COL758: Advanced Algorithms

Lecture 8: January 28
Lecturer: Naveen Garg
Scribe: Pawan Rajotiya
Note: ${ }^{A} T_{E} X$ template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Integral LP for Set Cover

In last class, we have seen what an integral linear program for set cover problem. For Primal

$$
\begin{aligned}
& \min \sum_{S} C_{j} x_{j} \\
& \text { s.t. } \\
& \forall e_{i} \in U: \sum_{j: e_{i} \in S_{j}} x_{j} \geq 1 \\
& x_{j} \geq 0
\end{aligned}
$$

For the Dual

$$
\begin{aligned}
& \max \sum_{i} y_{i} \\
& \text { s.t. } \\
& \forall S_{j} \sum_{i: e_{i} \in S_{j}} y_{i} \leq C_{j} \\
& y_{i} \geq 0
\end{aligned}
$$

8.2 Fractional Solution

We give requirements to each elements. Initially its value is 1 .
At each step pick the set which minimizes

$$
\min \frac{C_{j}}{\sum_{e_{i} \in S_{j}} r_{i}}
$$

Say the picked set is denoted with j then do

$$
\begin{array}{r}
x_{j} \leftarrow x_{j}+\epsilon \\
\forall e_{i} \in S_{j}: y_{i} \leftarrow y_{i}+\rho_{j} r_{i}\left[1-\frac{1}{1+\epsilon}\right] \\
r_{i} \leftarrow \frac{r_{i}}{1+\epsilon}
\end{array}
$$

where $\rho_{j}=\frac{C_{j}}{\sum_{e_{i} \in S_{j}} r_{i}}$
For termination, we put constraint on r_{i} such that if $r_{i}<\delta$ then drop e_{i} from further consideration.
We will repeat above step until there is no element remaining for consideration.

Analysis

For every element, initially $r_{i}=1$ and finally $r_{i}<\delta$
Every step decrease in r_{i} is by a factor of $\frac{1}{1+\epsilon}$
This implies that every element e_{i} is at least covered $\log _{1+\epsilon} \frac{1}{\delta}$
If an element e_{i} is covered then one of the sets containing it has its x value increase by ϵ

$$
\begin{aligned}
& \sum_{e_{i} \in S_{j}} x_{j} \geq \epsilon \log _{1+\epsilon} \frac{1}{\delta} \\
& X_{j}=\frac{\sum_{e_{i} \in S_{j}} x_{j}}{\log _{1+\epsilon} \frac{1}{\delta}} \geq 1
\end{aligned}
$$

X_{j} is a feasible solution for primal LP.
In any step,

$$
\begin{aligned}
& \text { increase in } \sum C_{j} x_{j}=C_{j} \epsilon \\
& \text { increase in } \sum_{i} y_{i}=\frac{\epsilon}{1+\epsilon} C_{j}
\end{aligned}
$$

At each step

$$
(1+\epsilon)\left(\text { increase in } \sum_{i} y_{i}\right)=\text { increase in } \sum_{i} C_{j} x_{j}
$$

For any set picked the ρ of that set is minimum. The increase in y_{i} for any element e_{i} is ρ times decrease in r_{i}. At each step,

$$
\text { increase in } \sum y_{i} \leq \text { decrease in } \sum r_{j} \rho_{j} \text { of } S_{j}
$$

Consider any set S_{j}, initially

$$
\sum_{e_{i} \in S_{j}} r_{i}=\left|S_{j}\right|
$$

and finally it is at least δ.
$\sum_{e_{i} \in S_{j}} y_{i}$ is at most the total area under curve $\frac{C_{j}}{x}$ between δ and $\left|S_{j}\right|$.

$$
\sum_{e_{i} \in S_{j}} y_{i} \leq C_{j} \log \frac{\left|S_{j}\right|}{\delta}
$$

This is not a feasible solution for Dual. Let's scale it. Assume n is total number of elements in S_{j}.

$$
Y_{j}=\frac{y_{i}}{\log \frac{n}{\delta}} \text { is a feasible solution }
$$

8.3 Relation between the primal and dual solution

$$
\begin{aligned}
\frac{\sum C_{j} X_{j}}{\sum Y_{j}} & =\frac{\sum C_{j} x_{j}}{\epsilon \log _{1+\epsilon} \frac{1}{\delta}} * \frac{\log \frac{n}{\delta}}{\sum y_{i}} \\
& =\frac{(1+\epsilon) \log \frac{n}{\delta}}{\epsilon \log _{1+\epsilon} \frac{\frac{1}{\delta}}{}} \\
& =\frac{(1+\epsilon) \log \frac{n}{\delta}}{\epsilon \frac{\log \frac{1}{\delta}}{\log (1+\epsilon)}}
\end{aligned}
$$

for small ϵ

$$
=\frac{(1+\epsilon) \log \frac{n}{\delta}}{\log \frac{1}{\delta}}
$$

Assume,

$$
\begin{gathered}
\delta=\frac{1}{n^{\frac{1}{\epsilon}}} \\
=(1+\epsilon) * \frac{\log n^{1+\frac{1}{\epsilon}}}{\log n^{\frac{1}{\epsilon}}} \\
=(1+\epsilon)^{2}
\end{gathered}
$$

For small ϵ, the solution for primal and dual LP is very near the optimal solution.

8.3.1 Running Time

Each elements is covered

$$
\log _{1+\epsilon} \frac{1}{\delta}=\frac{1}{\epsilon^{2}} \log n
$$

times. So total number of steps for n elements will be

$$
\frac{n}{\epsilon^{2}} * \log n
$$

NOTE : More small the ϵ is, more better the solution will be but the time of execution will be more too.

