CSL851: Algorithmic Graph Theory

Spring 2013

Lecture 5: September 24

Lecturer: Anand Srivastav

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Threshold for connectedness in Random Graphs

Theorem 5.1 Let $\alpha=\alpha(n)$ be a function with $\alpha(n) \rightarrow \infty$ as $n \rightarrow \infty$. Then $S(n):=\frac{\ln (n)-\alpha(n)}{n}$ is a lower threshold function and $t(n):=\frac{\ln (n)+\alpha(n)}{n}$ is an upper threshold function for connectivity of $G(n, p)$.

Proof:

1. Lower Threshold Function: If $p \leq s$ then by Theorem $4.3 \mathrm{G}(\mathrm{n}, \mathrm{p})$ has isolated vertices approximately almost surely. Therefore, $\mathrm{G}(\mathrm{n}, \mathrm{p})$ graph are not connected.
2. Upper Threshold Function: We assume $\alpha(n) \leq \ln (n)$ for all n. For each $k \leq n$, let X_{k} be the random variable which counts the number of connected components of size k .

Let $Y=\sum_{k \leq n} X_{k}$ and let $X:=\sum_{k \leq\left\lfloor\frac{n}{2}\right\rfloor} X_{k}$. Note here Y counts all the connected components in $\mathrm{G}(\mathrm{n}, \mathrm{p})$ whereas X counts all the connected components of size at most $\left\lfloor\frac{n}{2}\right\rfloor$.
We thus have $Y \geq 1$ implies $X \geq 1$ because there is some smaller connected component inside the bigger component.
Therefore(Using Markov inequality), $P(Y \geq 1) \leq P(X \geq 1) \leq \frac{E(X)}{1}=E(X)$

Claim 5.2 $E(X) \rightarrow 0$ as $n \rightarrow \infty$

Proof: Consider $S \subseteq V$,
$\mathrm{P}(\mathrm{S}$ forms a maximal connected component in $\mathrm{G}(\mathrm{n}, \mathrm{p})) \leq \mathrm{P}\left(\right.$ no vertex in S is connected to $\left.S^{c}\right)$
$\mathrm{P}\left(\right.$ no vertex in S is connected to $\left.S^{c}\right)=(1-p)^{|S|(n-|S|)} \leq e^{-p|S|(n-|S|)} \leq e^{-t|S|(n-|S|)}$
Note the last inquality holds if $p \geq t$ (and we can this Equation 1).
Now we are going to analyze the expectation of each $X_{k} \forall k \leq\left\lfloor\frac{n}{2}\right\rfloor$

$$
E\left(X_{k}\right) \leq e^{-t k(n-k)}\binom{n}{k}
$$

Now we need to give a good estimation of the Binomial Coefficient. Using Stirling's formula :

$$
E\left(X_{k}\right) \leq\left(\frac{n e}{k}\right)^{k} e^{-t k(n-k)}
$$

Next inserting the formula for t we obtain :

$$
E\left(X_{k}\right) \leq e^{-\alpha(n)}\left(\frac{e^{1-\left(1-\frac{1}{n}\right) \alpha(n)}+\frac{k}{n}(\ln (n)+\alpha(n))}{k}\right)^{k}=e^{-\alpha(n)}\left(B_{k}\right)^{k}
$$

We can the above Equation 2 and now turn our attention to B_{k}.
Case 1: When $k \leq\left\lfloor n^{\frac{3}{4}}\right\rfloor$ then :

$$
\frac{k}{n}(\ln (n)+\alpha(n)) \leq \frac{1}{n^{\frac{1}{4}}}(\ln (n)+\alpha(n)) \leq \frac{2 \ln (n)}{n^{\frac{1}{4}}} \rightarrow 0
$$

The last approximation can be realized using the Taylor Series expansion. Henceforth, the numerator in (2) is at most a constant say c $i 0$. If $\mathrm{c} ; \mathrm{k}$, then with $\theta=\frac{c}{c+1}$ we have $B_{k} \leq \frac{c}{k} \leq \theta<1$ for any $k \geq c+1$.
So, $\sum_{k=c+1}^{\left\lfloor n^{\frac{3}{4}}\right\rfloor}\left(B_{k}\right)^{k} \leq \sum_{k=c+1}^{\left\lfloor n^{\frac{3}{4}}\right\rfloor} \theta^{k} \leq c_{1}$ for some constant $c_{1}>0$
Case 2: When $\left\lfloor n^{\frac{3}{4}}\right\rfloor \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ then:

$$
B_{k} \leq e^{1-\frac{1}{4} \ln (n)-\left(\frac{1}{2}-\frac{1}{k}\right) \alpha(n)}
$$

Since $k \geq 2, \frac{1}{2}-\frac{1}{k} \geq 0$ so the exponent tends to infinity. So $B_{k} \leq \theta$ for some $\theta<1$
Therefore, $\sum_{k=\left\lfloor n^{\frac{3}{4}}\right\rfloor}^{\frac{n}{2}}\left(B_{k}\right)^{k}<c_{2}$ for some constant $c_{2}>0$.
Thus $E(X)=\sum_{k=1}^{\frac{n}{2}} E\left(X_{k}\right) \leq e^{-\alpha(n)}\left(c_{1}+c_{2}+c_{3}\right) \rightarrow 0$ as $n \rightarrow \infty$.

