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In the last lecture we saw that:

• A graph G(V,E) is caled an (A, d) expander if N(S) ≥ d|S| for all S ⊆ V such that |S| ≤ A.

• Given any δ, there exist an (
n

δ
, δ − 2) expander where every vertex has degree δ. We had proved for a

weaker value than
n

δ
but it can be proved for

n

δ
. Also, we had given a randomized construction but

there are deterministic constructions known.

In this lecture we will see two applications of the expanders, one in derandomization and other in disjoint
path routing.

In most applications, we use expanders with exponential number of verices. This is feasible because we will
not be explicitly storing the whole expander graph. Each vertex can be represented using O(n) space. Each
vertex can be thought of as an n-bit number. Many constructions give a way to quickly find the neighbours
of a vertex, given the vertex.

10.1 Applications of Expanders

10.1.1 In Derandomization

By derandomization, we mean reducing the error of a randomized algorithm.

Suppose, we have a randomized algorithm A which tests the membership in some language L. A takes an
input x and outputs Y ES or NO. On an input x, A behaves as:

• if x ∈ L, A outputs Y ES with a probablity of
1

2
.

• if x /∈ L, A always outputs NO.

Suppose, A uses r random bits where r = poly(|x|).

Our objective is to reduce the error probablity from
1

2
to δ.

One way to do it is the following procedure:

• Repeat A for k times.
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• If A says Y ES atleast once then output Y ES, otherwise output NO.

The above algorithm gives error output only if A gives error output on each of the k times. So, the total

error probablity is (
1

2
)k. So, inorder to get an error probablity of less than δ, we should take k = log(

1

δ
).

So, the total number of random bits needed is r log(
1

δ
).

Can we achieve the same error probablity without using so many random bits? By using expanders, this
can be done using r random bits as shown below.

Let G be a (
n

4
, 2) expander on 2r vertices. Each vertex in G corresponds to a sequence of r bits. The

algorithm is as follows:

• Pick a vertex v of G uniformly at random.(This uses r random bits).

• Let X = {w ∈ G | w is at a distance ≤ c from v} where c is a constant. (Note that |X| ≤ 4c in this
case)

• Run A on each v ∈ X.

We will prove that the error probablity of this algorithm is very low. Let N = 2r denote the total number

of vertices. Let Y be the set of vertices which gives a wrong answer for A. |Y | ≤ N

2
because A has an error

probablity of atmost
1

2
. Our algorithm gives a wrong answer only if all the vertices in X are in Y . For this

to happen all vertices within a distance of c from the randomly selected vertex v should be in Y . But, since
G is an expander, the chance of all these vertices being confined to Y is very low.

Let us prove this formally. Let B be the set of vertices y ∈ Y such that N(y) ⊆ Y . If |B| > N

4
, then

|N(B)| > N

2
as G is an (

N

4
, 2) expander. So, if |B| > N

4
, B will have a neighbour outside Y . Hence, B

can have only size of atmost
N

4
. Similiarly ,if C is the set of vertices in B having all its neighbours inside

B ,then |C| ≤ N

8
. In general, any set of vertices in Y such that all the vertices at a distance ≤ c from it are

in Y can have a size of atmost
N

2c
. Hence, we get that the error probablity is atmost

1

2c
. Inorder to get an

error of less than δ, we should take c = log(
1

δ
). So, algorithm A is repeated a total of 4log

1
δ =

1

δ2
times.

Hence, although the running time increases, we are able to achieve the required error probablity with only
r random bits.

10.1.2 Disjoint Path Routing

We have n vertices on both sides of a routing network. Let X be the vertices on the left and Y be the
vertices on right. We have to connect them using a suitable graph such that for any T ⊆ X and S ⊆ Y with
|T | = |S| = k, there are k disjoint paths between T and S(see figure 10.1).

Note that this can be easiliy done using a complete bipartite graph on X and Y . But we are interested in
finding such a graph with O(n) edges. Such a graph is also called a super concentrator.

We will use a particular type of expander for building the super concentrator. The exapander that we will
use is a bipartite graph G on vertex sets L and R(see figure 10.2). L contains n vertices and R contains 3n
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T

S

Figure 10.1: Disjoint Path Routing

vertices. G satisfies the following property : any S ⊆ L such that |S| ≤ n
2 has |N(S)| ≥ |S|.

Exercise : Check that if every vertex in L selects 10 random neighbours from R uniformly, the above
property holds with high probablity.

L R

S N(S)

Figure 10.2: Expander used to build super concentrator

Figure 10.3: building (n, n) super concentrator using a (3n
4 ,

3n
4 ) super concentrator

We will build the super concentrator recursively. First, we will assume that a ( 3n
4 ,

3n
4 ) super concentrator is

available and then build an (n, n) super concentrator using this. Then, the ( 3n
4 ,

3n
4 ) super concentrator can

be built recursively in the same manner.

Let R1 and R2 be the vertices on the two sides of the ( 3n
4 ,

3n
4 ) super concentrator. Let L1 and L2 be the

two sets of n vertices that need to be connected using (n, n) super concentrator. Connect L1 with R1 such
that the expander property discussed above is satisfied. Connect L2 and R2 in the same manner. Also, add
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n direct edges from L1 to L2 such that ith vertex in L1 is connected to ith vertex in L2(see figure 10.3).

The total number of edges,E(n) = 10n+ 10n+ n+ E( 3n
4 ). Hence, E(n) = O(n).

Let T ⊆ L1 and S ⊆ L2 such that |T | = |S| = k. We will show that there exist k disjoint paths between
T and S. Suppose k ≤ n

2 . By the property of the expander, for any T ′ ⊆ T , |N(T ′)| ≥ |T ′|. Here, N(T ′)
denotes the neighbours of T ′ in R1 . Hence, by Hall’s theorem, T has a matching in R1. Let T1 denote these
matched vertices in R1. Similiarly S has a matching in R2. Let S2 denote these matched vertices in R2.
But by the property of the ( 3n

4 ,
3n
4 ) super concentrator, there exist k disjoint paths between T1 and S2. By

adding both matchings with these paths we get k disjoint paths between S and T . If k > n
2 , then atleast

k− n
2 pairs of vertices can be connected through the direct edges between L1 and L2. The remaining n

2 pairs
can be connected in the same way as in the case when k ≤ n

2 .


