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7.1 Covering LP

minimize cTx

subject to Ax ≥ b
x ≥ 0

An example of this type of LP is the Set Cover Problem.

7.2 Set Cover Problem

The set cover problem is defined as follows

Input: A set of elements U = {e1, e2, . . . , en}. A set S = {S1, S2, . . . , Sm} where ∀ i Si ⊆ U .

Output: A set O ⊆ S of minimum size such that
⋃

Si∈O
Si = U.

Example:

U = {e1, e2, e3, e4, e5}
S1 = {e1, e3, e5}
S2 = {e2, e4, e5}
S3 = {e3, e4}
S4 = {e1, e5}
S5 = {e1, e2, e4}

The Optimal Set Covers in the above instance are {S1, S2},{S1, S5}
A variant of the above problem is the Min Cost Set Cover where every set has a cost associated

with it and the problem is to find the set cover with minimum total cost.
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Integer Program for Set Cover

• Firstly we have a variable xj ∈ {0, 1} for every set Sj which is set to 1 if the set is picked and
0 otherwise.

• Since the problem constraints that a possible set cover must cover all elements it implies that
for every element at least one of the set it belongs to must be selected.

• The objective is to minimize the number of sets covered.

The following Integer program accounts for all the above points.

minimize
∑
j

xj

subject to
∑

j:ei∈Sj

xj ≥ 1 ∀ei ∈ U

xj ∈ {0, 1} ∀Sj

LP for Set Cover

Below is the LP for Set Cover after relaxing the Integer Program.

minimize
∑
j

xj

subject to
∑

j:ei∈Sj

xj ≥ 1 ∀ei ∈ U

xj ≥ 0 ∀Sj

Note that the above LP doesn’t require the constraint xj ≤ 1 as for any feasible solution with a
variable xj > 1 we can set xj = 1 and it still is a feasible solution with a better objective function
since the constraints only demand

∑
j:ei∈Sj

xj ≥ 1.
Similarly the LP for the Min Cost Set Cover is

minimize
∑
j

cjxj

subject to
∑

j:ei∈Sj

xj ≥ 1 ∀ei ∈ U

xj ≥ 0 ∀Sj
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Dual for Set Cover

Below is the Dual for Set Cover LP.

max
∑
i

yi

subject to
∑

i:ei∈Sj

yi ≤ 1 ∀Sj

yi ≥ 0 ∀ei ∈ U

and the Dual for the Min Cost Set Cover

max
∑
i

yi

subject to
∑

i:ei∈Sj

yi ≤ cj ∀Sj

yi ≥ 0 ∀ei ∈ U

An interpretation for the above Dual is that all the sets Sj have a volume cj and we are assigning
each element some volume and the problem is to find an assignment for which the total volume of
all the elements is maximised constrained by the rule that for no set the total volume of elements
in it is greater than the volume of the set.

7.3 Greedy Algorithm

Below is a greedy algorithm for the Min Cost Set Cover Problem

Algorithm 1: Greedy Set Cover Algorithm

Data: U,{S1, S2, . . . , Sm}
Result: A set cover S

1 S ← φ;
2 X ← φ;
3 while X 6= U do
4 j = argmin

j

cj
|Sj−X| ;

5 S ← S ∪ {Sj};
6 X ← S ∪ Sj ;

7 end

The above algorithm basically picks the set with the least cost to number of uncovered elements
ratio till a set cover is achieved.1

1The same algorithm and analysis follows for trivial Set Cover with no costs by setting cj = 1
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Analysis

Claim: The Greedy Set Cover Algorithm is an O(log n) approximation.

Proof: The following proof will use the above algorithm to create a feasible solution to the
Primal problem and the Dual problem and show that they are only O(log n) factor apart.

Say the algorithm picks the sets Sj1 , Sj2 , . . . , Sjk in the same order. We set the Primal and Dual
variables as follows.

Init: xj = 0 yi = 0 ∀ i, j

Step 1: xj1 = 1 yi =
cj1
|Sj1 |

∀ i : ei ∈ Sj1

Step 2: xj2 = 1 yi =
cj2

|Sj2 |
∀ i : ei ∈ Sj2

...

Step k: xjk = 1 yi =
cjk
|Sjk |

∀ i : ei ∈ Sjk

Where Sjp = Sjp \ {
⋃p−1

q=1 Sjq}
The increment in the primal objective function at pth step is cJp . And the increment in dual

objective function is
∑

i:ei∈Sjp
yi. Since ∀

ei∈Sjp

yi =
cjp

|Sjp |
the increment in dual objective solution

evaluates to cJp . ∑
j

cjxj =
∑
i

yi

The Primal variables form a feasible solution by termination condition of the algorithm and the
definition of the LP.

But for the Dual variables the constraints might be violated. Consider for a set Sp the elements
e1, e2, . . . , e|Sp| which were covered in the same order. When e1 was covered by some set Sq1 from
the condition of greedy algorithm we have that

y1 =
cq1
|Sq1 |

≤ cp
|Sp|

. And similarly for e2 we have that

y2 =
cq2
|Sq2 |

≤ cp
|Sp| − 1

and so on.

y|Sp| =
cq|Sp|

|Sq|Sp| |
≤ cp

1

Note that q2 can be the same as q1 but the property still holds as
cp
|Sp| <

cp
|Sp|−1 .
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∑
i:ei∈Sp

yi ≤
cp
|Sp|

+
cp

|Sp| − 1
+ . . .

cp
1

≤ cp(1 +

∫ |Sp|

1

1

x
dx)

≤ cp(1 + ln(|Sp|))
≤ cp(1 + ln(n))

Where n is the total number of elements.
Hence by scaling all the dual variables by (1 + ln(n)) we can create a feasible dual solution.

yi =
yi

(1 + ln(n))

.
The objective function value of this new dual solution is∑

i

yi =
1

(1 + ln(n))

∑
i

yi =
1

(1 + ln(n))

∑
j

cjxj

Since the optimal LP solution lies between feasible primal solutions and feasible dual solutions∑
i

yi ≤ OPT ≤
∑
j

cjxj

And from the fact that the Optimal Integral Solution lies between the optimal LP solution and
Greedy Integral solution we have that

∑
i

yi ≤ OPT≤ OPTIntegral ≤
∑
j

cjxj

1

(1 + ln(n))

∑
j

cjxj ≤ OPT≤ OPTIntegral ≤
∑
j

cjxj

Finally, we have that ∑
j

cjxj ≤ (1 + ln(n))OPTIntegral


