
COL758: Advanced Algorithms Spring 2019

Lecture 3: January 10
Lecturer: Naveen Garg Scribe: Jai Moondra

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Previous lecture

Linear program duality:

1. How to write a dual

2. Strong and weak duality theorems

3. Complementary slackness

Max-flows:

1. Path decomposition

2. LP for max-flow using paths

3.2 Path LP for max-flow and its dual

The max-flow problem

Given a directed graph G = (V,E), s, t ∈ V , and positive edge capacities c : E → R+, we define a flow in
the graph to be a function f : E → R+ ∪ {0} such that

• f(e) ≤ ce ∀e ∈ E (capacity constraint)

•
∑
e∈δin(v) f(e) =

∑
e∈δout(v)

f(e) ∀v ∈ V − {s, t} (flow conservation)

Given a flow function f , the total flow from s to t was defined as∑
e∈δout(s)

f(e)−
∑

e∈δin(s)

f(e)

The problem is to maximize the total flow.

We saw in the previous lecture that every flow can be decomposed into flow along s − t paths. Denote
by P the set of all s− t paths.

The linear program and its dual

We saw the following linear program for the max-flow problem in the previous lecture: for every path pi ∈ P,
we have a variable fi that denotes the flow along path pi:

max
∑
pi∈P

fi

subject to
∑
i:e∈pi

fi ≤ ce ∀e ∈ E

3-1



Lecture 3: January 10 3-2

fi ≥ 0 ∀i

For the dual of this linear program, we introduce a variable le for every edge e, corresponding to the
appropriate constraint. Then, the dual is:

min
∑
e∈E

cele

subject to
∑
e∈pi

le ≥ 1 ∀pi ∈ P

le ≥ 0 ∀e ∈ E

We can interpret this linear program as assigning a non-negative length to each edge such that the length
of the shortest s− t path (that is, the sum of lengths of the edges on this path) under this length function
is 1. Under these constraints, we seek to minimize the value

∑
e cele.

Cuts and 0− 1 solutions to the dual

Given any s − t cut (S, V − S) (which we call the cut formed by S), assign le = 1 for each edge e one of
whose end-points lies in S and the other in V − S (we say that these edges form the cut (S, V − S)), assign
le = 1. For all other edges e, assign le = 0.

Now, for every s − t cut, every s − t path must have an edge e that is a part of the cut. This means
that the solution we created above to the dual is a feasible one, since by our assignment, every s − t path
now has length at least 1.

This means that every cut corresponds to a 0 − 1 feasible solution to the dual, and the size of the cut
(the total cost of edges forming the cut) is an upper bound on the optimum for the dual, which we will call
OPT.

We will now show that in fact, there exists an optimum solution to the dual which corresponds to a cut. By
strong duality, this will imply that the max-flow in the graph is equal to the min-cut.

In the following example, the cut edges are in blue, and are assigned le = 1. One can observe that this
is a feasible solution to the dual because every s− t path contains at least one of the four edges forming the
cut and hence has length at least 1.

a

s

b

c

g

d

t

0

0

0

0

1

0

1

1

1

0

0

We now claim the following: given any feasible solution to the dual with objective function value α, we can
find a cut with cost β such that β ≤ α. But β is also the objective function value for the corresponding 0−1
solution.
Hence, we conclude that there must be an optimum dual solution that corresponds to a cut.



Lecture 3: January 10 3-3

3.3 Optimal solution that is a cut

Convex decomposition of any feasible solution into cuts

For any cut Ci, let the cost of this cut (the sum of costs of edges across the cut) be ci. Suppose we are given
a feasible solution l to the dual. Let the cost of this solution be c. We will show that this feasible solution
can be ’decomposed’ into cuts C1, C2, . . . , Ct such that

c = λ1c1 + λ2c2 + . . .+ λtct

where each λi ∈ (0, 1] and
∑t
i=1 λi = 1. This is called a convex decomposition of c into c1, c2, . . . , ct.

Now, there exists at least one i such that ci ≤ c because otherwise,

c =

t∑
i=1

λici >

t∑
i=1

λic = c

t∑
i=1

λi = c

This implies that there is a cut Ci such that ci ≤ c. Therefore, the corresponding 0− 1 solution to the cut
Ci is at least as good as the feasible solution.

In particular, this means that there is a cut for which the corresponding 0 − 1 solution is an optimum
solution. Let this cut be called C∗. Our claim implies that there can be no other cut whose cost is less than
cost(C∗).

Strong duality states that the optimum value for the path max-flow LP is equal to the optimum value
for its dual. The optimum value for the dual is cost(C∗), and the optimum value for the primal is the value
of max-flow in the graph. Thus, our claim also implies that cost(C∗) is equal to the max-flow in the graph,
thus proving the max-flow min-cut theorem.

We now illustrate with example an algorithm which achieves this convex decomposition (without proof).
We have a continuous notion of time and we start at s at time 0, and traverse the edges of the graph as in
Dijkstra’s algorithm, under the lengths le of the solution to the dual.

We maintain a cut at each time t, which is simply formed by the set of vertices we have reached upto
point t. As we reach new vertices, we keep adding them to the cut, thus updating the cut. For any cut Ci,
the corresponding coefficient λi is the length of the time interval for which we had that cut in the algorithm.

Given the solution l, first assign the length le to edge e for all e ∈ E. The lengths le’s are in blue while the
edge capacities are in red.

s

a b

c d

t

3, 1/3

4, 1/3

10, 0

2, 1/3

7, 1/3

5, 2/3

6, 1/3

The total cost of this solution is

c = 3× 1

3
+ 10× 0 + 5× 2

3
+ 4× 1

3
+ 7× 1

3
+ 2× 1

3
+ 6× 1

3
=

32

3



Lecture 3: January 10 3-4

Now, we begin at s at time 0. We move outward from s in all directions, covering length ∆t in time ∆t.
Until time t = 1/3, we stay in the cut corresponding formed by {s} (denoted in red):

s

a b

c d

t

3, 1/3

4, 1/3

10, 0

2, 1/3

7, 1/3

5, 2/3

6, 1/3

At time t = 1/3, we reach a, and since lab = 0, we also immediately reach b, and we have also reached c so
that the cut at this time is {s, a, b, c}.

From time t = 1/3 to time t = 2/3, the cut is formed by {s, a, b, c}, as shown:

s

a b

c d

t

3, 1/3

4, 1/3

10, 0

2, 1/3

7, 1/3

5, 2/3

6, 1/3

At time t = 2/3, we reach vertex d. From time t = 2/3 to time t = 1, the cut is formed by {s, a, b, c, d}:

s

a b

c d

t

3, 1/3

4, 1/3

10, 0

2, 1/3

7, 1/3

5, 2/3

6, 1/3

Therefore, the solution with cost c can be decomposed into these three cuts C1 = {s}, C2 = {s, a, b, c}, C3 =
{s, a, b, c, d}, such that

c =

(
1

3
− 0

)
c1 +

(
2

3
− 1

3

)
c2 +

(
1− 2

3

)
c3 =

1

3
c1 +

1

3
c2 + 1

1

3
c3

The weight of a cut comes from the total time for which that particular cut was being traversed during the
algorithm.



Lecture 3: January 10 3-5

And in fact, we can conclude the above equation from something stronger. We can write every solution
l as a 7-dimensional vector, where the order for the edges is as follows:

sa
ab
bt
sc
cd
ad
dt


We can then write the convex decomposition in the following way:

1/3
0

2/3
1/3
1/3
1/3
1/3


=

1

3



1
0
0
1
0
0
0


+

1

3



0
0
1
0
1
1
0


+

1

3



0
0
1
0
0
0
1


As another example, we consider another feasible solution l on t, and write the corresponding convex de-
composition:

s

a b

c d

t

3, 1/3

4, 1/2

10, 0

2, 1/3

7, 1/6

5, 2/3

6, 1/3

From the time t = 0 to t = 1/3, the cut is formed by {s}:

s

a b

c d

t

3, 1/3

10, 0

5, 2/3

4, 1/2

7, 1/6

2, 1/3

6, 1/3

At time t = 1/3, node b comes in the cut since lab = 0. From time t = 1/3 to t = 1/2, the cut is formed by
{s, a, b}:



Lecture 3: January 10 3-6

s

a b

c d

t

3, 1/3

10, 0

5, 2/3

4, 1/2

7, 1/6

2, 1/3

6, 1/3

From time t = 1/2 to time t = 2/3, the cut is formed by {s, a, b, c}:

s

a b

c d

t

3, 1/3

10, 0

5, 2/3

4, 1/2

7, 1/6

2, 1/3

6, 1/3

From time t = 2/3 to time t = 1, the cut is formed by {s, a, b, c, d}:

s

a b

c d

t

3, 1/3

10, 0

5, 2/3

4, 1/2

7, 1/6

2, 1/3

6, 1/3

We can write the corresponding matrix equation:

1/3
0

2/3
1/2
1/6
1/3
1/3


=

1

3



1
0
0
1
0
0
0


+

1

6



0
0
1
1
0
1
0


+

1

6



0
0
1
0
1
1
0


+

1

3



0
0
1
0
0
0
1




