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8.1 Integral LP for Set Cover

In last class, we have seen what an integral linear program for set cover problem. For Primal

min
∑
S

Cjxj

s.t.

∀ei ∈ U :
∑

j:ei∈Sj

xj ≥ 1

xj ≥ 0

For the Dual

max
∑
i

yi

s.t.

∀Sj
∑

i:ei∈Sj

yi ≤ Cj

yi ≥ 0

8.2 Fractional Solution

We give requirements to each elements. Initially its value is 1.
At each step pick the set which minimizes

min
Cj∑
ei∈Sj ri

Say the picked set is denoted with j then do

xj ← xj + ε

∀ei ∈ Sj : yi ← yi + ρjri[1−
1

1 + ε
]

ri ←
ri

1 + ε

where ρj =
Cj∑

ei∈Sj
ri

For termination, we put constraint on ri such that if ri < δ then drop ei from further consideration.
We will repeat above step until there is no element remaining for consideration.
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Analysis

For every element, initially ri = 1 and finally ri < δ

Every step decrease in ri is by a factor of 1
1+ε

This implies that every element ei is at least covered log1+ε
1
δ

If an element ei is covered then one of the sets containing it has its x value increase by ε

∑
ei∈Sj

xj ≥ ε log1+ε

1

δ

Xj =

∑
ei∈Sj xj

log1+ε
1
δ

≥ 1

Xj is a feasible solution for primal LP.
In any step,

increase in
∑

Cjxj = Cjε

increase in
∑
i

yi =
ε

1 + ε
Cj

At each step

(1 + ε)(increase in
∑
i

yi) = increase in
∑
i

Cjxj

For any set picked the ρ of that set is minimum. The increase in yi for any element ei is ρ times decrease in
ri. At each step,

increase in
∑

yi ≤ decrease in
∑

rjρj of Sj

Consider any set Sj , initially ∑
ei∈Sj

ri = |Sj |

and finally it is at least δ.∑
ei∈Sj yi is at most the total area under curve

Cj
x between δ and |Sj |.∑

ei∈Sj

yi ≤ Cj log
|Sj |
δ

This is not a feasible solution for Dual. Let’s scale it. Assume n is total number of elements in Sj .

Yj =
yi

log n
δ

is a feasible solution

8.3 Relation between the primal and dual solution∑
CjXj∑
Yj

=

∑
Cjxj

ε log1+ε
1
δ

∗
log n

δ∑
yi

=
(1 + ε) log n

δ

ε log1+ε
1
δ

=
(1 + ε) log n

δ

ε
log 1

δ

log(1+ε)
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for small ε

=
(1 + ε) log n

δ

log 1
δ

Assume,

δ =
1

n
1
ε

= (1 + ε) ∗ log n1+
1
ε

log n
1
ε

= (1 + ε)2

For small ε, the solution for primal and dual LP is very near the optimal solution.

8.3.1 Running Time

Each elements is covered

log1+ε

1

δ
=

1

ε2
log n

times. So total number of steps for n elements will be

n

ε2
∗ log n

NOTE : More small the ε is, more better the solution will be but the time of execution will be more too.


