CSL851: Algorithmic Graph Theory

Semester I 2013-2014

Lecture 11: September 4

Lecturer: Anand Srivastav Scribes: Nikhil Kumar

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Basic Discrete Probability Theory

Let Ω be a set and $P(\Omega)$ be its power set. Ω can be finite or infinite.

Definition 11.1 A set $\Sigma \subseteq P(\Omega)$ is called a σ – algebra over Ω if

- $\Omega \in \Sigma$
- $A \in \Sigma \Rightarrow A^c \in \Sigma$
- For a sequence $A_1, A_2, \ldots, \in \Sigma$, we have $\bigcup A_i \in \Sigma$

The tuple (Ω, Σ) is called a **measurable-space**. For example:

- $\{\phi, \Omega\}$ is a $\sigma algebra$
- $P(\Omega)$ is a $\sigma algebra$

It also holds: $\bigcap_{i} A_i \in \Sigma$ if $A_i \in \Sigma$ for all i. Note that intersection is over a countable number of sets.

Definition 11.2 Let (Ω, Σ) be the measurable space. A function $\mu: \Sigma \to [0, \infty)$ is called a **measure** if:

- $\bullet \ \mu(\phi) = 0$
- For all pairwise disjoint sets A_1, A_2, \ldots we have $\mu(A_1 \cup A_2 \ldots) = \sum \mu(A_i)$

Definition 11.3 Let P be measure of (Ω, Σ) . P is called a **probability measure** if $P : \Sigma \to [0, 1]$ and $P(\Omega) = 1$. (Ω, Σ, P) is called a **probability space**.

Definition 11.4 A probability space (Ω, Σ, P) is called **discrete** if Ω is discrete and finite. In a discrete probability space P the vector $p = (p(\omega))$ is called the **stochastic** vector, $p(\omega) = P(\{\omega\}) \ \forall \omega \in \Omega$.

A laplacian probability space (Ω, Σ, P) consists of Ω finite and $P(\{\omega\}) = 1/|\Omega| \ \forall \omega \in \Omega$. In this case Σ is the power set of Ω . A probability measure is also called a **distribution**.

Proposition 11.5 Let Ω be a finite set and p a vector such that $p = (p(\omega))_{\omega \in \Omega}$ and $\sum_{\omega \in \Omega} p(\omega) = 1$ and $p(\omega) \in [0,1]$ then $P(\{\omega\}) = p(\omega) \ \forall \omega \in \Omega$ is a probability measure on Ω .

Proof: For
$$A \in P(\Omega)$$
 define $P(A) = \sum_{\omega \in A} p(\omega)$.

Binomial Distribution: let $n \in \mathbb{N}, 0 . <math>P: (p(\omega))_{\omega \in \Omega}$ is a stochastic vector. B(n, p) is the probability measure defined by P and is called the binomial distribution.

For
$$A \subseteq \Omega$$
, $B(n,p)(A) = \sum_{\omega \in A} p^{\omega} (1-p)^{n-\omega}$.

Proposition 11.6 Let (Ω, Σ, P) be a probability space and $A_1, A_2, \ldots \in \Sigma$ and $B \in \Sigma$. Then,

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- For $A \subseteq B$, P(B/A) = P(B) P(A)
- For $A \subseteq B, P(A) \le P(B)$
- For $A_1, A_2, \ldots, A_n \in \Sigma$, we have $P(\sum_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$

Definition 11.7 $A \in \Sigma$ is called an event.

Definition 11.8 Let (Ω, Σ, P) be a probability space and $A, B \in \Sigma$ with P(B) > 0, then $P(A/B) = P(A \cap B)/P(B)$ is the **conditional probability** of A assuming the event B or condition on B.

Definition 11.9 Let (Ω, Σ, P) be a probability space. Let $A_1, A_2, \ldots, A_n \in \Sigma$.

- Let $k \in \{2, ..., n\}$. $A_1, ..., A_n$ are called k-wise independent, if for any choice of k sets $B_1, B_2, ..., B_k$ from $A_1, ..., A_n$, $P(\bigcap_{i=1}^k B_i) = \prod_{i=1}^k P(B_i)$.
- A_1, \ldots, A_n are (mutually) independent if for all $X \subseteq \{1, 2, \ldots, n\}$, we have $P(\bigcap_{i \in X} A_i) = \prod_{i \in X} P(A_i)$. In particular $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$.

Definition 11.10 Let (Ω, Σ, P) be a probability space. A function $X : \Omega \to \mathbb{R}$ is called a random variable, if for all open sets $O \subseteq \mathbb{R}, X^{-1}(O) \in \Sigma$. For a finite probability space any $X : \Omega \to \mathbb{R}$ is automatically a random variable because $\Sigma = P(\Omega)$.

Notations: By $P(X \le x)$, we mean $P(\{\omega | X(\omega) \le x\})$. Similarly $P(X = x) = P(\{\omega | X(\omega) = x\})$.(X-random variable)

Definition 11.11 Let (Ω, Σ, P) be a finite probability space and $X, Y : \Omega \to \mathbb{R}$ be random variables. We can say X, Y are independent if for any choice of $x \in X(\Omega), y \in Y(\Omega)$, we have P(X = x, Y = y) = P(X = x)P(Y = y).

Equivalently, $P(X^{-1}(A) \cap Y^{-1}(B)) = P(X^{-1}(A))P(X^{-1}(B)) \ \forall A \subseteq X(\Omega), B \subseteq Y(\Omega)$. This definition is extendable to n-random variables.

Problems:

- 1. Let (Ω, Σ, P) be a probability space, $A, B \in \Sigma$ independent. Show,
 - A, B^c are independent
 - A^c, B^c are independent
- 2. Let (Ω, Σ, P) be a laplacian probability space, $X, Y : \Omega \to \mathbb{R}$ be random variables. Given that X(1) = 2, X(2) = 1, X(3) = 7, Y(1) = 1, Y(2) = 5, Y(3) = 1, show that X and Y are not independent.