CSL851: Algorithmic Graph Theory

Semester I,2013

Lecture 12: Sept 10, 2013

Lecturer: Dr. Naveen Garg

Scribes: Yashoteja Prabhu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

12.1 Introduction to Probability

Definition 12.1 Let (Ω, Σ, P) be a finite probability space, where Ω is a sample space which is the set of all possible outcomes, Σ is a set of events where each event is a set containing zero or more outcomes, and P is the assignment of probabilities to the events. Let X and Y be a Random Variables (RV) on Ω . Then,

- 1. Expectation of X is $E[X] = \sum_{w \in \Omega} X[w]P(w)$
- 2. Variance of X is $Var[X] = E[(X E[X])^2]$
- 3. Covariance of X and Y is Cov[X, Y] = E[(X E[X])(Y E[Y])]

Variance measures the spread of a distribution.

Proposition 12.2 If X, Y be RVs

- 1. $E[X] = \sum_{x \in X(\Omega)} x P(X = x)$
- 2. $Var[X] = E[X^2] E[X]^2$
- 3. E[X + Y] = E[X] + E[Y]
- 4. Var[X + Y] = Var[X] + Var[Y] + 2 * Cov[X, Y]
- 5. Cov[X,Y] = E[XY] E[X]E[Y]

Theorem 12.3 Let X, Y be independent RVs

1.
$$E[XY] = E[X]E[Y]$$

- 2. Cov[X, Y] = 0
- 3. Var[X+Y] = Var[X] + Var[Y]

Covariance is a weak measure of independence. Also, Cov[X, Y] = 0 does not imply that X, Y are independent.

Definition 12.4 Let $P \in [0, 1]$ and let X be an RV

- 1. X is p-bernoulli RV (or p-bernoulli distributed) if $X : \Omega \implies \{0, 1\}$ and $P(X = x) = \begin{cases} p & \text{if } x = 1\\ 1-p & \text{if } x = 0 \end{cases}$
- 2. X is B(n,p) binomially distributed if $X : \Omega \implies \{0,1,...,n\}$ and $P(X=x) = {n \choose x} p^x (1-p)^{1-x}$

Proposition 12.5 Examples of bernoulli and binomial distributions.

- 1. p-bernoulli models the flip of a p-biased coin
- 2. Let $X_1, ..., X_n$ be p-bernoulli RVs. Define $X = \sum_{i=1}^n X_i$ and suppose X_i s are independent, then, X is B(n,p) distributed

Theorem 12.6 Let X be a RV.

- 1. If X is p-bernoulli, then E[X] = p and Var[X] = p(1-p)
- 2. If X is B(n,p), then E[X] = np and Var[X] = np(1-p)

Proof:

- 1. Let X be p-bernoulli.
 - (a)

$$E[X] = 1 * p + 0 * (1 - p)$$

= p

(b)

$$Var[X] = E[X^{2}] - E[X]^{2}$$

= $E[X] - E[X]^{2}$ // since $X = X^{2}$ for p - bernoulli
= $p - p^{2}$
= $p(1 - p)$

2. Let X be B(n, p).

(a)

$$E[X] = E[\sum_{i=1}^{n} X_i]$$

= $\sum_{i=1}^{n} E[X_i]$ // from proposition 1.12 (4)
= np

(b)

$$Var[X] = Var[\sum_{i=1}^{n} X_i] / from \ proposition \ 1.15 \ (2)$$
$$= \sum_{i=1}^{n} Var[X_i] / since \ X_i \ are \ independent$$
$$= np(1-p)$$

12.2 Concentration Inequalities

Theorem 12.7 Markov's inequality

Let X be an RV and $X \ge 0$, then,

1. For any
$$\lambda > 0$$
, $P(X > \lambda) \le \frac{E[X]}{\lambda}$

2. For a monotone increasing function $g: \mathbb{R} \implies \mathbb{R}_+$, we have $P(X \ge \lambda) \le \frac{E[g(x)]}{q(\lambda)}$

Theorem 12.8 Chebychev's inequality

Let X be an RV. For any $\lambda > 0$, we have, $P(|X - E[X]| \ge \lambda) \le \frac{Var[X]}{\lambda^2}$

Theorem 12.9 Hoeffding's inequality

Let $X_1, ..., X_n$ be independent RVs with $a_k \leq X_k \leq b_k$ for all k = 1, 2, ..., n. Let $X = \sum_{k=1}^n X_k$ and let $c_k = b_k - a_k$, then for any $\lambda > 0$,

1. $P(X - E[X] \ge \lambda) \le e^{-\frac{2\lambda^2}{\sum_{k=1}^n c_k^2}}$ 2. $P(X - E[X] \le -\lambda) \le e^{-\frac{2\lambda^2}{\sum_{k=1}^n c_k^2}}$ 3. $P(|X - E[X]| \ge \lambda) \le 2e^{-\frac{2\lambda^2}{\sum_{k=1}^n c_k^2}}$

Corollary 12.10 Chernoff bound

Let $X_1, ..., X_n$ be independent RVs with $P(X_k = 1) = p_k$ and $P(X_k = 0) = 1 - p_k$, $p_k \in [0, 1]$, and let $X = \sum_{k=1}^n X_k$. Then for any $\lambda > 0$, we have, $P(|X - E[X]|) \ge \lambda) \le 2e^{-\frac{2\lambda^2}{n}}$

Corollary 12.11 Let $X_1, ..., X_n$ be independent $\{-1, +1\}$ valued RVs with $P(X_k = +1) = P(X_k = -1) = 0.5$. Then for any $\lambda > 0$, we have, $P(|X| \ge \lambda) \le 2e^{-\frac{\lambda^2}{2n}}$

Proof: Idea of proof of Hoeffding's theorem:

$$\begin{split} P(X - E[X] \ge \lambda) \\ &= P(e^{t(X - E[X])} \ge e^{t\lambda}) \\ &\le e^{-t\lambda} E[e^{t(X - E[X])}] \quad // \text{ Markov's inequality} \\ &\le e^{-t\lambda} e^{E[t(X - E[X])]} \quad // \text{ t is chosen to obtain the tightest bound} \end{split}$$