CSL851: Algorithmic Graph Theory

Lecture 6: September 24

Lecturer: Anand Srivastav
Scribes: Devashish Tyagi

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Threshold for Subgraph $G(n, p)$

Chebyshev's Inequality gives

$$
P(X=0) \leq \frac{\operatorname{Var}(X)}{E(X)^{2}} \leq \frac{E(X)+\Delta}{E(X)^{2}}=\frac{1}{E(X)}+\frac{\Delta}{E(X)^{2}}
$$

provided that $X=\sum_{i=1}^{m} X_{i}$ and the $X_{i}^{\prime} s$ are $0 / 1$ Random Variables and $\Delta=\sum_{0 \leq i<j \leq m} X_{i} X_{j}$.

Proposition 6.1

$$
\Delta=\sum_{i, j \in[m], i \neq j, X_{i} \sim X_{j}} P\left(A_{i} \wedge A_{j}\right)
$$

with A_{i} reprenting event $X_{i}=1$. This equation can be rewritten as

$$
\Delta=\sum_{X_{i} \sim X_{j}} P\left(A_{i} \wedge A_{j}\right)=\sum_{i} P\left(A_{i}\right) \sum_{j} P\left(A_{j} \mid A i\right)=\sum_{i} P\left(A_{i}\right) \Delta_{i}^{*}
$$

If $\Delta_{i}^{*}=\Delta^{*}$ then

$$
\Delta=E(X) \Delta^{*}
$$

Corollary 6.2 If $E(X) \rightarrow \infty$ and $\frac{\Delta^{*}}{E(X)} \rightarrow 0$, then $X>0$ a.a.s.

Proof:

$$
P(X=0) \leq \frac{1}{E(X)}+\frac{\Delta}{E(X)^{2}}=\frac{1}{E(X)}+\frac{\Delta^{*}}{E(X)}
$$

In the above identity $\frac{1}{E(X)} \rightarrow 0$ and also $\frac{\Delta^{*}}{E(X)} \rightarrow 0$ when $E(X) \rightarrow \infty$. Therefore, $P(X=0) \rightarrow 0$. Hence proved $X>0$ when $E(X) \rightarrow \infty$.

Definition 6.3 Let H be a graph with vertices and e edges. Let's call $\rho(H)=\frac{e}{v}$ density of H. We call H balanced if every subgraph H^{\prime} (not necessarily induced subgraph) has $\rho\left(H^{\prime}\right) \leq \rho(H)$. H is strictly balanced, if any proper subgraph H^{\prime} has $\rho\left(H^{\prime}\right)<\rho(H)$.

Theorem 6.4 Let H be a balanced graph with v vertices and e edges. Let A be the event that H is a subgraph of graphs from $G(n, p)$. Then $p=n^{-v / e}$ is the threshold funtion for A.

Proposition 6.5 We define LTF (Lower threshold function) and UTF (Upper threshold function). We say $r=T(n)$ is a threshold function for some property of $G(n, p)$, if the property does not hold a.a.s. if $p \ll T$ (i.e. $p / T \rightarrow 0$ as $n \rightarrow \infty$) and the property does hold if $p \gg T$ (i.e. $p / T \rightarrow \infty$ as $n \rightarrow \infty$).

Proof: Let S be a set of $|S|=v$ vertices in $G(n, p)(v \ll n)$. Let A_{S} be the event that a graph G from $G(n, p)$ restricted to S, which is G / S contains H as a subgraph. Then

$$
\begin{equation*}
p^{e} \leq P\left(A_{S}\right) \leq v!p^{e} \tag{6.1}
\end{equation*}
$$

Let X_{S} be the indicator variable for A_{S}. 1 when A_{S} holds and 0 otherwise. Define $X=\sum_{|S|=v} X_{S}$. We now have to show $P(X=0) \rightarrow 0$ as $n \rightarrow \infty$ so $X>0$ a.a.s. To show this we invoke Corollary 6.2 $P(X \leq 0) \leq \frac{1}{E(X)}+\frac{\Delta^{*}}{E(X)}$ compute $E(X)$ and Δ^{*} and show $E(X) \rightarrow \infty$ and $\frac{\Delta^{*}}{E(X)} \rightarrow 0$ as $n \rightarrow \infty$.

$$
E(X)=\sum_{|S|=v} E\left(X_{S}\right)=P\left(A_{S}\right)\binom{n}{v}=\theta\left(P\left(A_{S}\right) n^{v}\right)
$$

We now use 6.1
if $p \ll n^{-v / e}$ then $E(X) \rightarrow 0$
if $p \gg n(-v / e)$ then $E(X) \rightarrow \infty$
We now have to compute Δ^{*}. $X_{S} \sim X_{T}$ if they are independent by definition. We write for abbreviation $S \sim T$. This happens if and only if $S \neq T$ and S and T have some common edges or if and only if $|S \cap T|=i$ with $2 \leq i \leq v-1$. Now fix S

$$
\Delta^{*}=\sum_{T \sim S} P\left(A_{T} \mid A_{S}\right)
$$

For each i there are $O\left(n^{v-1}\right)$ choices of T. Fix S, T and consider $P\left(A_{T} \mid A_{S}\right)$. There are $O(1)(v!$ is constant) possible copies of H and T. Since H is balanced each has at most $e i / v$ edges in S . Then atleast there are $e-e i / v$ other edges. So,

$$
\Delta^{*}=\sum_{i=2}^{v-1} O\left(n^{v-1} p^{e-e i / v}\right)=\sum_{i=2}^{v-1} O\left(\left(n^{v-1} p^{e}\right)^{1-i / v}\right)=\sum_{i=2}^{v-1} O\left(\left(n^{v-1} p^{e}\right)\right)=O(E(X))
$$

so $\frac{\Delta^{*}}{E(X)} \rightarrow 0$ as $n \rightarrow \infty$.

