
COL758: Advanced Algorithms Spring 2019

Lecture 23: April 18
Lecturer: Naveen Garg Scribe: Rahul V

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the Instructor.

Brief: In this lecture, we discuss the competitive ratio of the MARKING algorithm and the
lower bound for randomized algorithm. Random walk on complete graph is studied in short, and
the results are borrowed, alongside the Yao’s Theorem to prove that lower bound for randomized
algorithm is log k.

23.1 Competitive ratio of MARKING Algorithm

Consider k distinct page requests where k = 100 is the size of the table. Let c of them be request
to clean pages, i.e., pages that are not in the cache at the start of the phase and the remaining
k − c are requests to pages in cache at the start of the phase. Let c1c2c3s4s5c6s7c8s9 . . . be such a
sequence.

Lemma 23.1 The amortized number of faults made by OPT during the phase is at least c
2

Lemma 23.2 The expected number of faults made by Marking algorithm is at most cHk

Proof: c1c2c3 will lead to eviction of 3 pages from the table. If one of these happens to be s4 it
would be a page fault. Following the line of reasoning we may write probabilities for all si’s as
below:

P [s4 leads to a page fault] =
3

100
<
c

k

P [s5 leads to a page fault] =
3

99
<

c

k − 1
...

E[page faults] = cHk ≤ c log k + c

(23.1)

Thus, the MARKING algorithm has a competitive ratio of c log k+c
c
2

= 2 log k + 2

23-1



23-2 Lecture 23: April 18

23.2 Lower bound for randomized algorithm

Lemma 23.3 No randomized algorithm has competitive ratio better than log k

Proof:

Overview: We shall prove this by comparing a randomized algorithm, represented by a proba-
bility distribution over all deterministic algorithms, with the best deterministic algorithm for worst
case probability distribution using Yao’s principle. We’ll then compute the length of a phase by
studying Random walk on a complete graph. Finally, the results are combined to find the lower
bound for a randomized algorithms.

Choosing a randomized algorithm: Consider a matrix X with X(i, j) denoting the compet-
itive ratio of deterministic algorithm Ai on sequence σj . Randomized algorithm is a probability
distribution over all the algorithms. Let Pi be the probability that the randomized algorithm
behaves like the algorithm Ai.

expected c.r. on σj =
∑
i

PiX(i, j)

c.r. of randomized = max
j

∑
i

PiX(i, j)
(23.2)

The best algorithm would be the one with the best probability distribution which optimizes for
competitive ratio.

min
P

max
j

∑
i

PiX(i, j) (23.3)

Yao’s minmax principle: States that the expected cost of a randomized algorithm on the worst
input, is no better than the expected cost for a worst-case probability distribution on the inputs,
of the deterministic algorithm that performs best against said distribution.

This implies, considering q to be a probability distribution over σs,

min
P

max
j

∑
i

PiX(i, j) ≥ max
q

min
i

∑
j

qjX(i, j) (23.4)

Constructing q: Let S be the set of k + 1 pages. We construct a probability distribution for
choosing a request sequence. The first request r1 is chosen uniformly from S, the succeeding re-
quests ri+1 are chosen uniformly from S \ {ri}.

Each phase would contain k + 1 distinct pages and OPT incurs exactly one page fault (why?).
Consider any online deterministic algorithm A. The probability of page fault on each request would
be 1

k as there’s only 1 page not in the table. So, the overall cost would be 1
k × length of a phase



Lecture 23: April 18 23-3

Length of a phase: We may map our problem of finding the length of a phase in MARKING
to other problems like:
• Coupon collector’s problem: What is the expected number of boxes to be bought to

collect all n coupons given each box contains a random coupon?

• Random walk: What is the expected number of steps to visit all vertices in a Random walk.

After visiting the first 1 . . . i vertices, our next step would be to one of the remaining n− 1 vertices,
of which i− 1 are already visited. So,

P [not remaining in {1. . . i}] =
n− i
n− 1

E[# steps to visit all vertices] =
∑
i

n− 1

n− i
≤ (n− 1) log(n− 1) + (n− 1)

(23.5)

We may note that the length of a phase ≈ k log k.
The overall cost of the deterministic algorithm is 1

k × k log k = log k

We may now wrap up the proof by plugging in the above result in (23.4); we have the lower bound
for the randomized algorithm as log k.


