
Algebra for capability based attack correlation

Navneet Kumar Pandey, S. K. Gupta, and Shaveta Leekha

Indian Institute of Technology Delhi,
Delhi, India

{npandey, skg, mcs052943}@cse.iitd.ernet.in

Abstract. Most of the existing intrusion detection systems (IDS) often
generate large numbers of alerts which contain numerous false positives
and non relevant positives. Alert correlation techniques aim to aggregate
and combine the outputs of single/multiple IDS to provide a concise
and broad view of the security state of network. Capability based alert
correlator uses notion of capability to correlate IDS alerts where capa-
bility is the abstract view of attack extracted from IDS alerts/alert. To
make correlation process semantically correct and systematic, there is
a strong need to identify the algebraic and set properties of capability.
In this work, we identify the potential algebraic properties of capability
in terms of operations, relations and inferences. These properties give
better insight to understand the logical association between capabilities
which will be helpful in making the system modular. This paper also
presents variant of correlation algorithm by using these algebraic prop-
erties. To make these operations more realistic, existing capability model
has been empowered by adding time-based notion which helps to avoid
temporal ambiguity between capability instances. The comparison be-
tween basic model and proposed model is exhibited by demonstrating
cases in which false positives have been removed that occurred due to
temporal ambiguity.

Keywords: - intrusion detection, capability model, attack scenario.

1 Introduction

Since long information system and network security experts have made consid-
erable efforts to protect secure systems from exponentially increasing threats,
despite this the hackers tools now includes technology that conventional se-
curity tools and services cannot sustain. Even critical systems and networks
equipped with highly sophisticated security techniques are vulnerable to blended
and multi-stage attacks which use stealth and intelligence to strategically com-
promise a target, escaping detection and penetrating the defences [1].

The surveillance and security monitoring of the network infrastructure is
mostly performed using Intrusion Detection Systems (IDSs). Event streams are
used by IDS in two different ways, according to two different paradigms: anomaly
detection and misuse detection. In anomaly detection systems ([2], [3], [4], [5]

, [6], [7]), historical data about a systems activity and/or specifications of the
intended behavior of users and applications are used to build a profile of the
normal operation of the monitored system. The intrusion detection system then
tries to identify patterns of activity that deviate from the defined profile. Mis-
use detection systems take a complementary approach ([8], [9], [10], [11], [12]).
Misuse detection tools are equipped with a number of attacks descriptions (or
signatures) that are matched against the stream of audit data and look for the
evidence modeled attack. Misuse and anomaly detection systems have their own
advantages and disadvantages [12].

Moreover, intrusion detection, audit and logging systems often provide sen-
sory feedback data that cannot be effectively analyzed as they flag thousands of
alerts which may overwhelm the analysts. Most of them are false positive and
non relevant positives. Non relevant positives are alerts that correctly identify
an attack, but the attack fails to meet its objective. Several alert correlation
techniques have been proposed including approaches based on similarity be-
tween alert attributes, using pre-defined attack scenarios, pre/post-conditions
of attacks, using multiple networks and auditing tools. Each technique has its
own advantages and disadvantages, therefore none of the technique dominate
the other [13]. For example similarity based approaches lack on finding attack
step sequence, pre-defined attack scenario only work well for known scenarios,
pre-post condition based approaches can detect new scenario but defining these
conditions is itself error-prone and enumeration of these conditions is non triv-
ial task whereas multiple information source based approaches suffer from sheer
volume of data to process.

The require/provide model [14] used for alert correlation states that in a
multistage intrusion comprising of a sequence of attacks, the early attacks acquire
certain advantages, like information about the system under attack and the
ability to perform actions on that system and use these advantages to support
the later attacks that require them. Capability model [15] captures this notion
of attacker capability and use it for logical alert correlation.

In this work we give algebraic property of capabilities. These properties give
better understanding of capability characteristics. These characteristics help in
designing the correlation process in a systematic and modular fashion. We group
the identified algebraic properties into three classes i.e. operations, relations and
inferences. Operations include join, split etc. which represent basic manipulation
using one or more capability instance. Relations include overlapped, mutual ex-
clusive, independent relations between capability instances. These relations help
in identifying the preconditions to allow specific operations. As the whole system
is based on require/provide model therefore to determine whether a capability
satisfies a required capability, inferences are used. Inferences include compara-
ble, resulting etc., which enumerate the possible inferences from different real
life views. The paper also gives three derived version of the correlation process
from basic correlation process using these algebraic properties. We have also
enriched the basic capability model by adding time parameter in the definition
of capability. This helps to remove temporal ambiguity between capability in-

stances. The comparison between basic model and proposed model is exhibited
by demonstrating cases.

In this work, we consider attack from single source to a single destination.
However this can be easily generalized for distributed kind of attacks where
multiple sources/multiple destinations are involved.

The remainder of this paper is structured as follows: Section 2 presents related
work on alert correlation and capability model. Section 3 presents the proposed
modified capability model. Section 4 presents the capability algebra. Section 5
provides a detail of the correlation algorithm and also shows the case study in
which results have been improved. In the section 6, alternate way of correlation
algorithm has been discussed with their benefits and pitfalls. Finally, Section 7
draws conclusions and outlines future work.

2 Related Work

In order to minimize false positives, the alert correlation techniques have been
widely studied. Pouget et. al. [16] has classified these techniques into eight
classes.(i) Rule based (ii) Scenario-based (iii) Uncertainty reasoning (iv)Time
reasoning (v) State transition graphs (vi) Neural networks (vii) Bayesian belief
networks (viii) Context reasoning. ([17] [18] [19] [20] [21] [22] [23] [24] [25])

To define logical relation between different attacks, Templeton and Levitt
[14] proposed the require/provide model based on the system states. The pro-
posed JIGSAW language for correlation uses simple predicates to define system
state. However, they do not provide a systematic approach to develop predi-
cates. Another similar approach given in Ning et. al. [26] also defines predicate
for alert correlation. However definition of predicates used is ambiguous and also
the paper does not give consistent way to develop it.

Our work is motivated by Jingmin et. al. [15] which uses capability model for
attack correlation. This capability model uses capability as basic building block
and used it for developing several algorithms in correlation based on alert ab-
straction and inference rules. Their work also shows that the approach is capable
of handling missing attacks and is promising at alert fusion and correlation. How-
ever the paper does not discuss the algebraic operations and relation between
capabilities.

In our work, we give a new definition of capability which is closer to the
semantics of real life attacker capability and also avoid temporal ambiguity be-
tween definitions of capabilities. We also give several algebraic operations. The
work also identified relations that exist between capabilities and derived infer-
ence rules to define logical association between two capabilities. These relations
are helpful in understanding the capabilities properly and for defining the se-
mantics of algebraic operations which in turn are used in correlation algorithm.

Li et. al [27] and Wijeskera et. al. [28] defined algebra for access control
policies [29] which is related to capability. However the definition of capability is
generalized as compared to access control and is not limited to a specific service
e.g it applies for database, network, OS etc.

3 Capability Model

In the capability model, capability represents facilities and accesses that an at-
tacker gains by making a connection. Capability describes the ability of an at-
tacker during intrusion. An attacker can have many capabilities at a particular
instance that may or may not belong to the same intrusion.

3.1 Capability Model

Let D be a set of network addresses, C be a set of credentials, A be a set of
actions, SP be a set of pair of services and their property and [t1, t2] is a time
interval where t1 and t1 are constant time and t2 > t1.

Definition 1 (Capability). Capability is a six-tuple capability = (source, des-
tination, credential, action, (service, property), interval)
where source ∈ D, destination ∈ D, credential ∈ C, action ∈ A, service ∈ S,
property ∈ P , interval ∈ [t1, t2] in which capability is valid. It may be noted
that we have added the attribute interval to the definition of capability given by
Jingmin et. al. [15].

Example 1. The capability (pushpa, dblab, user1, read,(’/etc/passwd’, content),
From : 〈1997 − 07 − 16T19 : 20 : 30 + 01 : 00〉) means there is capability from
host pushpa (source) to host dblab (destination) with credential user1 for read
action of content of the file ”/etc/passwd” in interval [1997− 07− 16T19 : 20 :
30 + 01 : 00,∞].

3.2 Attributes

In the modified capability model the definition of Source, Destination, Action
and Credential are same as those given by [15]. As service and property attributes
are tightly coupled, therefore they have been merged into a single attribute of
two tuples. This modification helps us in defining operation more clearly. Interval
is a new attribute added in the definition of capability. Table 1 shows description
of each attribute along with examples.

3.3 Direct and Indirect capability

After connection has been established from source (attacker host) to destination
(victim host) by attacker, he/she may gain some privilege or knowledge. This
type of capability will be called as direct capability. Implication of direct capa-
bility will be called indirect capability. For example if attacker succeed to make
connection for reading a file in which mail and credit card passwords have been
stored then direct capability is being able to read that file and indirect capability
is being able to use mails and credit cards.

Table 1. Attributes of Capability

Attribute Description Example

Source source address IP:10.20.3.2, Ethernet:006097981E6B etc..

Destination destination address IP:10.20.3.2, Ethernet:006097981E6B etc..

Action Actions that can be
performed by an attacker read, write, communicate etc.

Credential Credential using which
action can be done root, system, user etc.

Service Service used by connection IIS 3.0, \etc\passwd etc.

Property Property of service version, content etc.

Interval Capability Time interval From:tstamp, Between:tstamp+tt,
during at:tstamp etc.. Where tstamp

time-stamp and tt is length

3.4 Significance of time parameter

Time parameter which is denoted by the interval is a crucial parameter in re-
ducing the false belief that each capability will last forever during correlation.
Some capabilities especially indirect capabilities that depend on service running
in target host and may only be valid under certain conditions. It is not necessary
that these conditions will always be present in the network or system for example
in case where service is scheduled to run for a specific duration. Therefore, it is
clear that these conditions are bound to the validity of a session for capability
and cannot be assumed that once gained by attacker they will always be with
him. Ambiguity due to the assumption that capability once gained will always
exist is called temporal ambiguity.

Time interval is represented by predicate between : [t1, t2] which shows that
capability will exist from timestamp t1 to timestamp t2. It is also true that
some capabilities (e.g. of knowledge type) once gained will always exist with
the attacker. To denote it from predicate is used i.e. From : t1. For example
if attacker gained that target machine running on Solaris OS at time t1 then
interval of this capability is From : t1.

There are various sources of information that may help in specifying the
closed time interval of the capability e.g. host integrity checker, HIDS etc...
From these sources it can be identified that capability gained earlier is no longer
valid. Other sources may be administrator knowledge especially when some ser-
vice is allowed for a limited period. For example there is one connection having
capability to execute a program in host at time t1 and later at time t2(where
t2 > t1) service has been blocked . In this case former established connection
will not have same capability as in earlier.

Timestamp can be taken in different format. In this model following format
of timestamp has been used:-

YYYY-MM-DDThh:mm:ss.sTZD

For example 2007-07-16T19:20:30.45+01:00

where YYYY = four-digit year, MM = two-digit month (01=January, etc.),
DD = two-digit day of month (01 through 31), hh = two digits of hour (00
through 23) (am/pm NOT allowed), mm = two digits of minute (00 through 59),
ss = two digits of second (00 through 59), s = one or more digits representing
a decimal fraction of a second, TZD = time zone designator (Z or +hh:mm or
-hh:mm).

3.5 Correlation process

The correlation process is based on the require/provide model in which capa-
bilities gained from the previous attacks are used to satisfy the prerequisite of
subsequent attacks. The model has following components.

H-alert An H-alert is a three tuple (require, provide, raw) and represents trans-
formed object of alert in terms of capability, where

Require: - It is a set of capabilities that are required for alert to be a true
attack.

Provide: - It is a set of gained capabilities after an alert has been generated.
Most IDS generate two kinds of alerts for each attack step, one for incoming
traffic in victim host and the other for outgoing traffic from victim host. Alerts
that have been generated for incoming traffic may be either successful or failure.
This information is available in outgoing traffic. Attacker may even gain capa-
bility in failed attack therefore provide set contain those capabilities which have
been gained by either successful attack or failure attack whichever is applied.

Raw: - Raw contains other information available in alert message such as
time of alert generated, traffic direction etc.

M-Attack An M attack is a three tuple (haset, capset, tmpstmp) which is a
collection of correlated alerts where haset is a set of alerts (h−alerts), capset is
a set of capabilities provided by h-alerts in haset and tmpstmp is the timestamp
of last correlated alert which can be considered as timestamp of M.

Capabilities are tagged to be considered as mandatory and optional (can be
ignored while correlation in some conditions) in the capset.

In other words, M-attack represents the set of correlated alerts and cor-
relation process correlate the newly generated alert (H-alert) with these M-
attack/M-attacks. Overall correlation algorithm has been explained in section
5.1.

4 Capability Algebra

To modularize the whole correlation process, it is necessary to analyze the prop-
erties and characteristics of the capability model. By identifying the algebraic
properties of capabilities, capability extraction from IDS signatures can be made

automatic. It gives better insight and puts clarity and separation between def-
initions of capabilities. This also helps to determine the level of granularity in
defining the capability. Capability algebra can be divided into three groups i.e.
operations, relations and inferences. These are described in the following section.

For comparing two capabilities, it is required to determine the relations be-
tween two capabilities, their inferences and relevant operations. It may be noted
that attributes of capabilities form a hierarchy. We identify following operations,
relations and inferences base on this hierarchy.

4.1 Operations

Operations represent manipulations in the capabilities required in the correlation
process. There are three kinds of operations identified for the correlation process.

Join Join operation merges two capabilities in presence of a join condition
(see Algorithm 1). Two capabilities can be joined if both capabilities belong
to the same source and destination. Also other attributes should be same ex-
cept an attribute based on which join operation will be performed. For example
capability C1 (srcS, dstD, daemon, block, (ftp process, port 80), from:2008-07-
16T19:20:30.45+01:00) is join capability of C2 (srcS, dstD, daemon, block, (ftp
process, port 80), between:[2008-07-16T20:10:30.00+01:00, 2008-07-16T21:00:00
.00+01:00]) and C3 (srcS, dstD, daemon, block, (ftp process, port 80), from:2008-
07-16T19:20:30.45+01:00).

Algorithm 1 Joining two capabilities
Require: Two capabilities C1 and C2

Ensure: Resultant capability C3 if C1 and C2 can be joined else NULL.
Let S = (cred, action, (service, property))
procedure Join(C1,C2)

if C1.src = C2.src and C1.dst = C2.dst then
if ∀Ai ∈ S s.t. C1.Ai = C2.Ai then return C1

else if ∃ an attribute Ak ∈ S s.t. C1.Ak 6= C2.Ak and ∀Ai ∈ S −Ak,
C1.Ai = C2.Ai then return C3 with C3.Ak = C1.Ak ∪ C2.Ak

else if C1.interval and C2.interval overlaps and other attributes are same
then return C3 with C3.interval = C1.interval ∪ C2.interval

end if
end if
return NULL

end procedure

Join operation reduces the redundancy which in turn minimizes the number
of comparisons (while finding inferences) between h-alert require set and M-
attacks Capset (see section 5) during correlation process.

Split Split breaks a capability into two capabilities based on the given attribute
and its value. For example (srcS, dstD, userU, modify, (file, content), from:t1) can
be split in (srcS, dstD, userU, append, (file, content), from:t1) and (srcS, dstD,
userU, delete, (file, content), from:t1). It may be noted that split is semantically
inverse of join operation. Split can be performed on the attributes (a) Action
(b) Credential (c) Property (d) Time, if their value is composite1. After split
resultant capabilities would have same values of src(source), dst (destination)
and service, however no split will be done on the basis of these attributes.

Algorithm 2 Split a capability into two capabilities for given attribute
Require: Capability C, Attribute A and value of attribute v
Ensure: Resultant capability C1 and C2 if C can be split else C

procedure Split(C,A,v)
if C.A is not composite1 then return C
else C1.A = v, C2.A = reduce(C, A, v), ∀Ai ∈ S −A set C1.Ai = C2.Ai = C.Ai

where S=(src, dst, cred, action, (service, property), interval)
return C1 and C2

end if
end procedure

Split is a special case of Reduce (defined in section 4.1) where one capability
C when split in two capabilities C1 and C2 then by joining C1 and C2 we can
form C again which may not be the case in Reduce. In other words, split is
lossless reduction (see Algorithm 2).

Algorithm 3 Reducing a capability
Require: Capability C, Attribute A (must be composite) and v is value of A
Ensure: Reduced capability Cd

Let S = (src, dst, cred, action, (service, property), interval)
procedure Reduce(C,A,v)

Create a new capability Cd with Cd.A = Cd.A− v,
∀Ai ∈ S −A set Cd.Ai = C.Ai, return Cd

end procedure

Reduce The Reduce operation weakens a capability by reducing strength of
any of its attribute. For example capability (srcS, dstD, root, modify, (program,
code), from:t1) can be reduced to (srcS, dstD, userU, modify, (file, content),
from:t1). Difference between split (Algorithm 2) and reduce (Algorithm 3) is

1 Attribute A is composite if it contains multiple values or a value that can be divided
into distinct components for eg. RW action can be split into R and W actions.

that split operation always gives two capabilities whereas in the case of reduce
it is not mandatory that reduced part will be a capability.

Subtract The Subtract operation takes two capabilities C1 and C2 and returns
C3 which is deduction of capability C2 from C1. For example (srcS, dstD, userU,
send, (IIS, Ftp), from:t1) is result of subtraction of (srcS, dstD, userU, receive,
(IIS, Ftp), from:t1) from (srcS, dstD, userU, communicate, (IIS, Ftp), from:t1).

Algorithm 4 Capability Subtraction
Require: Capabilities C1 and C2

Ensure: Resultant capability Cs

procedure Subtract(C1,C2)
if C1.src=C2.src and C1.dst=C2.dst then

if ∃ an attribute A ∈ S s.t. C1.A 6= C2.A and ∀B ∈ S −A, C1.B = C2.B
where S=(action, (service, property), interval) then
Cs= Reduce(C1,A,C2.A)

else Cs = C1.
end if return Cs

end if
end procedure

Subtract is similar to reduce in which minuend Capability is reduced by
subtrahend capability. For the substraction it is necessary that both capabilities
have same source and destination and only one attribute is different among the
rest (see Algorithm 4).

4.2 Relations

A relation represents a logical association between two or more capabilities.
Following three types of relations are identified for the correlation process.

Overlap Two capabilities overlap if there exists a common capability between
them (see Algorithm 5). For example capabilities (SLab, Dlab, RW, (/home/user1,
content), user1, from:t1) and (SLab, Dlab, WX, (/home/user1, content), user1,
from:t1) overlap because the capability (SLab, Dlab, W, (/home/user1, content),
user1, from:t1) is common in both. If any of the following attributes are com-
mon in two capabilities, then there is overlapping: (a) Interval (b) Credential (c)
Action and property of service.

Independent Two capabilities are independent if they cannot be joined (see
Algorithm 6).In other words, two capabilities are called independent if either
both have different source/destination or have different values of more than one
attributes among the rest of attributes. For example capabilities (SLab, Dlab,

Algorithm 5 Test two capabilities whether they are overlap
Require: Two capabilities C1 and C2

Ensure: true or false
Let S = (src, dst, cred, action, (service, property), interval)
procedure Overlap(C1,C2)

if (C1.interval and C2.interval overlaps) and ∀Ai ∈ S − {interval}
s.t. C1.Ai = C2.Ai then return true

else if ∃ a credential credk s.t. credk ∈ C1.cred∩C2.cred and ∀Ai ∈ S−{cred}
s.t. C1.Ai = C2.Ai then return true

else if ∃ an action actk s.t. actk ∈ C1.action∩C2.action and ∀Ai ∈ S−{action}
s.t. C1.Ai = C2.Ai then return true

else if ∃ a property p s.t. p ∈ C1.property∩C2.property of the same service and
∀Ai ∈ S − {(serivce, property)} s.t. C1.Ai = C2.Ai then return true

else return false
end if

end procedure

W, /home/user1, content, user1, from:t1) and (SLab, Dlab, X, httpd, (Apache
3.2, apacU), from:t1) independent.

Algorithm 6 Test two capabilities whether they are Independent
Require: Two capabilities C1 and C2

Ensure: true or false
procedure Independent(C1,C2)

if join(C1,C2) is NULL then return true
else return false
end if

end procedure

Mutual Exclusive Two capabilities are mutually exclusive if their correspond-
ing attribute’s value cannot coexist (see Algorithm 7). Mutually exclusive capa-
bilities are less likely to belong to the same attack. This information helps in re-
ducing false correlation. For example capabilities (SLab, Dlab, R,(/etc/passwd,
content), user1, from:t1) and (SLab, Dlab, X, IIS, Ver4.0, user1, from:t1) are
mutually exclusive.

The conflict set used in algorithm 7 is a knowledge base having pair of at-
tributes that cannot coexist e.g. service of windows and Linux cannot exist
simultaneously in the same IP.

4.3 Inferences

Inference means causal relationship involved in process of deriving result or
making a logical judgment on the basis of known evidence. Inferences identified

Algorithm 7 Test two capabilities whether they are Mutual Exclusive
Require: Two capabilities C1 and C2

Ensure: true or false
procedure Mutual-Exclusive(C1,C2)

if ∃ an attribute A s.t. conflict(C1.A,C2.A) is true then return true
else return false
end if

end procedure

here are used in comparing capabilities of require set of h-alert with capabilities
in M-attack’s capability set based on require/provide model during correlation
process. Almost all inferences given in this section are same as given in [15].

Comparable Inference Comparable inference denotes semantic comparabil-
ity of two capabilities. Two capabilities can be compared only if they hold same
type of service and property while other attributes must be same. This inference
will be used to correlate two capabilities to construct attack scenario. Capabil-
ities can be correlated only if required capability can be satisfied with some of
the capability of M-attack set by comparable inference (see Algorithm 8).

Algorithm 8 Test whether C1 and C2 can be compare directly
Require: Two capabilities C1 and C2

Ensure: true or false
procedure Comparable(C1,C2)

if ∀ Ai ∈ { src, dst, cred, action }, C1.Ai = C2.Ai, with overlapped time interval
and both have same type of service and property then return true

else return false
end if

end procedure

Service and property belong to the same type when services belong to same
category as given in [15]

Resulting Inference In many cases logical relations between capabilities can-
not be represented by comparable inference due to strict conditions. One ca-
pability is the resulting inference of other if it gives the other capability on its
execution. These inferences are nothing but a single step of whole correlation
process and are used in making attack scenario through multi step correlations
(see Algorithm 9).

Administrator knowledge, topology of network are some of the major infor-
mation sources to identify the capabilities which can be logically derived by
exercising a capability.

Algorithm 9 Test whether C2 is resulting inferable from C1

Require: Two capabilities C1 and C2

Ensure: true or false
procedure Resulting Inferable(C1,C2)

if exercise of C1 logically derive C2 then return true
else return false
end if

end procedure

Other Inferences Several other inferences are also possible along with the
given inferences. For example compromise inference and external inference as
given by Jingmin et. al. [15].Through compromise inference one capability can
be inferred from other capability for compromising the destination machine (ex-
ecuting arbitrary program).Capability C1 can be externally inferred from ca-
pability C2 if C2 is the capability to execute arbitrary program on destination
machine which is the source of C1.

5 Correlating alert using modified capability model

5.1 Correlation Algorithm

Correlation algorithm correlates new h-alert (created from alert generated by
IDS) with the existing M-attacks. Initially there is a set of M-attacks M. When-
ever a new alert comes, then it is abstracted into an h-alert. Correlation algo-
rithm searches minimal and ordered subset of M-attacks from M such that all
the require capabilities of h-alert are satisfied by the capabilities of a subset
of M-attacks. Then the algorithm combines h-alert with the identified subset
of M-attacks in a single M-attack. This M-attack contains all capabilities of se-
lected M-attacks along with the h-alert’s provide capabilities. This new M-attack
replaces the subset of M-attacks. The whole correlation process is presented in
Algorithm 10. Algorithm 11 shows the search procedure of M-attacks that satisfy
the required capabilities of newly generated h-alert.

5.2 Case Study

We have extended the existing capability model by adding a new attribute i.e.
time. The modified capability improves the correlation by reducing the cases of
false correlation and by increasing correlation strength. Some of the major cases
are as follows.

Case1: We have a require capability C1 (srcX, dstX, credX, {RW},(/home/user1,
content), intvX) of a newly generated h-alert and two M-attacks M1 and M2

in M-attack set having capabilities C3 (srcX, dstX, credX, {R},(/home/user1,
content), intvX), C3(srcX, dstX, credX, {W},(/home/user1, content), intvX)
in their capset respectively. Using former approach capability C1 cannot be

Algorithm 10 Correlate a new h-alert which is an abstract form of recently
came alert with M-attacks
Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

procedure Correlation algorithm(h1,M)
Find a minimal and ordered subset Mk of set M (as given in Algorithm 11)
such that h1.requires is satisfied by capabilities in M-attacks of set Mk

if Mk 6= φ then Make new M-attack Mnew as
Mnew.capset = CM ∪ h1.provide where CM =

⋃
i Mk

i .capset and Mk
i ∈ Mk,

Mnew.haset = hM ∪ h1 where hM =
⋃

i Mk
i .haset and Mk

i ∈ Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

correlated with either of M-attacks (M1 or M2) capability because the ac-
tion attribute of C1 cannot directly be compared with that of C2 or C3.
Therefore, the former approach is unable to correlate it. But in the modified
approach when C1 and C2 will be correlated, C1 will reduce to (srcX, dstX,
credX, W,(/home/user1, content), intvX) and it is directly correlated with
C3 i.e. C1 is correlated by M1∪M2. Consequently, the enhanced model is able
to detect these kinds of true correlations that would have gone undetected
in earlier approach. These kind of cases have been handled in the modified
approach because of flexibility by defined operations.

Case2: Consider another case where the require set of an incoming h-alert is
satisfied by the capset of M-attacks M1, M2 and there exists a capability in
M1 which is mutually exclusive of other capability that belongs to M2. In
this case M1 and M2 actually have no correlation. But the former approach
could correlate these kind of capabilities. Whereas, in the proposed model
such capabilities are not correlated because they are mutually exclusive and
logically donot belong to the same attack.
For example a capability C1 (eth0:12ffdd3453, eth0:12ffee1234, credX, {RW},
(/home/user1, content), intvX) belongs to M1 and other capability C2 (srcX,
dstX, credX, {RW}, (IIS, content), intvX) belongs to M2.
Administrator knowledge, services running in the network, topology of net-
work are the major sources of domain knowledge in identifying the mutual
exclusive capabilities discussed in section 4.2.

Case3: Modified process also handles the correlation conflicts that arise due
to temporal ambiguity as explained in section 3.4. For example, suppose
attacker has a capability to read and write in a host H, then attacker can
also read and write the mail of a user whenever he opens his mail account
on that machine i.e. attacker will have the capability of reading/writing
mail from a particular user account only for the duration in which the user
is logged in. However in this case, there is no upper limit of interval for

Algorithm 11 Find a minimal and ordered subset Mk of set M

Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: M-attacks set M’
1: procedure Find min ordered subset(h1,M)
2: Order all M-attacks based on decreasing Timestamp and let capreq set is set of

capabilities in h1.require, CapMsat = φ and Mresult = φ
3: for all M-attacks Mi ∈ {M1, · · ·Mn} do find subset capsatisfied ⊆ capreq set

inferable (see section 4.3) from Mi.capset, CapMsat = CapMsat ∪ capsatisfied

4: if CapMsat = hreq set then Mresult = Mresult ∪Mi and return Mresult

5: else if capsatisfied 6= φ then
6: capreq set =capreq set-capsatisfied and Mresult = Mresult ∪Mi

7: else
8: find capsub ∈ capreq set that can be obtained from Mi.capset by subtract.
9: if capsub 6= φ then

10: capreq set = capreq set − capsub , and Mresult = Mresult ∪Mi

11: end if
12: end if
13: end for
14: return φ
15: end procedure

reading/writing other files. To avoid this ambiguity time attribute has been
added with every capability.

Apart from the cases discussed above, there are several other cases where
proposed model helps in making overall process efficient. For example Join op-
eration helps in reducing the redundancy which in turn saves the number of
comparisons while correlations. Suppose there are two capabilities C1 (srcX,
dstX, credX, {RW}, (/, content), intvX) and C2 (srcX, dstX, credX, {RW},
(/home/, content), intvX) then we can join these two into one capability as they
are forming contain-ship relation. Therefore it is clear that if two capabilities of
M-attack’s cap set are joined then further correlation needs only one compari-
son instead of two. Overlapped and independent relations help in defining join
condition accurately to test unambiguously that two capabilities can be joined
or not.

6 Discussion and other issues

In this section other possible ways of correlation process are discussed. It is
clear that join algorithm has significant impact in minimizing the number of
comparisons in correlation because it combines the capabilities in M-attacks’s
capset. However join itself is costlier operation in terms of time as described
below. Following are the alternate methods of doing correlation using various
combinations of join and split.

Algorithm 12 (Alternate Method 1) Correlate a new h-alert which is an ab-
stract form of recently came alert with M-attacks
Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

procedure Correlation algorithmII(h1,M)
Find a minimal and ordered subset Mk of set M such that h1.requires is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM ∪ h1.provide where CM =
⋃

i Mk
i .capset and Mk

i ∈ Mk,
Mnew.haset = hM ∪ h1 where hM =

⋃
i Mk

i .haset
and Mk

i ∈ Mk and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.haset = h1.provide and Mnew.haset = h1

end if
for all pair of capabilities (Ci,Cj) in Mnew.capset do Ck=join(Ci,Cj)

if Ck 6= NULL then replace Ci and Cj by Ck in Mnew.capset
end if

end for
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

6.1 Alternate Method 1

In this method after the correlation, algorithm 12 joins capabilities within each
M-attack i.e. within each M-attack if two or more capabilities can be joined then
they are joined to minimize the number of capabilities in capset and removes the
redundancy if it is there. The minimal set search algorithm is same as algorithm
11.

It may be noted that the method minimizes the number of comparisons
while searching for the minimal set of M-attacks because of lesser number of
capabilities in each M-attack’s capset.

However join operation is a costlier operation. For example in a M-attack’s
capset if there are n capabilities then join operation is called for every pair of
subset of capabilities which is exponential because the join operation need to be
called recursively until no more joins are possible.

6.2 Alternate Method 2

In this method capabilities in new h-alert’s require set are split into minimal
granularity based on their composite attributes.

In this case, we do not use join operation for correlation as it is costly. By
using split operation, the granularity of each attribute of every capability will
become one. Consequently, this will make the comparisons easier. Also we do
not need the subtract operation as all capabilities are in their minimal reduced
form. Minimal set search algorithm is same as algorithm 11 except the subtract
operation in steps 8,9 and 10.

Algorithm 13 (Alternate Method 2) Correlate a new h-alert which is an ab-
stract form of recently came alert with M-attacks set
Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

Let S = {cred, action, {service, property}, interval}
procedure Correlation algorithmIII(h1,M)

for all capabilites Ci ∈ h1.require do
for all attributes A ∈ S do

if A is composite then split Ci into minimal granularity based on A
end if

end for
end for
Find a minimal and ordered subset Mk of set M such that h1.requires is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM ∪ h1.provide where CM =
⋃

i Mk
i .capset and Mk

i ∈ Mk ,
Mnew.haset = hM ∪ h1 where hM =

⋃
i Mk

i .haset and Mk
i ∈ Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

However in some cases we may end up in split where it may not be required.
For example capability containing action RW has been split into two capabilities
with action R and W in M-attack’s capset. A new required capability with same
RW action comes, then we split it into R and W, which require two comparisons.
Indirectly we may be increasing the comparisons unintentionally as number of
capabilities in the capset of M-attack have increased in some cases.

6.3 Alternate Method 3

This method is a combination of Alternate Method 1 and Alternate Method 2
which splits the capabilities of h-alert’s require set into minimal granules and
after correlation, joins the capabilities in the newly formed M-attacks’s capset
which can be joined.

The method wipes out pitfall of pervious alternate methods as split has been
used initially to simplify the comparisons and later on join has been used in each
M-attack’s capset to minimize the number of capabilities which consequently
minimizes the number of comparisons . However this method is more costly
than previous in time complexity.

7 Conclusion

In this work we have defined time parameter and shown its impact in reduc-
ing false correlation. We have also identified and defined relations between ca-

Algorithm 14 (Alternate Method 3) Correlate a new h-alert which is an ab-
stract form of recently came alert with M-attacks set
Require: h-alert h1 and set of M-attacks M={M1, · · ·Mn}
Ensure: a new M-attacks set M’={M1,.... Mk}

Let S = {cred, action, {service, property}, interval}
procedure Correlation algorithmIV(h1,M)

for all capabilites Ci ∈ h1.require do
for all attribute A ∈ S do

if A is composite then split Ci into maximum granularity based on A
end if

end for
end for
Find a minimal and ordered subset Mk of set M such that h1.requires is
satisfied by capabilities in M-attacks of set Mk using algorithm 11
if Mk 6= φ then Make new Mnew as

Mnew.capset = CM ∪ h1.provide where CM =
⋃

i Mk
i .capset and Mk

i ∈ Mk,
Mnew.haset = hM ∪ h1 where hM =

⋃
i Mk

i .haset and Mk
i ∈ Mk

and replace all M-attacks in Mk by Mnew

else Make new Mnew as Mnew.capset = h1.provide and Mnew.haset = h1

end if
for all pair of capabilities (Ci,Cj) in Mnew.capset do Ck=join(Ci,Cj)

if Ck 6= NULL then replace Ci and Cj by Ck in Mnew.capset
end if

end for
Mnew.timestamp equal to the timestamp of newly correlated alert.

end procedure

pabilities, operations on capability and derived Inference rules along with their
semantic that have been used in correlation process. The framework is made sys-
tematic, consistent and defined properly with algorithms. Comparison between
the previous model and the proposed model is exhibited by demonstrating cases
where the correlated alerts were not captured by the old model, but are taken
care in our proposed model.

By making the correlation process modular we have simplified the whole
correlation process. This makes system more understandable for even non secu-
rity expert. This approach helps in facilitating the process flexibility and easy
enhancement. With this systematic model, the system can be automated and
adaptive to optimizations.

Part of the future work will be to optimize algorithms and to achieve better
performance. One possibility would be to optimize the algorithm of join opera-
tion and to use that in given alternate correlation algorithm (in section 6). This
would help in making whole system real time with low false rate.

Another future work will be to model the defence capability of security per-
sonnel. This defence capability will help the administrator in identifying his
position against the attacker’s capability. There is also scope in the future work
to develop language for whole framework.

8 Acknowledgment

This project was supported by a grant from Dept of Information Technology,
Govt of India. We thank the database and security group members at IIT Delhi
for their reviews and valuable comments to improve this paper.

References

1. Dawkins, J., Hale, J.: A systematic approach to multi-stage network attack anal-
ysis. Information Assurance Workshop, 2004. Proceedings. Second IEEE Interna-
tional (8-9 April 2004) 48–56

2. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2)
(1987) 222–232

3. Gosh, A.K., Wanken, J., Charron, F.: Detecting anomalous and unknown intru-
sions against programs. In: ACSAC ’98: Proceedings of the 14th Annual Computer
Security Applications Conference, Washington, DC, USA, IEEE Computer Society
(1998) 259

4. Javits, Valdes: The NIDES statistical component: Description and justification.
http://www.csl.sri.com/papers/statreport. (Mar 1993)

5. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distributed systems: a specification-based approach. In: SP ’97: Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy, Washington, DC, USA,
IEEE Computer Society (1997) 175

6. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and communications security,
New York, NY, USA, ACM (2003) 251–261

7. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system
calls: alternative data models. Security and Privacy, 1999. Proceedings of the 1999
IEEE Symposium on Security and Privacy (1999) 133–145

8. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer
Networks 31(23-24) (1999) 2435–2463

9. Neumann, P.G., Porras, P.A.: Experience with emerald to date. In: Proceedings
of the Workshop on Intrusion Detection and Network Monitoring, Berkeley, CA,
USA, USENIX Association (1999) 73–80

10. Roesch, M.: Snort - lightweight intrusion detection for networks. In: LISA ’99:
Proceedings of the 13th USENIX conference on System administration, Berkeley,
CA, USA, USENIX Association (1999) 229–238

11. Vigna, G., Kemmerer, R.A.: Netstat: a network-based intrusion detection system.
J. Comput. Secur. 7(1) (1999) 37–71

12. Eckmann, S.T., Vigna, G., Kemmerer, R.A.: Statl: an attack language for state-
based intrusion detection. J. Comput. Secur. 10(1-2) (2002) 71–103

13. Xu, D., Ning, P.: Alert correlation through triggering events and common re-
sources. In: ACSAC ’04: Proceedings of the 20th Annual Computer Security Appli-
cations Conference (ACSAC’04), Washington, DC, USA, IEEE Computer Society
(2004) 360–369

14. Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks. In:
NSPW ’00: Proceedings of the 2000 workshop on New security paradigms, New
York, NY, USA, ACM (2000) 31–38

15. Zhou, J., Heckman, M., Reynolds, B., Carlson, A., Bishop, M.: Modeling network
intrusion detection alerts for correlation. ACM Trans. Inf. System Secur. 10(1)
(2007) 4

16. Pouget, Fabien, Dacier, M.: Alert correlation: Review of the state of the art.
Technical Report EURECOM+1271, Institut Eurecom, France (Dec 2003)

17. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A data mining analysis
of rtid alarms. Computer Networks 34(4) (2000) 571–577

18. Michel, C., Mé, L.: Adele: an attack description language for knowledge-based
intrustion detection. In: Sec ’01: Proceedings of the 16th international conference
on Information security: Trusted information. (2001) 353–368

19. Cuppens, F., Miège, A.: Alert correlation in a cooperative intrusion detection
framework. In: SP ’02: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, Washington, DC, USA, IEEE Computer Society (2002) 202

20. Siraj, A., Vaughn, R.B.: Alert correlation with abstract incident modeling in a
multi-sensor environment. IJCSNS International Journal of Computer Science and
Network Security 7(8) (August 2007) 8–19

21. Morin, B., Mé, L., Debar, H.: Correlation of intrusion symptoms: An application
of chronicles. In: RAID’03: Proc. of the 6th Int. Symp. on Recent Advances in
Intrusion Detection, Springer Berlin / Heidelberg (Sep 2003) 94–112

22. Vigna, G., Valeur, F., Kemmerer, R.A.: Designing and implementing a family of
intrusion detection systems. In: ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, New York, NY, USA,
ACM (2003) 88–97

23. Yang, D., Chen, G., Wang, H., Liao, X.: Learning vector quantization neural
network method for network intrusion detection. Wuhan University Journal of
Natural Sciences 12(1) (Jan 2007) 147–150

24. Mehdi, M., Zair, S., Anou, A., Bensebti, M.: A bayesian networks in intrusion
detection systems. Journal of Computer Science 3(5) (May 2007) 259–265

25. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2d2: A formal data model for ids
alert correlation. In: RAID’02: Proc. of the 5th Int. Symp. on Recent Advances in
Intrusion Detection, Springer Berlin / Heidelberg (Oct 2002) 115–137

26. Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for analyzing intrusion
alerts. ACM Trans. Inf. Syst. Secur. 7(2) (2004) 274–318

27. Li, N., Wang, Q.: Beyond separation of duty: an algebra for specifying high-
level security policies. In: CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, New York, NY, USA, ACM (2006) 356–
369

28. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control. ACM
Trans. Inf. Syst. Secur. 6(2) (2003) 286–325

29. Bonatti, P., di Vimercati, S.D.C., Samarati, P.: An algebra for composing access
control policies. ACM Trans. Inf. Syst. Secur. 5(1) (2002) 1–35

