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6.1 Threshold for Subgraph G(n, p)

Chebyshev’s Inequality gives

P (X = 0) ≤ V ar(X)

E(X)2
≤ E(X) + ∆

E(X)2
=

1

E(X)
+

∆

E(X)2

provided that X =
∑m

i=1Xi and the X ′is are 0/1 Random Variables and ∆ =
∑

0≤i<j≤mXiXj .

Proposition 6.1

∆ =
∑

i,j∈[m],i6=j,Xi∼Xj

P (Ai ∧Aj)

with Ai reprenting event Xi = 1. This equation can be rewritten as

∆ =
∑

Xi∼Xj

P (Ai ∧Aj) =
∑
i

P (Ai)
∑
j

P (Aj | Ai) =
∑
i

P (Ai)∆
∗
i

If ∆∗i = ∆∗ then
∆ = E(X)∆∗

Corollary 6.2 If E(X)→∞ and ∆∗

E(X) → 0, then X > 0 a.a.s.

Proof:

P (X = 0) ≤ 1

E(X)
+

∆

E(X)2
=

1

E(X)
+

∆∗

E(X)

In the above identity 1
E(X) → 0 and also ∆∗

E(X) → 0 when E(X) → ∞. Therefore, P (X = 0) → 0. Hence

proved X > 0 when E(X)→∞.

Definition 6.3 Let H be a graph with v vertices and e edges . Let’s call ρ(H) = e
v density of H. We call H

balanced if every subgraph H ’ (not necessarily induced subgraph) has ρ(H ’) ≤ ρ(H). H is strictly balanced,
if any proper subgraph H ’ has ρ(H ’) < ρ(H).

Theorem 6.4 Let H be a balanced graph with v vertices and e edges . Let A be the event that H is a
subgraph of graphs from G(n, p). Then p = n−v/e is the threshold funtion for A.
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Proposition 6.5 We define LTF (Lower threshold function) and UTF (Upper threshold function). We say
r = T (n) is a threshold function for some property of G(n, p), if the property does not hold a.a.s. if p << T
(i.e. p/T → 0 as n→∞) and the property does hold if p >> T (i.e. p/T →∞ as n→∞).

Proof: Let S be a set of |S| = v vertices in G(n, p) (v << n). Let AS be the event that a graph G from
G(n, p) restricted to S, which is G/S contains H as a subgraph. Then

pe ≤ P (AS) ≤ v!pe (6.1)

Let XS be the indicator variable for AS . 1 when AS holds and 0 otherwise. Define X =
∑
|S|=vXS .

We now have to show P (X = 0) → 0 as n → ∞ so X > 0 a.a.s. To show this we invoke Corollary 6.2
P (X ≤ 0) ≤ 1

E(X) + ∆∗

E(X) compute E(X) and ∆∗ and show E(X)→∞ and ∆∗

E(X) → 0 as n→∞.

E(X) =
∑
|S|=v

E(XS) = P (AS)

(
n

v

)
= θ(P (AS)nv)

We now use 6.1
if p << n−v/e then E(X)→ 0
if p >> n( − v/e) then E(X)→∞

We now have to compute ∆∗. XS ∼ XT if they are independent by definition. We write for abbreviation
S ∼ T . This happens if and only if S 6= T and S and T have some common edges or if and only if |S∩T | = i
with 2 ≤ i ≤ v − 1. Now fix S

∆∗ =
∑
T∼S

P (AT | AS)

For each i there are O(nv−1) choices of T. Fix S, T and consider P (AT | AS). There are O(1) (v! is constant)
possible copies of H and T . Since H is balanced each has at most ei/v edges in S. Then atleast there are
e− ei/v other edges. So,

∆∗ =

v−1∑
i=2

O(nv−1pe−ei/v) =

v−1∑
i=2

O((nv−1pe)1−i/v) =

v−1∑
i=2

O((nv−1pe)) = O(E(X))

so ∆∗

E(X) → 0 as n→∞.


