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This lecture’s notes covers the last lecture on preliminary knowledge of probability needed to study random
graphs and introduction to Random Graph Model & its properties.

13.1 Preliminaries continued

Lemma 13.1 Let X be a random variable with a ≤ X ≤ b for some a,b ∈ R. Suppose E[X] = 0, then for
any t > 0 we have

E[etX ] ≤ e

t2 (b − a)2

8 (13.1)

Here E[etX ] is also known as the Moment Generating Function.

Proof: The function etx is convex on x. Thus, as it can be seen from the graph below,
for x ∈ [a, b] we have,

etx ≤ [
(x− a)

(b− a)
etb +

(x− a)

(b− a)
eta ] (13.2)
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Now, taking expectation of both sides we get,

E[etx ] ≤ E[
(x − a)

(b − a)
etb +

(x− a)

(b− a)
eta ]

≤ (E[x] − a)

(b− a)
etb +

(E[x]− b)

(b − a)
eta (13.3)

≤ beta − aetb

b− a
(13.4)

Now consider, suitable function h(t) s.t.

eh(t) =
beta − aetb

b− a
(13.5)

It can be seen that for

f(x) = −px+ ln ((1− p) + pex )

where,

p =
a

b− a
(13.6)

we get for t̂ = t(b − a) and h(t) = f(t̂), h(t) satisfies the the eq. 13.4

we are done if h(t) ≤ t2(b− a)2

8
, which can be proven using taylor expansion of f at 0.

h(t) = f(t̂) = f(0) +
f ‘(0)

1!
t̂+

f“(η)

2!
t̂2 : η ∈ [0, t̂]

Now, f(0) = 0, f ‘(0) = 0) and f ′′(x) =
p(1− p)ex

(p+ (1− p)ex)2

As h(t) =
f“(η)

2
t̂2, It will be enough to show that f“(x) ≤ 1

4

as then, h(t) ≤ t̂2

8
=

t2(b − a)2

8

f ′′(x) =
p(1− p)ex

(p+ (1− p)ex)2
can be written as

αβ

(α+ β)2
for α = p,β = (1− p)ex

By using A.M. ≥ G.M.we get
√
αβ ≤ α+ β

2
⇒ αβ ≤ (α+ β)2

4
Thus proved
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Proof of theorem 12.9 Hoeffdings inequality Let independent and indentically distributed random vari-
ables Xi : 1 ≤ i ≤ n, be uniformly bounded as ai ≤ Xi ≤ bi, 1 ≤ i ≤ n. Also, let X =

∑n

i=1 Xi and
ci = bi − ci. Then for λ ≥ 0

[P ((X − E[X ]) ≥ λ) ≤ 2e

−2λ2

∑n

i=1 ci (13.7)

Proof:: Let t > 0, then using g(x) = etx in Markov’s inequality (Theorem 12.7) we get

P(X − E[X ] ≥ λ) ≥ e−tλ
E[et(X−E[X])]

= e−tλ
E[et

∑
n

i=1 ci ]

= e−tλ
E[et

∑
n

i=1 Xi−E[Xi]

= e−tλ
E[

n
∏

i=1

etXi−E[Xi]]

= e−tλ

n
∏

i=1

E[etXi−E[Xi]]

≤ e−tλ.e
1
8 t

∑
n

i=1(bi−ai)
2] using lemma 12.1 proved above

≤ e−tλ+ t
2

8 +
∑

n

i=1(ci)
2] solving quadratic in t for minima

≤ e
−2λ2

∑
n
i=1

(ci)
2

(13.8)

13.2 Basics of Random Graph Model G(n,p)

Let p ∈ [0, 1] and let V = {v1, v2...vn} ≃ {1, 2.., n} be set of nodes in a graph. For every potential edge
e = (i, j) toss a p-biasied coin independently for all edges to decide whether edge e(i,j) is in graph or not.
The outcome of this random experiment is a graph and this generation process G(n,p) is called Random
Graph Model. The random graph is genrated by sequence of p-bernouli random variable X (e for e ∈ 2V .
Formally, G(n, p) is finite probability space, with sample space Ω being set of all graphs on V, for a graph G

P({G}) = p|E(G)|(1 − p)N−|E(G)| (13.9)

Here E(G) is set of edges of G and N =
n(n− 1)

2
= |2V |

Definition 13.2 Let Q be a graph property. We say that graph from G(n,p) has a property Q assymototically
almost surely (a.a.s)
if

limn→∞ P(graph from G(n,p) has property Q) −→ 1

Proposition 13.3 Graph from G(n,p) do not have isolated vertices is assymototically almost surely (a.a.s)
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Proof: For v ∈ V , define R.V

Xv =

{

1 : if v is isolated

0 : otherwise
(13.10)

Let,

X =
∑

v∈V

Xv

Then desired event is X = 0, while bad event being X ≥ 1 Now,

E[Xv] = P(Xv = 1) = (1 − p)n−1

And,

P(X ≥ 1) ≤ E[X ]

1

= E[
∑

v∈V

Xv]

=
∑

v∈V

E[Xv]

= n(1− p)n−1 (13.11)

Now using L-Hospital rule it can be shown that

limn→∞ n(1− p)n−1 −→ 0

by writting it as

limn→∞
n

(1− p)1−n

limn→∞ (1− p)n−1. ln(1 − p)

13.2.1 Further reading

L’Hospital’s Rule http://mathworld.wolfram.com/LHospitalsRule.html

http://mathworld.wolfram.com/LHospitalsRule.html

