code

blocks.
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Attribute Specification consists of two parts i.e. (i) attribute definition

and (ii) connexion, where attribute definition part comes first, followed by

connexion part (see example 5.2.1).

Attribute definition As shown in section 3.2, definition of capability con-

tains five types of attributes i.e. (i) Address (source and destination

address), (ii) Action (ii) Credential (iv) Service and property (v) Inter-

val.

However for address and interval attributes, several built-in data types

are provided and in addition user can also define its own data types. For

example, timestamp and interval are built-in types for interval attribute;

user may define rightOpenInterval data type for right open ended interval

(see example 5.2.1).

As shown in the Attribute specification syntax, except address and inter-

val attributes, declaration of other attributes is mandatory. Credential

group is similar as user group in Linux and it’s identifier must start

with upper case character, whereas credential user is simple user and

it’s identifier starts with lower case character. Service is defined along

with its attributes. Number of parameters and their type depends on the

type of service. For example, for webserver service type, five parameters

are there i.e. version, permittedAction, portNumber, origin, language-

Support. Following example gives the general outline of specification.

Example 5.2.1 A sample Attribute specification.

attributes secureLabAttributes
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{

action :-

Read(read, list, know, readPermission),

Write(write, append),

Modify(changePermission, writeExtendedAttibute),

Run(block,pause,delay,execute);

credentialGroup:-

Admin, User, Guest, Faculty, Seclab, Updaters;

credentialUser:-

root(Admin), navneet(User,Updaters), default(Guest);

service webserver

{

int version;

action permittedAction;

RegisterPort portNumber;

string origin;

string languageSupport;

}

service fileserver

{

int version;

string supportedEncryption;

action permittedAction;

RegisterPort portNumber;

Time sessionTime;

}

address homenet



5.2. ATTACK CAPABILITY MODELING LANGUAGE 67

{

IPAddress mynetwork;

IPAddress subnetmask;

IPAddress proxyIP;

Port proxyPort;

}

address externalnet

{

IPAddress externalnetid;

IPAddress subnetMask;

}

interval rightOpenInterval

{

Time endtime;

}

}

connexions

{

ActionConnexions :-

list<know, block(pause,delay),

write[modify,append];

CredentialConnexions :-

default < user;
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ServiceConnexions :-

server[webSer,fileSer];

}

Connexions Second part of the specification(i.e. connexion part) contains

relations and associations between attributes. Following three types of

connexions can be defined in this part of specification. These connex-

ions can be defined for service, credential (credential user) and action

attributes of capability.

1. Division:- For example, att1 (attA, attB, attC) means att1 is union

of attA, attB and attC. The attributes attA, attB, attC may not

semantically independent. This notation (division) also applies in

those cases where it is not clear, whether attributes (i.e. attA, attB

attC) posses any dependency among them. For example, let’s take

a connexion in action attribute is block (pause, delay). Action delay

shows that if attacker has capability to pause a service and also able

to delay it then attacker can do block by first pausing it and then

delaying it for infinite time. In this case it is assumed that security

administrator is unclear about the relation between pause and delay

action.

2. Partition:- att1 [attA, attB] means att1 can be partitioned into two

attributes such that deducting attA from att1 will give attB. For

example, let’s take a connexion in action attribute write [modify,

append ]. In this case write action is the combination of modify
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and append action. In this modify and append are semantically

independent actions.

3. Inclusion:- Inclusion means that att1 < att2 if attribute att1 se-

mantically include att2. For example, in the Window OS context,

default credential is semantically contained in administrator cre-

dential.

5.2.4 H-Alert Specification

Alerts are automatic messages generated when a user requests to be notified

of new search results fitting their criteria. Security Alerts provide timely in-

formation about current security issues and exploits.

H-alert

H-alert is a abstraction of raw alert generated by various security devices like

NIDS, HIDS etc. in terms of capability. H-alert in capability based ACML

model consists of:

1. Require capability set :- It is a set of capabilities that are required for

alert to be a true attack.

2. Provide capability set :- It is a set of capabilities that can be seized after

an alert has been generated.

3. Direction:- It stores the information about packet/alert direction. A

NIDS alert differs from a HIDS alert in that it is generated from some

network packets that have a direction property.
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In the ACM framework, Correlator module requires the alerts to be in the

form of capability. Most of the IDS generate alert in IDMEF format. From

IDMEF alert generating H-alert specification is simple and require little hu-

man intervention as most of values of the IDMEF fields is directly mapped

with H-alert’s attribute. ACM Language provide flexibility to automatically

generate partially filled H-alert template. For each alert there is a correspond-

ing mapping of H-alert template in the plug-in form. This loosely coupled

design facilitates easier replacement of the template for customization. The

modular design plays important role by providing higher degree of reuse of the

framework as generating H-alert template of every alert is tedious task.

Syntax

H-alert specification contains inclusion of external libraries followed by HSet

which represents the set of H-alerts. Syntax of this specification is as follows:-

{‘#’include ‘<’ Lib_ID ‘>’}

hset Set_name

‘{’

<Global variables>

<Function & Predicate definitions>

halert Name ([Parameters] )

‘{’

alertId ID1 ‘;’

reqcapbility

‘{’

<Capability_Set>

‘}’
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procability

‘{’

<Capability_Set>

‘}’

direction forward / reverse ‘;’

‘}’

‘}’

HSet contains zero or more global variable and user defined functions with

H-alert definitions. In the function and predicate definition part function con-

tains user defined function and procedures. Language also contains set of

predicates on all the attribute of capability (i.e. address, action, credential,

service & property, interval) like Subset, Union, Deduct, Overlap, Not subset,

IsComposite, IsSameType etc. Each H-alert will have an AlertID (assigned

by IDS) and require and provide capability set. Direction field in H-alert con-

tains direction information i.e. either forward or reverse (As alert is direction

sensitive [? ]).

An H-alert must contain at least one require and one provide capability.

CapabilitySet is the set of capabilities i.e. one or more Capability. Each capa-

bility is six tuple along with two additional fields

1. mode

2. optional

In the capability model, capability is categorized into two type i.e.

1. Direct
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2. Indirect

Direct capabilities are those which are gained directly by doing intrusion ac-

tion. Implication of direct capability also provide capability and which is

known as indirect capability. Mode field contains the value “direct” or “in-

direct” based on the type applied. Optional field represents whether this

capability is mandatary for correlation. Following is the syntax of capability.

Capability ::=

capability CapID

‘{’

sourceaddress AddressType srcID ‘;’

destaddress AddressType destID ‘;’

action actionID ‘;’

credential credID ‘;’

service serviceName ‘;’

property propertyID ‘;’

mode direct/indirect ‘;’

optional true/false ‘;’

‘}’

In the above capability definition syntax, SourceAddress and DestAddress

will contain in-built data types i.e. AddressType which will be validated by

the parser. Direction, mode and optional fields can have exactly one of two

values as mentioned above. The rest of data types are specified by user in the

Attributes Specification Section.

Following example shows the H-alert specification for illegal NFS mount

alert generated given in [? ]. Specification shows that illegal NFS mount re-

quires two capabilities (i) accessLevel i.e. capability to be able to communicate
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to the target host, and (ii) mountedpartition i.e. able to execute the nfs service

via nfsd daemon. After required capability is satisfied then it will provide a

canacess capability which represents the capability to access any file in the

target host.

#include <IDMEFParser>

hset MIRADOR_Alert_Set

{

int x;

halert NFSMount ( struct alert IDMEF_Alert )

{

alertId MIR0163;

reqcapability

{

capability accessLevel

{

SourceAddress IPAdd sc = IDMEF_Alert.source ;

DestAddress IPAdd dt = IDMEF_Alert.destination;

action communicate;

credential user = belongsTo ( AdminGroup);

service IP;

property reply;

mode direct;

optional false;

}

capability mountedPartition

{

SourceAddress IPAdd sc = IDMEF_Alert.source;

DestAddress IPAdd dt = IDMEF_Alert.destination;

action execute;
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credential user = belongsTo(AdminGroup);

service process = nfsd;

property version;

mode direct;

optional false;

}

}

procapability

{

capability canaccess

{

SourceAddress IPAdd sc = IDMEF_Alert.source;

DestAddress IPAdd dt = IDMEF_Alert.destination;

action read;

credential user = IDMEF_Alert.User;

service Dir;

property content;

mode indirect;

optional false;

}

}

direction forward;

}

}
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5.2.5 Attack Scenario Specification

Attack scenario specification contains complete specification of attack scenar-

ios in capability terms. Structure of this specification is almost equivalent to

alert specification i.e. it also has require and provide capability sections. In

contrast to alert specification which can be considered as locally defined with-

out a priori knowledge of complete attack scenario, attack scenario specifica-

tion contains temporal relationship among the capabilities specified in require

capability set along with the information of whole attack process. To represent

the relationship among capabilities of require capability set, each capability is

tagged with the sequence id based on their temporal order in complete multi-

step attack scenario. It also contains the verification part which helps in the

identification of security state.

Following is the attack scenario specification syntax:

{‘#’include ‘<’ Lib_ID ‘>’}

<Global Declaration>

<Function definitions>

hattacksecnario Name ( [Parameters] )

‘{’

alertId IDs[] ‘;’

reqCapbility

‘{’

<CapabilitySet with sequence id>

‘}’

procapability

‘{’

<CapabilitySet>

‘}’
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verification_prdicates()

‘{’

<predicates>

‘}’

‘}’

Following example shows the illegal file access attack given in [? ] where an

unauthorized user tries to read secret file. To do this, he first creates a file

then block the printer by opening paper tray. After giving “lpr-s” command

to print this file, he overrides the link with the soft link of the secret file.

Then he unblock printer and gets the secret file. Attack scenario Specification

corresponding to this attack contains array of AlertId which represents alerts

required to trigger this attack. From the specification it is clear that to do

IllegalFileAcess attack four capabilities are required i.e capability to block and

unblock printer, capability to print file and capability to make soft link in

the target host. After doing this attack, attacker will gain access to read any

file in the target access. Verification of this attack can be done by checking

the delay in the printing process which is mentioned in the verification block

of specification (As value of source and destination address are same in all

capabilities therefore we have removed it from example given below).

#include<IDMEFparser>

halert IllegalFileAccess(struct alert IDMEF_Alert)

{

alertId MIR0X,MIR0Y;

reqcapability

{

capability blockPrinter
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{

action block;

credential user = IDMEF_Alert.User;

service process = cups;

property version;

mode direct;

optional false;

sequence 01;

}

capability unblockPrinter

{

action unblock;

credential user = IDMEF_Alert.User;

service process = cups;

property version;

mode direct;

optional false;

sequence 02;

}

capability canPrintlpr

{

action print;

credential user = IDMEF_Alert.User;

service File;

property path;

mode direct;

optional false;

sequence 01A;

}

capability makeLink
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{

action create;

credential user = IDMEF_Alert.User;

service File;

property softlink;

mode direct;

optional false;

sequence 02A;

}

}

procapability

{

capability canaccess

{

action read;

credential user = IDMEF_Alert.User;

service Dir = "\";

property content;

mode indirect;

optional false;

}

}

direction forward;

}

verificiation()

{

printdelay();

}

}
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Developing specification for multi-step attack scenarios is time-consuming

and the quality of the specification depends on the specifier’s experience and

knowledge. Therefore it is important to identify methods for building new

attack templates based on previously defined ones in term of capability. Attack

scenarios not only help in identifying attack state but also help to characterize

common attack techniques from detection point of view. This specification

facilitates in designing the database of known attack scenarios which provide

reusability of the experience.

5.3 Standard Library & Knowledge base

5.3.1 Standard Library

Libraries of standard definitions of algebraic structures given in figure 5.1.

These structures help in designing the correlation process in a systematic and

modular fashion. These structures are divided into three classes i.e. oper-

ations, relations and inferences. Operations include join, split etc. which

represent basic manipulation using one or more capability instance. Relations

include overlapped, mutually exclusive, independent relations between capa-

bility instances. These relations help in identifying the preconditions to allow

specific operations. The whole system is based on require/provide model there-

fore Inferences are used to determine whether a capability satisfies a required

capability. Inferences include comparable, resulting etc, which enumerate the

possible inferences from different real life views. Definition of these operations

has been discussed in chapter 4.

To make ACMF more useful, these libraries are made modular and loosely
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coupled. To facilitate the customization of algebraic structures defined in these

libraries, they are being used as plug-in modules.

5.3.2 Knowledge Base

There are three type of knowledge base in the Framework i.e. (i) Conflict

knowledge base, (ii) Inference knowledge base, and (iii) H-alert db. H-alert is

entered through H-alert specification module. The other two knowledge bases

are entered manually. The descriptions of these knowledge bases are as follows

1. Conflict knowledge base:- Mutual exclusive is one kind of relation (see

section ) which gives knowledge about whether two capabilities can ex-

ist together. This relation is used to detect false correlation. As these

relations require information from security personnel about the values of

different attribute (service/action) which cannot coexist. Conflict knowl-

edge base stores this information which is provided by security officers.

The main information source for this knowledge base is network archi-

tecture, OS, services running etc. For example at the same time at a

particular port SSH and HTTP service cannot run in a server.

2. Inference Knowledge base:- Inferences are major component which repre-

sent causal relationship on the basis of known evidence. There are three

kind of inferences described in section . This information is also filled by

security personal from their past experience and system environment.

3. H-alert db:- H-alert db contains syntactically and consistent H-alert spec-

ified by user using H-alert specification. As discussed in section whenever

user will extract H-alert from IDS alert through ACML after parsing and
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consistency checking, valid H-alert will be stored in H-alert db. Corre-

lation H-alert will be fetched by its identifier.

5.4 Application of the model

We have obtained the IDS alerts for our experiment from Ning [? ] which

are produced by NIDS RealSecure [RealSecure Network Sensor 6.0] [? ] on

the DARPA 2000 intrusion detection evaluation( IDEVAL) dataset [? ]. This

data is a common benchmark to test IDS and alert correlation models. Basic

capability model given in [? ] also used same dataset and developed the

capabilities for all 28 different alert signatures.

The designed language has expressive power to represent the alerts from

various NIDS into the basic capability model. The language is tested on the

alerts (mentioned above) and is able to reduce the alert into the basic capability

model which captures twelve documented multistage intrusions in dataset. The

language is generic and can be used for even customized capability model.

Language is also providing the flexibility to represent the algebraic model of

capability and also support their variants of correlation algorithm. We are

also planning to test in other dataset like Honeypot database. Moreover we

further plan to include heterogeneous security monitoring devices.

The grammar of ACML is simple, unambiguous and easy to understand

even for beginners. We have implemented lexical analyzer, parser and pretty

printer for all type of specification of ACML. We are in the process of implant-

ing fully fledged framework for and Graphical user interface for the same.
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5.5 Summary

This chapter presented a complete Framework for modelling the capability i.e.

ACMF. The chapter also proposed Attack Capability modelling language used

for the ACMF. Along with ACML specification module it contains standard

algebraic library and correlator module. Standard algebraic library contains

the algebraic structures defined in chapter 4. Correlator module contains the

correlation algorithms. ACML has three specification parts and each one has

been explained with suitable examples. Attribute specification part is first

speciation part of the language and is used to capture the user defined taxon-

omy and its semantics so that security personnel can design the whole system

according to their network architecture and their security interests. Second

specification part i.e. H-alert Specification part is used to model the raw alerts

in the form of capability. Last specification is Attack scenario specification

part which gives facility to write the stateful description of attack scenarios in

terms of capability, which helps to determine the critical security level of the

system. The experimental results against the standard benchmarks display

the effectiveness of these specifications.



Chapter 6

Conclusion & Future work

6.1 Conclusion

In this work we enriched the capability model and analyzed it in terms of

algebraic structures. Capability model is empowered with time information

to avoid temporal ambiguity, which impacts in reducing false correlations. In

the algebraic structures, we identified and defined relations between capabil-

ities, operations on capabilities and derived inference rules along with their

semantics that have been used in the correlation process. The whole capabil-

ity model is made systematic, consistent and defined properly with algorithms.

Comparison between the previous model and the proposed model is exhibited

by demonstrating cases where the correlated alerts are not captured by the

old model, but are dealt with our proposed model. We have simplified the

whole correlation process by making it modular. This makes the system more

understandable for an amateur in security. This approach helps in facilitating

the process flexibility. Moreover, the modular approach helps in making the

enhancement of the framework quite easy. With this systematic model, the

system can be automated and adaptive to optimizations.

We proposed the Attack Capability Modelling Framework(ACMF), which

along with alert correlation also tracks the threat level of the security system.

The framework consists of the tools for the implementation of the algebraic
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structure of capability.

We proposed a novel Attack Capability Modelling Language (ACML) which

is one of the major contributions of our work. ACML has been developed with

context of ACMF. Along with attribute specification and H-alert Specification,

the language also provides for a specification of complete attack scenarios in

terms of capabilities of the intruder which helps to determine the critical se-

curity level of the system. The details of the syntax and informal semantics

of ACML are also provided. One of the major features of ACML is that it

includes flexibility for customizing the definitions of these structures as well as

for customizing the correlation algorithm. This is essential as most often the

systems under scrutiny have customized environments (in terms of topology,

OS etc.). In addition, customizing the features according to the specific secu-

rity interests in the system, the number of false alarms as well as redundant

true alarms can be minimized significantly. The whole Framework ( ACMF)

which provides the language suite has been systematically modularized and

also suitable for further extension or customization.

6.2 Limitation of the Model

We have also identified some limitations of the framework. Following are major

among them

1. The proposed framework tries to minimize the human intervention in

translation of IDS alert into H-alert, however, it is still not fully auto-

matic.

2. Either framework offers the opportunity to share the knowledge base
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but still administrator knowledge is required to develop it more context

based.

3. Join and Split operations which are used in the correlation algorithm

have their own advantages and disadvantages. There is a need to opti-

mize them to make the whole process real-time.

4. Currently the framework tracks only the attacker capability and not

the defence capability of system which can be useful in making further

decisions of a security system for preventing of intrusion. .

6.3 Future work

Following are the research and development areas in which further work can

be done in this direction:

• Part of the future work will be to optimize algorithms and to achieve

better performance. One possibility is to optimize the algorithm of join

operation and to use that in given alternate correlation algorithm (in

section 5). This would help in making the system real time with a low

false rate.

• Further research can be done to model the defence capability of secu-

rity personnel. This defence capability will help the administrator in

identifying his position against the attacker’s capability.

• At this stage, the language supports Network based IDS alerts (in ID-

MEF format). Part of the future work will be to incorporate heteroge-

neous security monitoring tools like Host based IDS, Application logs,
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vulnerability information etc.

• One future work is to develop the a fully fledged framework along with

a Graphical User Interface(GUI) . One possible extensions is to include

a debugger for the language.
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Appendix A

Syntax of Attribute

specification section)

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.

Those reserved words that consist of non-letter characters are called symbols,

and they are treated in a different way from those that are similar to identi-

fiers. The lexer follows rules familiar from languages like Haskell, C, and Java,

including longest match and spacing conventions.

The reserved words used in this specification are the following:
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SECTION)

ActionConnexions CredentialConnexions EAddress

IPAddress Port RegisterPort

ServiceConnexions Time Typedef name

action address attributes

char connexions const

credentialGroup credentialUser double

enum float int

interval long service

short signed string

struct union unsigned

void volatile

The symbols used in ACMLAtt are the following:

{ } :−

; , (

) = [

] < >

Comments

There are no single-line comments in the grammar.

There are no multiple-line comments in the grammar.
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The syntactic structure of Attribute specifica-

tion

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),

| (union) and ε (empty rule) belong to the BNF notation. All other symbols

are terminals.

〈Attribute 〉 ::= 〈Att-decl 〉 〈Connexion 〉

〈Att-decl 〉 ::= attributes 〈Ident 〉 { 〈ActionTerms 〉 〈CredentialTerms 〉

〈ServiceTerms 〉 〈OptionalTerm 〉 }

〈OptionalTerm 〉 ::= 〈AddressTerms 〉 〈IntervalTerms 〉

| 〈AddressTerms 〉

| 〈IntervalTerms 〉

| ε

〈ActionTerms 〉 ::= action :− 〈ListAct-val 〉 ;

〈ListAct-val 〉 ::= 〈Act-val 〉

| 〈Act-val 〉 , 〈ListAct-val 〉

〈Act-val 〉 ::= 〈ActionGP 〉 ( 〈ListActionItem 〉 )

〈ActionGP 〉 ::= 〈UIdent 〉
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SECTION)

〈ListActionItem 〉 ::= 〈ActionItem 〉

| 〈ActionItem 〉 , 〈ListActionItem 〉

〈ActionItem 〉 ::= 〈Ident 〉

〈CredentialTerms 〉 ::= 〈CredentialGp 〉 〈CredentialU 〉

〈CredentialGp 〉 ::= credentialGroup :− 〈ListCred-val 〉 ;

〈ListCred-val 〉 ::= 〈Cred-val 〉

| 〈Cred-val 〉 , 〈ListCred-val 〉

〈Cred-val 〉 ::= 〈UIdent 〉

〈CredentialU 〉 ::= credentialUser :− 〈ListCredU-val 〉 ;

〈ListCredU-val 〉 ::= 〈CredU-val 〉

| 〈CredU-val 〉 , 〈ListCredU-val 〉

〈CredU-val 〉 ::= 〈Ident 〉 ( 〈ListCred-val 〉 )

〈ServiceTerms 〉 ::= 〈ListServiceList 〉

〈ListServiceList 〉 ::= 〈ServiceList 〉

| 〈ServiceList 〉 〈ListServiceList 〉

〈ServiceList 〉 ::= service 〈Ident 〉 { 〈Property-list 〉 }
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〈Property-list 〉 ::= 〈ListDec 〉

〈ListDec 〉 ::= 〈Dec 〉

| 〈Dec 〉 〈ListDec 〉

〈AddressTerms 〉 ::= 〈ListAddressList 〉

〈ListAddressList 〉 ::= 〈AddressList 〉

| 〈AddressList 〉 〈ListAddressList 〉

〈AddressList 〉 ::= address 〈Ident 〉 { 〈ListDec 〉 }

〈IntervalTerms 〉 ::= 〈ListIntervalList 〉

〈ListIntervalList 〉 ::= 〈IntervalList 〉

| 〈IntervalList 〉 〈ListIntervalList 〉

〈IntervalList 〉 ::= interval 〈Ident 〉 { 〈ListDec 〉 }

〈Dec 〉 ::= 〈ListDeclaration-specifier 〉 ;

| 〈ListDeclaration-specifier 〉 〈ListInit-declarator 〉 ;

〈ListDeclaration-specifier 〉 ::= 〈Declaration-specifier 〉

| 〈Declaration-specifier 〉 〈ListDeclaration-specifier 〉

〈Declaration-specifier 〉 ::= 〈Type-specifier 〉

| 〈Type-qualifier 〉
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SECTION)

〈Type-specifier 〉 ::= void

| char

| short

| int

| long

| float

| double

| signed

| unsigned

| RegisterPort

| Port

| action

| string

| 〈Struct-or-union-spec 〉

| 〈Enum-specifier 〉

| Typedef name

| Time

| IPAddress

| EAddress

〈ListInit-declarator 〉 ::= 〈Init-declarator 〉

| 〈Init-declarator 〉 , 〈ListInit-declarator 〉

〈Init-declarator 〉 ::= 〈Ident 〉

| 〈Ident 〉 = 〈Initializer 〉
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〈Type-qualifier 〉 ::= const

| volatile

〈Struct-or-union-spec 〉 ::= 〈Struct-or-union 〉 〈Ident 〉 { 〈ListStruct-dec 〉 }

| 〈Struct-or-union 〉 { 〈ListStruct-dec 〉 }

| 〈Struct-or-union 〉 〈Ident 〉

〈Struct-or-union 〉 ::= struct

| union

〈ListStruct-dec 〉 ::= 〈Struct-dec 〉

| 〈Struct-dec 〉 〈ListStruct-dec 〉

〈Struct-dec 〉 ::= 〈ListSpec-qual 〉 〈ListStruct-declarator 〉 ;

〈ListSpec-qual 〉 ::= 〈Spec-qual 〉

| 〈Spec-qual 〉 〈ListSpec-qual 〉

〈Spec-qual 〉 ::= 〈Type-specifier 〉

| 〈Type-qualifier 〉

〈ListStruct-declarator 〉 ::= 〈Struct-declarator 〉

| 〈Struct-declarator 〉 , 〈ListStruct-declarator 〉

〈Struct-declarator 〉 ::= 〈Ident 〉

〈Enum-specifier 〉 ::= enum { 〈ListEnumerator 〉 }

| enum 〈Ident 〉 { 〈ListEnumerator 〉 }

| enum 〈Ident 〉
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〈ListEnumerator 〉 ::= 〈Enumerator 〉

| 〈Enumerator 〉 , 〈ListEnumerator 〉

〈Enumerator 〉 ::= 〈Ident 〉

〈Initializer 〉 ::= 〈Exp 〉

| { 〈Initializers 〉 }

| { 〈Initializers 〉 , }

〈Initializers 〉 ::= 〈Initializer 〉

| 〈Initializers 〉 , 〈Initializer 〉

〈Exp 〉 ::= 〈Constant 〉

| 〈String 〉
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〈Constant 〉 ::= 〈Double 〉

| 〈Char 〉

| 〈Unsigned 〉

| 〈Long 〉

| 〈UnsignedLong 〉

| 〈Hexadecimal 〉

| 〈HexUnsigned 〉

| 〈HexLong 〉

| 〈HexUnsLong 〉

| 〈Octal 〉

| 〈OctalUnsigned 〉

| 〈OctalLong 〉

| 〈OctalUnsLong 〉

| 〈CDouble 〉

| 〈CFloat 〉

| 〈CLongDouble 〉

| 〈Integer 〉

| 〈Time 〉

| 〈IPAddress 〉

| 〈EAddress 〉

〈Connexion 〉 ::= connexions { 〈ActionC 〉 〈CredentialC 〉 〈ServiceC 〉 }

〈ActionC 〉 ::= ActionConnexions :− 〈ListAction-attribute 〉 ;
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〈ListAction-attribute 〉 ::= 〈Action-attribute 〉

| 〈Action-attribute 〉 , 〈ListAction-attribute 〉

〈Action-attribute 〉 ::= 〈Actionval 〉 [ 〈ListContained-action-attributes 〉 ]

| 〈Actionval 〉 ( 〈ListContained-action-attributes 〉 )

| 〈Actionval 〉 < 〈Actionval 〉

| 〈Actionval 〉 > 〈Actionval 〉

〈Actionval 〉 ::= 〈Ident 〉

| 〈UIdent 〉

〈ListContained-action-attributes 〉 ::= 〈Contained-action-attributes 〉

| 〈Contained-action-attributes 〉 ,

〈ListContained-action-attributes 〉

〈Contained-action-attributes 〉 ::= 〈Ident 〉

| 〈UIdent 〉

〈CredentialC 〉 ::= CredentialConnexions :− 〈ListCredential-attribute 〉 ;

〈ListCredential-attribute 〉 ::= 〈Credential-attribute 〉

| 〈Credential-attribute 〉 , 〈ListCredential-attribute 〉

〈Credential-attribute 〉 ::= 〈Credval 〉 [ 〈ListContained-Credential-attributes 〉 ]

| 〈Credval 〉 ( 〈ListContained-Credential-attributes 〉 )

| 〈Credval 〉 < 〈Credval 〉

| 〈Credval 〉 > 〈Credval 〉

〈Credval 〉 ::= 〈Ident 〉

| 〈UIdent 〉
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〈ListContained-Credential-attributes 〉 ::= 〈Contained-Credential-attributes 〉

| 〈Contained-Credential-attributes 〉 ,

〈ListContained-Credential-attributes 〉

〈Contained-Credential-attributes 〉 ::= 〈Ident 〉

| 〈UIdent 〉

〈ServiceC 〉 ::= ServiceConnexions :− 〈ListService-attribute 〉 ;

〈ListService-attribute 〉 ::= 〈Service-attribute 〉

| 〈Service-attribute 〉 , 〈ListService-attribute 〉

〈Service-attribute 〉 ::= 〈Serviceval 〉 [ 〈ListContained-Service-attributes 〉 ]

| 〈Serviceval 〉 ( 〈ListContained-Service-attributes 〉 )

| 〈Serviceval 〉 < 〈Serviceval 〉

| 〈Serviceval 〉 > 〈Serviceval 〉

〈Serviceval 〉 ::= 〈Ident 〉

〈ListContained-Service-attributes 〉 ::= 〈Contained-Service-attributes 〉

| 〈Contained-Service-attributes 〉 ,

〈ListContained-Service-attributes 〉

〈Contained-Service-attributes 〉 ::= 〈Ident 〉
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Appendix B

Syntax of H-alert specification

section

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.

Those reserved words that consist of non-letter characters are called symbols,

and they are treated in a different way from those that are similar to identi-

fiers. The lexer follows rules familiar from languages like Haskell, C, and Java,

including longest match and spacing conventions.

The reserved words used in this specification are the following:
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SECTION

DestAddress EAdd Host

IPAdd SourceAddress Typedef name

action alertId auto

backward capability char

const credential direct

direction double enum

extern false float

forward halert hset

indirect int long

mode optional procapability

property register reqcapability

service short signed

sizeof static struct

true typedef union

unsigned void volatile

The symbols used in ACML are the following:
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{ } #include

< > ;

= , :

( ) [

] * ...

? || &&

| ^ &

== != <=

>= << >>

+ − /

% ++ −−

. −> ~

! *= /=

%= += −=

<<= >>= &=

^= |=

Comments

Single-line comments begin with //.

Multiple-line comments are enclosed with /* and */.
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SECTION

The syntactic structure of H-alert specification

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),

| (union) and ε (empty rule) belong to the BNF notation. All other symbols

are terminals.

〈Program 〉 ::= 〈Include-lib 〉 〈HAlertSet 〉

〈HAlertSet 〉 ::= hset 〈Ident 〉 { 〈Global-parameters 〉 〈ListHAler 〉 }

〈ListInclude-lib 〉 ::= 〈Include-lib 〉

| 〈Include-lib 〉 〈ListInclude-lib 〉

〈Include-lib 〉 ::= #include < 〈Ident 〉 >

〈Global-parameters 〉 ::= 〈ListDec 〉

〈ListHAler 〉 ::= 〈HAler 〉

| 〈HAler 〉 〈ListHAler 〉

〈HAler 〉 ::= halert 〈HAlert-Parameter 〉 { alertId 〈Ident 〉 ;

〈Require-capability 〉 〈Provide-capability 〉 〈ListExtra-parameter 〉 }

〈HAlert-Parameter 〉 ::= 〈Direct-declarator 〉

〈Require-capability 〉 ::= reqcapability { 〈ListCap 〉 }
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〈Provide-capability 〉 ::= procapability { 〈ListCap 〉 }

〈ListCap 〉 ::= 〈Cap 〉

| 〈Cap 〉 〈ListCap 〉

〈Cap 〉 ::= capability 〈Ident 〉 { 〈SrcAddress 〉 〈DstAddress 〉 〈Action 〉

〈Credential 〉 〈Service 〉 〈Property 〉 〈Mode 〉 〈Optional 〉 }

〈SrcAddress 〉 ::= SourceAddress 〈NetAddress 〉

〈DstAddress 〉 ::= DestAddress 〈NetAddress 〉

〈NetAddress 〉 ::= 〈AddressType-specifier 〉 〈Init-declarator 〉 ;

〈AddressType-specifier 〉 ::= IPAdd

| EAdd

| Host

〈Credential 〉 ::= credential 〈Ident 〉 ;

| credential 〈Ident 〉 = 〈Cred-Direct-declarator 〉 ;

〈Action 〉 ::= action 〈Ident 〉 ;

〈Service 〉 ::= service 〈Ident 〉 ;

| service 〈Ident 〉 = 〈Initializer 〉 ;

〈Property 〉 ::= property 〈Ident 〉 ;

| property 〈Ident 〉 = 〈Initializer 〉 ;
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SECTION

〈Mode 〉 ::= mode 〈Modeval 〉 ;

〈Modeval 〉 ::= direct

| indirect

〈Optional 〉 ::= optional 〈Boolean 〉 ;

〈Boolean 〉 ::= true

| false

〈Extra-parameter 〉 ::= 〈Direction 〉

〈ListExtra-parameter 〉 ::= 〈Extra-parameter 〉

| 〈Extra-parameter 〉 〈ListExtra-parameter 〉

〈Direction 〉 ::= direction 〈TDirection 〉 ;

〈TDirection 〉 ::= forward

| backward

〈Dec 〉 ::= 〈ListDeclaration-specifier 〉 ;

| 〈ListDeclaration-specifier 〉 〈ListInit-declarator 〉 ;

〈ListDec 〉 ::= 〈Dec 〉

| 〈Dec 〉 〈ListDec 〉

〈ListDeclaration-specifier 〉 ::= 〈Declaration-specifier 〉

| 〈Declaration-specifier 〉 〈ListDeclaration-specifier 〉
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〈Declaration-specifier 〉 ::= 〈Type-specifier 〉

| 〈Storage-class-specifier 〉

| 〈Type-qualifier 〉

〈ListInit-declarator 〉 ::= 〈Init-declarator 〉

| 〈Init-declarator 〉 , 〈ListInit-declarator 〉

〈Init-declarator 〉 ::= 〈Declarator 〉

| 〈Declarator 〉 = 〈Initializer 〉

〈Type-specifier 〉 ::= void

| char

| short

| int

| long

| float

| double

| signed

| unsigned

| 〈Struct-or-union-spec 〉

| 〈Enum-specifier 〉

| Typedef name

〈Storage-class-specifier 〉 ::= typedef

| extern

| static

| auto

| register
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SECTION

〈Type-qualifier 〉 ::= const

| volatile

〈Struct-or-union-spec 〉 ::= 〈Struct-or-union 〉 〈Ident 〉 { 〈ListStruct-dec 〉 }

| 〈Struct-or-union 〉 { 〈ListStruct-dec 〉 }

| 〈Struct-or-union 〉 〈Ident 〉

〈Struct-or-union 〉 ::= struct

| union

〈ListStruct-dec 〉 ::= 〈Struct-dec 〉

| 〈Struct-dec 〉 〈ListStruct-dec 〉

〈Struct-dec 〉 ::= 〈ListSpec-qual 〉 〈ListStruct-declarator 〉 ;

〈ListSpec-qual 〉 ::= 〈Spec-qual 〉

| 〈Spec-qual 〉 〈ListSpec-qual 〉

〈Spec-qual 〉 ::= 〈Type-specifier 〉

| 〈Type-qualifier 〉

〈ListStruct-declarator 〉 ::= 〈Struct-declarator 〉

| 〈Struct-declarator 〉 , 〈ListStruct-declarator 〉

〈Struct-declarator 〉 ::= 〈Declarator 〉

| : 〈Constant-expression 〉

| 〈Declarator 〉 : 〈Constant-expression 〉

〈Enum-specifier 〉 ::= enum { 〈ListEnumerator 〉 }

| enum 〈Ident 〉 { 〈ListEnumerator 〉 }

| enum 〈Ident 〉
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〈ListEnumerator 〉 ::= 〈Enumerator 〉

| 〈Enumerator 〉 , 〈ListEnumerator 〉

〈Enumerator 〉 ::= 〈Ident 〉

| 〈Ident 〉 = 〈Constant-expression 〉

〈Declarator 〉 ::= 〈Pointer 〉 〈Direct-declarator 〉

| 〈Direct-declarator 〉

〈Cred-Direct-declarator 〉 ::= 〈Initializer 〉

| 〈Direct-declarator 〉 ( 〈Initializer 〉 )

〈Direct-declarator 〉 ::= 〈Ident 〉

| ( 〈Declarator 〉 )

| 〈Direct-declarator 〉 [ 〈Constant-expression 〉 ]

| 〈Direct-declarator 〉 [ ]

| 〈Direct-declarator 〉 ( 〈Parameter-type 〉 )

〈Pointer 〉 ::= *

| * 〈ListType-qualifier 〉

| * 〈Pointer 〉

| * 〈ListType-qualifier 〉 〈Pointer 〉

〈ListType-qualifier 〉 ::= 〈Type-qualifier 〉

| 〈Type-qualifier 〉 〈ListType-qualifier 〉

〈Parameter-type 〉 ::= 〈Parameter-declarations 〉

| 〈Parameter-declarations 〉 , ...

〈Parameter-declarations 〉 ::= 〈Parameter-declaration 〉

| 〈Parameter-declarations 〉 , 〈Parameter-declaration 〉
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SECTION

〈Parameter-declaration 〉 ::= 〈ListDeclaration-specifier 〉

| 〈ListDeclaration-specifier 〉 〈Declarator 〉

| 〈ListDeclaration-specifier 〉 〈Abstract-declarator 〉

〈ListIdent 〉 ::= 〈Ident 〉

| 〈Ident 〉 , 〈ListIdent 〉

〈Initializer 〉 ::= 〈Exp2 〉

| { 〈Initializers 〉 }

| { 〈Initializers 〉 , }

〈Initializers 〉 ::= 〈Initializer 〉

| 〈Initializers 〉 , 〈Initializer 〉

〈Type-name 〉 ::= 〈ListSpec-qual 〉

| 〈ListSpec-qual 〉 〈Abstract-declarator 〉

〈Abstract-declarator 〉 ::= 〈Pointer 〉

| 〈Dir-abs-dec 〉

| 〈Pointer 〉 〈Dir-abs-dec 〉

〈Dir-abs-dec 〉 ::= ( 〈Abstract-declarator 〉 )

| [ ]

| [ 〈Constant-expression 〉 ]

| 〈Dir-abs-dec 〉 [ ]

| 〈Dir-abs-dec 〉 [ 〈Constant-expression 〉 ]

〈Exp 〉 ::= 〈Exp 〉 , 〈Exp2 〉

| 〈Exp2 〉
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〈Exp2 〉 ::= 〈Exp15 〉 〈Assignment-op 〉 〈Exp2 〉

| 〈Exp3 〉

〈Exp3 〉 ::= 〈Exp4 〉 ? 〈Exp 〉 : 〈Exp3 〉

| 〈Exp4 〉

〈Exp4 〉 ::= 〈Exp4 〉 || 〈Exp5 〉

| 〈Exp5 〉

〈Exp5 〉 ::= 〈Exp5 〉 && 〈Exp6 〉

| 〈Exp6 〉

〈Exp6 〉 ::= 〈Exp6 〉 | 〈Exp7 〉

| 〈Exp7 〉

〈Exp7 〉 ::= 〈Exp7 〉 ^ 〈Exp8 〉

| 〈Exp8 〉

〈Exp8 〉 ::= 〈Exp8 〉 & 〈Exp9 〉

| 〈Exp9 〉

〈Exp9 〉 ::= 〈Exp9 〉 == 〈Exp10 〉

| 〈Exp9 〉 != 〈Exp10 〉

| 〈Exp10 〉

〈Exp10 〉 ::= 〈Exp10 〉 < 〈Exp11 〉

| 〈Exp10 〉 > 〈Exp11 〉

| 〈Exp10 〉 <= 〈Exp11 〉

| 〈Exp10 〉 >= 〈Exp11 〉

| 〈Exp11 〉
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SECTION

〈Exp11 〉 ::= 〈Exp11 〉 << 〈Exp12 〉

| 〈Exp11 〉 >> 〈Exp12 〉

| 〈Exp12 〉

〈Exp12 〉 ::= 〈Exp12 〉 + 〈Exp13 〉

| 〈Exp12 〉 − 〈Exp13 〉

| 〈Exp13 〉

〈Exp13 〉 ::= 〈Exp13 〉 * 〈Exp14 〉

| 〈Exp13 〉 / 〈Exp14 〉

| 〈Exp13 〉 % 〈Exp14 〉

| 〈Exp14 〉

〈Exp14 〉 ::= ( 〈Type-name 〉 ) 〈Exp14 〉

| 〈Exp15 〉

〈Exp15 〉 ::= ++ 〈Exp15 〉

| −− 〈Exp15 〉

| 〈Unary-operator 〉 〈Exp14 〉

| sizeof 〈Exp15 〉

| sizeof ( 〈Type-name 〉 )

| 〈Exp16 〉
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〈Exp16 〉 ::= 〈Exp16 〉 [ 〈Exp 〉 ]

| 〈Exp16 〉 ( )

| 〈Exp16 〉 ( 〈ListExp2 〉 )

| 〈Exp16 〉 . 〈Ident 〉

| 〈Exp16 〉 −> 〈Ident 〉

| 〈Exp16 〉 ++

| 〈Exp16 〉 −−

| 〈Exp17 〉

〈Exp17 〉 ::= 〈Ident 〉

| 〈Constant 〉

| 〈String 〉

| ( 〈Exp 〉 )
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SECTION

〈Constant 〉 ::= 〈Double 〉

| 〈Char 〉

| 〈Unsigned 〉

| 〈Long 〉

| 〈UnsignedLong 〉

| 〈Hexadecimal 〉

| 〈HexUnsigned 〉

| 〈HexLong 〉

| 〈HexUnsLong 〉

| 〈Octal 〉

| 〈OctalUnsigned 〉

| 〈OctalLong 〉

| 〈OctalUnsLong 〉

| 〈CDouble 〉

| 〈CFloat 〉

| 〈CLongDouble 〉

| 〈Integer 〉

| 〈Time 〉

| 〈IPAddress 〉

| 〈EAddress 〉

〈Constant-expression 〉 ::= 〈Exp3 〉
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〈Unary-operator 〉 ::= &

| *

| +

| −

| ~

| !

〈ListExp2 〉 ::= 〈Exp2 〉

| 〈Exp2 〉 , 〈ListExp2 〉

〈Assignment-op 〉 ::= =

| *=

| /=

| %=

| +=

| −=

| <<=

| >>=

| &=

| ^=

| |=
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