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In this lecture we would study about Chordal Graphs.

2.1 Induced Subgraph

Definition 2.1 Let G = (V,E) be a Graph.

Let V ′ ⊆ V be a subset of vertices of G.

The subgraph of G induced by V ′ is the subgraph G′ = (V ′, E′) of G that has E′ = E ∩ (V ′ × V ′).

That is, it contains all the edges of G that connect elements of the given subset of the vertex set of G and
only those edges.

2.2 Chordal Graphs

Definition 2.2 A Chordal Graph is a graph that does not contain an induced cycle of length greater than 4.

In other words, it is a graph in which every cycle of length four and greater has a cycle chord.

Figure 2.1: A chordal graph
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Theorem 2.3 A graph G is chordal iff it has a perfect elimination ordering.

Proof: The easy part is to show that if G has a perfect elimination ordering, then it is chordal. Suppose,
for contradiction, that this is false. Let G be a graph with a perfect elimination ordering and suppose there
is a chordless cycle v1,v2,. . . ,vl of length l ≥ 4 in G. Let vi be the vertex in the cycle that occurs first
in the perfect elimination ordering. Then vi−1 and vi+1 are neighbors of vi in G that occur later in the
ordering. Since the ordering is perfect, there must be an edge between vi−1 and vi+1, but this contradicts
the assumption that the cycle is chordless.

Now, show the converse, that if G is chordal then it has a perfect elimination ordering. For that we would
need the concept of seperators.

Definition 2.4 A separator is a partition V = S∪A∪B of the vertices such that there are no edges between
A and B.

Definition 2.5 Given two non-adjacent vertices a and b, an (a, b)-separator is a separator V = S ∪A ∪B
such that a ∈ A and b ∈ B.

Figure 2.2: A (a, b)-separator

Definition 2.6 Given two non-adjacent vertices a and b, a minimal (a, b)-separator is an (a, b)-separator
V = S ∪A ∪B such that no subset of S is an (a, b)-separator.

Definition 2.7 A simplicial vertex of a graph G is a vertex v such that the neighbours of v form a clique in
G.

Lemma 2.8 Given a chordal graph G = (V,E) and two vertices a, b ∈ V such that (a, b) /∈ E, any minimal
a-b separator is a clique.

Proof: We would prove this by contradiction. Let S be a minimal (a, b)-separator. For any vertex set T ,
let GT be the graph induced by T . Then GV−S has a number of connected components; one contains a (let
those vertices be A), one contains b (let those vertices be B), and there may be other connected components.

Consider any two vertices x, y in the minimal a-b seperator S and suppose that (x, y) /∈ E.

Note first that x must have a neighbour ax in A, for otherwise S − x would also be an (a,b)-separator,
contradicting the minimality of S. Likewise, y has a neighbour ay in A.
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Since GA is connected, there is a path from ax to ay using only vertices in A. Thus, there exists a path
from x to y for which all intermediate vertices are in A. Among all such paths, let the shortest one be
x,a1,a2,. . . ,ak,y and note that it has length at least 2 since x and y are not adjacent. Similarly we can find
a shortest path from x to y for which all intermediate vertices are in B.

Figure 2.3: Minimal (a,b)-separator is a clique

Combining the two paths yields a cycle of length at least 4, which must have a chord since G is chordal.
However, there is no chord in the cycle from x or y to either A or B since we chose the shortest paths from x
to y in each component. Neither is there an edge from A to B since A and B are two different components.
The only other possibility is for there to be a chord between x and y, but x and y are not adjacent. So we
have a contradiction, which means that (x, y) ∈ E.

Clearly, if G has a perfect elimination order, then the last vertex in it is simplicial in G. This gives rise to a
simple algorithm to find a perfect elimination order if one exists:

Algorithm: Find perfect elimination order.
For i = n, . . . , 1
Let Gi be the graph induced by V vi+1,. . . ,vn.
Test whether Gi has a simplicial vertex v.
If no, then stop. Gi (and therefore G) has no perfect elimination order.
Else, set vi = v.
v1,. . . ,vn is a perfect elimination order.

Note that if G is chordal, then after deleting some vertices, the remaining graph is still chordal. So in
order to show that every chordal graph has a perfect elimination order, it suffices to show that every chordal
has a simplicial vertex; the above algorithm will then yield a perfect elimination order.

Now we show that every chordal graph has a simplicial vertex. In fact, we show a slightly stronger statement,
which is needed for the induction hypothesis.

Lemma 2.9 A connected chordal graph is either a clique, or it contains two non adjacent simplicial vertices.

Proof: If G is chordal and it is a clique we are done. Assume that it is not a clique. Therefore we have two
non-adjacent vertices a, b in G. Consider the minimal a− b separator,S.
Induction on A ∪ S(refer to the definition above).
If it is a clique then a is a simplicial vertex or it has two non adjacent simplicial vertices a1 and a2, both of
which cannot lie in S as S is a clique. Therefore either a1 or a2 lie in A. Similarly we can find a second non
adjacent simplician vertex when we consider B.
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2.3 Independent Set

The maximal independent set problem is a NP-Hard Problem on general graphs but on graphs having a
partial elimination ordering this problem can be solved efficiently.

Claim 2.10 There is an efficient algorithm to solve the independent set problem on graphs with a partial
elemination ordering.

Figure 2.4: Two graphs with a vertex order and the result of the greedy algorithm for Independent Set.

Proof: Algorithm: Scan the vertices in order, and for each vi, add vi to I if none of its predecessors has
been added to I.
Scan Order: Let v1, v2,. . . , vn be a perfect elimination order. Then the greedy algorithm applied with order
vn,vn−1,. . . ,v1 gives a maximum independent set.


