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14.1 Some theorems and stuff

Proposition 14.1 Let α(n) be a function such that α(n)→∞ as n→∞, then for a random graph G(n, p)
it holds

pN − α(n)n ≤ e(G) ≤ pN + α(n)n

almost asymptotically surely (a.a.s).

Proof: Let

X =
∑
e∈2v

Xe

X = Np
V ar(X) = Npq

where v is the number of vertices, and p and q holds their standard meanings (q = 1− p)
Applying Chebyshev’s inequality,

P (|X −Np|) ≥ α(n)n) ≤ V ar(X)
(α(n))2n2

P (|X −Np|) ≥ α(n)n) ≤ Npq
(α(n))2n2

P (|X −Np|) ≥ α(n)n) ≤ pq
(α(n))2

where pq is a constant. Thus, pq
α(n)2 → 0 as n→∞.

14.2 Thresholds for connectivity

Definition 14.2 Let Q be a graph property and let r, s, t : N → R be functions. We say that
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1. t is a lower threshold function for the graph property Q in the random graph model G(n,p) if for any
p≤t ∀n G(n,p) doesn’t have property Q a.a.s

2. s is an upper threshold function for the graph property Q in the random graph model G(n,p) if for any
p≥s ∀n G(n,p) doesn’t have property Q a.a.s

Note that s and t may coincide. Without loss of generality we can assume that t≤s. Our aim is to bridge
the gap between t and s to get better results.

We need a technical result which handles the situation of non-independent random variables. Let X1, . . . , Xk

be random variables. Define

∆1 =
∑

i,j∈{i,...,k}
i 6=k

E(Xi, Xj)

We say Xi ∼ Xj , i 6= j if Xi and Xj are not independent.

∆2 =
∑

i,j∈{i,...,k}
i∼k

E(Xi, Xj)

Theorem 14.3 Let X1, . . . , Xk be random variables (not necessarily independent) and let X =
∑
i=1

kXi. We

have

1. Var(X) =
∑
i

kV ar(Xi) +
∑

i,j∈{i,...,k}
i 6=k

Cov(Xi, Xj)

2. If Xi’s are Bernoulli random variables then

(a) V ar(X) = E(X)− E(X)2 + ∆1

(b) V ar(X) ≤ E(X) + ∆2

(c) P (X = 0) ≤ 1
E(X) − 1 + ∆1

(E(X))2

(d) P (X = 0) ≤ 1
E(X) + ∆2

(E(X))2

Note: (a) and (b) can be concluded using straight-forward calculations. (c) and (d) can be derived from (a)
and (b) respectively, using Chebyshev’s inequality.

Theorem 14.4 Let

s(n) = ln(n)−α(n)
n

t(n) = ln(n)+α(n)
n

where α(n)→∞ as n→∞ and α(n) ≤ ln(n).
s is a lower threshold function and t in an upper threshold function for the property that G(n,p) has no
isolated vertices.

Proof:
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1. Upper threshold
Consider p ≥ t
We proved that the probability that G(n,p) has isolated vertices is at most n(1 − p)(n − 1). This
approaches zero as n→∞ when p is constant. But here p is a function of n. Now,

n(1− p)(n−1) ≤ n(1− t)(n−1) ≤ n
1−t (1− t)

n ≤ n
1−te

(−t)

n(1− p)(n−1) ≤ n
1−te

(−ln(n)−α(n) ≤ 1
1−te

−α(n)

As n→∞, t→ 0.

1
1−te

−α(n) → 0

Hence proved.

2. Lower threshold
Let p ≤ s. Let X be the random variable which counts the number of isolated vertices. We need to
prove that

P (X = 0) ≤ 1
E(X) − 1 + ∆1

(E(X))2

and further prove that R.H.S → 0 as n→∞.

E(X) = n(1− p)(n−1) ≥ n(1− s)(n−1) = n
1−s (1− s)n ≥ n

1−se
−n(s+s2)

(Using 1− x ≥ e(−x−x2)forx ∈ [0, 1/3])

E(X) = 1
1−se

α(n)+β(n), where β(n) = ln2(n)−2ln(n)+α(n)
n

Now, βn→ 0 as n→∞
=⇒ E(X)→∞ as n→∞
=⇒ 1

E(X) → 0 as n→∞

Now consider, ∆1

E(X)2

∆1 =
∑

v,w∈V v 6=w
P (Xv = 1|notXw = 1)

=⇒ ∆1 =
∑

v,w∈V v 6=w
(1− p)2(n−2)+1

Using the fact that (1− p)2(n−2)+1 edges are likely to exist if no edge exists with a vertex either from
v or w.

∆1 = n(n− 1)(1− p)2n−3

∆1

E(X)2 = n(n−1)(1−p)2n−3

n2(1−p)2(n−1) = (1− 1
n ) ∗ 1

1−p

This tends to 1, as n→∞.
Therefore, we have 1

E(X) − 1 + ∆1

(E(X))2 → 0 as n→∞
Hence Proved.


