Lecture 8: November 13

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Figure 8.1: Example Tree Decomposition

8.1 Independent Set

After removing y, there is no path between $u \in B_{z}$ and $v \in B_{x}$.

Definition 8.1 G_{x} : graph induced by \bigcup_{y} is descendant of ${ }_{x} B_{y}$

Figure 8.2: Example of G_{x}

Definition 8.2 $A(x, S):$ max independent set I in in G_{x} st $I \cap B_{x}=S$

Possibilities of $x=\#$ nodes $=O\left(2^{n}\right)$
Possibilities of $S \leq 2^{k+1}$
where $k=$ tree width

8.1.1 Dynamic Programming

Vertices appearing in r and x doesn't appear in G_{y}

Definition $8.3(r, T)$ and (x, S) are consistent if for every $v \in B_{T} \cap B_{x}, v \in T$ iff $v \in S$.
$A(r, T)=|T|+\max _{(r, T) \&(x, S)}$ consistent $\{A(x, S)-|T \cap S|\}+\max _{(r, T) \&(y, U)}$ consistent $\{A(y, U)-|T \cap U|\}$

8.2 Chromatic Numbering

Theorem 8.4 Any graph with tree width p has a vertex of degree $\leq p$
Proof:

- There is a leaf z st $B_{z} \nsubseteq B_{y}, y$: parent of $z\left(I f B_{z} \subseteq B_{y}\right.$ then z can be removed and still it will be a valid tree decomposition)
- $u \in B_{z} \backslash B_{y}$
- z is the only node st B_{z} contains $u \Rightarrow$ all neighbors of u are in B_{z}
- Therefore, degree of u is $\leq p$

Theorem 8.5 Any graph with tree width p can be colored with $\leq p+1$ colors

Proof:

- Take a vertex v with degree $\leq p$ (Using theorem 8.4, such v exists) and remove it.
- New graph has tree width $\leq p$
- Color this graph with $\leq p+1$ colors
- Color v(only p neighbors, so one color must be free)

8.2.1 Find a way of coloring with k colors

Definition 8.6 $A(x, \chi)=$ Yes if there is a k coloring of G_{x} st $\forall v \in B_{x}$, v gets the colour $\chi(v)$

Possibilities of $\chi: k^{p+1}, k \leq p$
In the example tree decomposition $8.1, G_{x}$ and G_{y} can be colored separately as there is no edge between them.

Definition $8.7(r, \phi)$ and (x, χ) are consistent if $\forall v \in B_{x} \cap B_{r}, \chi(v)=\phi(v)$

8.2.1.1 Dynamic Programming

$A(r, \phi)=$ true if $\exists \chi$ st (r, ϕ) and (x, χ) are consistent and $A(x, \chi)$ is true and $\exists \chi^{\prime}$ st $\left(y, \chi^{\prime}\right)$ and (r, ϕ) are consistent and $A\left(y, \chi^{\prime}\right)$ is true

8.3 Connectivity

Consider any tree T.

Definition 8.8 T_{v} : sub-tree rooted at v.

Theorem $8.9 \exists v \in T$, removing v each component has $\leq \frac{n}{2}$ vertices.
Proof: Proof by finding a vertex v st $\left|T_{v}\right|>\frac{n}{2}$ and $\left|T_{w}\right| \leq \frac{n}{2}$ for each child w of v.

- Try removing r(Initially, r is root)
- If it doesn't work \rightarrow there is a child w having $\left|T_{w}\right|>\frac{n}{2}$ (Note that there will only be one such child) - Set r to be v and repeat the procedure.

Above algorithm will terminate as on each step it moves to the child of current vertex. So, its output will be the vertex v with $\left|T_{v}\right|>\frac{n}{2}$ and $\left|T_{w}\right| \leq \frac{n}{2}$ for each child w of v. On removing this vertex v, each component will have $\leq \frac{n}{2}$ vertices.

Theorem 8.10 Suppose we give a weight w_{v} for each vertex v st $\Sigma_{v} w_{v}=1$, then there is a vertex in the tree st after removing it, total weight of each component is $\leq \frac{1}{2}$

Proof: Proof follows the same idea, by finding a vertex v st $w\left(T_{v}\right)>\frac{1}{2}$ and $w\left(T_{u}\right) \leq \frac{1}{2}$ for each child u of v - Try removing r(Initially, r is root)

- If it doesn't work \rightarrow there is a child u having $w\left(T_{u}\right)>\frac{1}{2}$ (Note that there will only be one such child)
- Set r to be v and repeat the procedure.

Above algorithm will terminate as on each step it moves to the child of current vertex. So, its output will be the vertex v with $w\left(T_{v}\right)>\frac{1}{2}$ and $w\left(T_{u}\right) \leq \frac{1}{2}$ for each child u of v. On removing this vertex v, each component will have weight $\leq \frac{1}{2}$.

Now, consider a graph with tree width $=p$.

Theorem 8.11 G has tree width p and $\Sigma_{v} w_{v}=1$, then there is a set of $p+1$ vertices st after removing it, total weight of each component $\leq \frac{1}{2}$

Proposition 8.12 Graph with small tree width(say p) is easy to disconnect. Removing $p+1$ vertices disconnects graph with each component being not very big.

Proposition 8.13 Grid graph is not easy to disconnect.

Figure 8.3: Grid graph
Consider any grid graph G, which has weights as $\frac{1}{\sqrt{n}}$ for bottom row vertices(red vertices in fig 8.3) and 0 weight for every other vertex.

Theorem 8.14 Removing $<\frac{\sqrt{n}}{2}$ vertices in G, we can't get components where each component has weight $\leq \frac{1}{2}$
Proof: Proof by contradiction. Suppose $\exists S$ of $\frac{\sqrt{n}}{2}$ vertices st after removing it, every component has weight $\leq \frac{1}{2}$ A column(or row) is free if no vertex in that column(or row) is removed.
There are atleast $\frac{\sqrt{n}}{2}$ free columns(marked with green).
There is a free row(marked with green).
So, $\frac{\sqrt{n}}{2}$ free columns will be in same connected component and hence, its weight will be atleast $\frac{1}{2}$.

Figure 8.4: Free columns/row

Theorem 8.15 Planar Separator Theorem : For any planar graph removing at most $O(\sqrt{n})$ vertices will split it into small pieces $\left(\leq \frac{2 n}{3}\right)$
Proof: Done in Next Class

