CSL851: Algorithmic Graph Theory	Fall 2013
Lecture 8: November 13	
Lecturer: Amit Kumar	Scribes: Sushant Saxena

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Figure 8.1: Example Tree Decomposition

8.1 Independent Set

After removing y, there is no path between $u \in B_z$ and $v \in B_x$.

Definition 8.1 G_x : graph induced by \bigcup_y is descendant of $_x B_y$

Figure 8.2: Example of G_x

Definition 8.2 A(x,S) : max independent set I in in G_x st $I \cap B_x = S$

Possibilities of $x = \#nodes = O(2^n)$ Possibilities of $S \le 2^{k+1}$ where k = tree width

8.1.1 Dynamic Programming

Vertices appearing in r and x doesn't appear in G_y

Definition 8.3 (r,T) and (x,S) are consistent if for every $v \in B_T \cap B_x$, $v \in T$ iff $v \in S$.

 $A(r,T) = |T| + max_{(r,T) \& (x,S) \ consistent} \{A(x,S) - |T \cap S|\} + max_{(r,T) \& (y,U) \ consistent} \{A(y,U) - |T \cap U|\}$

8.2 Chromatic Numbering

Theorem 8.4 Any graph with tree width p has a vertex of degree $\leq p$

Proof:

- There is a leaf z st $B_z \not\subseteq B_y$, y: parent of $z(If B_z \subseteq B_y \text{ then } z \text{ can be removed and still it will be a valid tree decomposition})$

- $u \in B_z \setminus B_y$

- z is the only node st B_z contains $u \Rightarrow all$ neighbors of u are in B_z

- Therefore, degree of u is $\leq p$

Theorem 8.5 Any graph with tree width p can be colored with $\leq p+1$ colors

Proof:

- Take a vertex v with degree $\leq p$ (Using theorem 8.4, such v exists) and remove it.
- New graph has tree width $\leq p$
- Color this graph with $\leq p+1$ colors

- Color v(only p neighbors, so one color must be free)

8.2.1 Find a way of coloring with k colors

Definition 8.6 $A(x,\chi) = Yes$ if there is a k coloring of G_x st $\forall v \in B_x$, v gets the colour $\chi(v)$

Possibilities of χ : $k^{p+1}, k \leq p$

In the example tree decomposition 8.1, G_x and G_y can be colored separately as there is no edge between them.

Definition 8.7 (r, ϕ) and (x, χ) are consistent if $\forall v \in B_x \cap B_r, \chi(v) = \phi(v)$

8.2.1.1 Dynamic Programming

 $A(r,\phi)$ = true if $\exists \chi$ st (r,ϕ) and (x,χ) are consistent and $A(x,\chi)$ is true and $\exists \chi'$ st (y,χ') and (r,ϕ) are consistent and $A(y,\chi')$ is true

8.3 Connectivity

Consider any tree T.

_

Definition 8.8 T_v : sub-tree rooted at v.

Theorem 8.9 $\exists v \in T$, removing v each component has $\leq \frac{n}{2}$ vertices.

Proof: Proof by finding a vertex v st $|T_v| > \frac{n}{2}$ and $|T_w| \le \frac{n}{2}$ for each child w of v.

- Try removing r (Initially, r is root)

- If it doesn't work \rightarrow there is a child w having $|T_w| > \frac{n}{2}$ (Note that there will only be one such child)

- Set r to be v and repeat the procedure.

Above algorithm will terminate as on each step it moves to the child of current vertex. So, its output will be the vertex v with $|T_v| > \frac{n}{2}$ and $|T_w| \le \frac{n}{2}$ for each child w of v. On removing this vertex v, each component will have $\le \frac{n}{2}$ vertices.

Theorem 8.10 Suppose we give a weight w_v for each vertex v st $\Sigma_v w_v = 1$, then there is a vertex in the tree st after removing it, total weight of each component is $\leq \frac{1}{2}$

Proof: Proof follows the same idea, by finding a vertex v st $w(T_v) > \frac{1}{2}$ and $w(T_u) \le \frac{1}{2}$ for each child u of v- Try removing r (Initially, r is root)

- If it doesn't work \rightarrow there is a child u having $w(T_u) > \frac{1}{2}$ (Note that there will only be one such child)

- Set r to be v and repeat the procedure.

Above algorithm will terminate as on each step it moves to the child of current vertex. So, its output will be the vertex v with $w(T_v) > \frac{1}{2}$ and $w(T_u) \leq \frac{1}{2}$ for each child u of v. On removing this vertex v, each component will have weight $\leq \frac{1}{2}$.

Now, consider a graph with tree width = p.

Theorem 8.11 *G* has tree width *p* and $\Sigma_v w_v = 1$, then there is a set of p + 1 vertices st after removing it, total weight of each component $\leq \frac{1}{2}$

Proposition 8.12 Graph with small tree width(say p) is easy to disconnect. Removing p + 1 vertices disconnects graph with each component being not very big.

Proposition 8.13 Grid graph is not easy to disconnect.

Figure 8.3: Grid graph

Consider any grid graph G, which has weights as $\frac{1}{\sqrt{n}}$ for bottom row vertices (red vertices in fig 8.3) and 0 weight for every other vertex.

Theorem 8.14 Removing $< \frac{\sqrt{n}}{2}$ vertices in G, we can't get components where each component has weight $\leq \frac{1}{2}$

Proof: Proof by contradiction. Suppose $\exists S \text{ of } \frac{\sqrt{n}}{2}$ vertices st after removing it, every component has weight $\leq \frac{1}{2}$ A column(or row) is free if no vertex in that column(or row) is removed. There are atleast $\frac{\sqrt{n}}{2}$ free columns(marked with green). There is a free row(marked with green).

So, $\frac{\sqrt{n}}{2}$ free columns will be in same connected component and hence, its weight will be atleast $\frac{1}{2}$.

Figure 8.4: Free columns/row

Theorem 8.15 Planar Separator Theorem : For any planar graph removing at most $O(\sqrt{n})$ vertices will split it into small pieces ($\leq \frac{2n}{3}$)

Proof: Done in Next Class