COL758: Advanced Algorithms

Lecture 8: January 28

Lecturer: Naveen Garg

Note: *LATEX* template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Integral LP for Set Cover

In last class, we have seen what an integral linear program for set cover problem. For Primal

$$\min \sum_{S} C_j x_j$$

s.t.
$$\forall e_i \in U : \sum_{j:e_i \in S_j} x_j \ge 1$$

$$x_j \ge 0$$

For the Dual

$$\begin{aligned} \max & \sum_{i} y_{i} \\ \text{s.t.} \\ \forall S_{j} \sum_{i:e_{i} \in S_{j}} y_{i} \leq C_{j} \\ & y_{i} \geq 0 \end{aligned}$$

8.2 Fractional Solution

We give requirements to each elements. Initially its value is 1. At each step pick the set which minimizes

$$\min \quad \frac{C_j}{\sum_{e_i \in S_j} r_i}$$

Say the picked set is denoted with j then do

$$x_j \leftarrow x_j + \epsilon$$

$$\forall e_i \in S_j : y_i \leftarrow y_i + \rho_j r_i [1 - \frac{1}{1 + \epsilon}]$$
$$r_i \leftarrow \frac{r_i}{1 + \epsilon}$$

where $\rho_j = \frac{C_j}{\sum_{e_i \in S_j} r_i}$

For termination, we put constraint on r_i such that if $r_i < \delta$ then drop e_i from further consideration. We will repeat above step until there is no element remaining for consideration.

Spring 2019

Scribe: Pawan Rajotiya

Analysis

For every element, initially $r_i = 1$ and finally $r_i < \delta$

Every step decrease in r_i is by a factor of $\frac{1}{1+\epsilon}$

This implies that every element e_i is at least covered $\log_{1+\epsilon} \frac{1}{\delta}$

If an element e_i is covered then one of the sets containing it has its x value increase by ϵ

$$\sum_{e_i \in S_j} x_j \ge \epsilon \log_{1+\epsilon} \frac{1}{\delta}$$
$$X_j = \frac{\sum_{e_i \in S_j} x_j}{\log_{1+\epsilon} \frac{1}{\delta}} \ge 1$$

 X_j is a feasible solution for primal LP. In any step,

increase in
$$\sum C_j x_j = C_j \epsilon$$

increase in $\sum_i y_i = \frac{\epsilon}{1+\epsilon} C_j$

At each step

$$(1+\epsilon)($$
increase in $\sum_{i} y_i) =$ increase in $\sum_{i} C_j x_j$

For any set picked the ρ of that set is minimum. The increase in y_i for any element e_i is ρ times decrease in r_i . At each step,

increase in
$$\sum y_i \leq \text{decrease}$$
 in $\sum r_j \rho_j$ of S_j

Consider any set S_j , initially

$$\sum_{e_i \in S_j} r_i = |S_j|$$

and finally it is at least δ .

 $\sum_{e_i \in S_j} y_i$ is at most the total area under curve $\frac{C_j}{x}$ between δ and $|S_j|$.

$$\sum_{e_i \in S_j} y_i \le C_j \log \frac{|S_j|}{\delta}$$

This is not a feasible solution for Dual. Let's scale it. Assume n is total number of elements in S_j .

$$Y_j = \frac{y_i}{\log \frac{n}{\delta}}$$
 is a feasible solution

8.3 Relation between the primal and dual solution

$$\frac{\sum C_j X_j}{\sum Y_j} = \frac{\sum C_j x_j}{\epsilon \log_{1+\epsilon} \frac{1}{\delta}} * \frac{\log \frac{n}{\delta}}{\sum y_i}$$
$$= \frac{(1+\epsilon) \log \frac{n}{\delta}}{\epsilon \log_{1+\epsilon} \frac{1}{\delta}}$$
$$= \frac{(1+\epsilon) \log \frac{n}{\delta}}{\epsilon \frac{\log \frac{1}{\delta}}{\log(1+\epsilon)}}$$

for small ϵ

Assume,

$$\begin{split} \delta &= \frac{1}{n^{\frac{1}{\epsilon}}} \\ &= (1+\epsilon) * \frac{\log n^{1+\frac{1}{\epsilon}}}{\log n^{\frac{1}{\epsilon}}} \\ &= (1+\epsilon)^2 \end{split}$$

 $= \frac{(1+\epsilon)\log\frac{n}{\delta}}{\log\frac{1}{\delta}}$

For small $\epsilon,$ the solution for primal and dual LP is very near the optimal solution.

8.3.1 Running Time

Each elements is covered

$$\log_{1+\epsilon} \frac{1}{\delta} = \frac{1}{\epsilon^2} \log n$$

times. So total number of steps for n elements will be

$$\frac{n}{\epsilon^2} * \log n$$

NOTE : More small the ϵ is, more better the solution will be but the time of execution will be more too.