
COL758: Advanced Algorithms Spring 2019

Lecture 21: April 11
Lecturer: Naveen Garg Scribe: Sachin Kr Chauhan

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

21.1 Background

In last class, we did the following -

Compute Fk =

n∑
i=1

fki of a stream σ (21.0)

Using an algorithm with space requirement Õ(n1−1/k)
If r is number of occurrences of picked token after the point l
Output for Fk = m(rk − (r − 1)k) ∀ k ≥ 2
The final Estimator was evaluated as Median-of-Means of the above output.

Shortcomings of above estimator -
The above algorithm works in sub-linear space for estimating kth frequency moment.
Even for k = 2, the second frequency moment, it fails to be poly-logarithmic.

Now, we will study an algorithm which allows to estimate F2 in logarithmic space.

21.2 Tug-of-War Sketch

21.2.1 Basic Algorithm

1. Initialize:
Pick a random hash function from a 4-Universal Family H

h : [n] → {-1,+1}
x = 0

2. Process (j, c):
x = x+ c.h(j)

3. Output: x2

The random variable x is pulled in the +ve direction by tokens with +ve h(j) and -ve direction by other
tokens, thus the name Tug-of-War Sketch.

21-1

Lecture 21: April 11 21-2

21.2.2 Analysis

X is a random variable which denotes the value of x after algorithm has processed σ.

Lets define Yj = h(j) ∀ j ε [n]

Hence, X =
n∑
j=1

fjYj

4-Universal Hash Family

For hash function h from a 4-Universal Family H

PrhεH[Y = 1] = PrhεH[Y = −1] =
1

2

H is 4-universal (and hence also 2-universal). This means that for i 6= j,

E[YiYj] = E[Yi]E[Yj] (21.1)

E[Yj] = 0 ∀ j ε [n] (21.2)

E[Y 2
j] = 1 ∀ j ε [n] (21.3)

For all distinct i,j,k,l,

E[YiYjYkYl] = E[Yi]E[Yj]E[Yk]E[Yl] = 0 (21.4)

When all 4 terms are same,

E[YiYjYkYl] = E[YiYiYiYi] = E[Y 4
i] = 1 (21.5)

When two terms are appearing twice, i.e. i = k and j = l,

E[YiYjYkYl] = E[Y 2
i] E[Y 2

j] = 1 (21.6)

Such terms can form 3 combinations - (a,a,b,b), (a,b,a,b) or (a,b,b,a)

Expectation

E[X2] = E

[
n∑
i=1

n∑
j=1

fifjYiYj

]

= E

[
n∑
j=1

f2j Y
2
j +

n∑
i=1

n∑
j=1
i6=j

fifjYiYj

]

=

n∑
j=1

f2j E[Y 2
j] +

n∑
i=1

n∑
j=1
i6=j

fifjE[Yi]E[Yj] (From 21.1)

= F2 (From 21.0, 21.2 and 21.3) (21.7)

Lecture 21: April 11 21-3

Variance

E[X4] =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fifjfkflE[YiYjYkYl]

Any index term appearing in quadruple (21.5) or pair (21.6) will survive, others will be 0 (by 21.2, 21.4)

E[X4] = 1 ∗ (QuadrupleTerms) + 3 ∗ (PairTerms) + C ∗ (SingleTerms)

=

n∑
i=1

f4i E[Y 4
i] + 3

n∑
i=1

n∑
j=1
i6=j

f2i f
2
j E[Y 2

i]E[Y 2
j] + C

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=ij

n∑
l=1
l6=ijk

fifjfkflE[Yi]E[YjYkYl]

=

n∑
i=1

f4i + 3

n∑
i=1

n∑
j=1
i6=j

f2i f
2
j + 0 (From 21.2 to 21.6)

=

n∑
i=1

f4i + 3

((n∑
i=1

f2j

)2
−

n∑
j=1

f4j

)
= F4 + 3(F 2

2 − F4) (From 21.0)

= 3F 2
2 − 2F4

V ar[X2] = E[X4]−
(
E[X2]

)2
= 3F 2

2 − 2F4 − F 2
2 (From 21.7)

= 2F 2
2 − 2F4

V ar[X2] ≤ 2F 2
2 (21.8)

Bounds

By Chebychev’s Inequality: For any fixed positive k,

Pr[|X2 − E[X2]| > k] ≤ V ar[X2]

k2

For k = εE[X2]

Pr[|X2 − E[X2]| > εE[X2]] ≤ V ar[X2]

ε2
(
E[X2]

)2
Pr[|X2 − F2| > εF2] ≤ 2F 2

2

ε2F 2
2

(From 21.7 and 21.8)

=
2

ε2

Pr[Estimate is between (1− ε)F2 and (1 + ε)F2] ≥ 1− 2
ε2

Lecture 21: April 11 21-4

Mean Trick

We will first apply the mean trick to reduce the Variance.
We will evaluate t process with independent hash functions and consider their mean as the output.
This effectively reduces the Variance to 2F 2

2 /t

Meani =
1

t

t∑
j=1

X2
ij

Pr[|Meani − F2| > εF2] ≤ V ar[Meani]

ε2F 2
2

(By Chebychev’s Inequality)

=
V ar[X2]

tε2F 2
2

=
2F 2

2

tε2F 2
2

=
2

tε2

For t =
6

ε2
, P r[|Meani − F2| > εF2] ≤ 1

3
(21.9)

Pr[Mean is between (1− ε)F2 and (1 + ε)F2] ≥ 1− 1
3 = 2

3

Median Trick

Then, we apply the median trick to improve the confidence in the output.
We take k Meani’s and take the median of those values.

The Estimate = median
1≤i≤k

Meani

Let Z = Z1 + Z2 + Z3 + ... + Zk

where Zi =

{
1 with probability |Meani − F2| > εF2

0 otherwise

Pr[Zi = 1] ≤ 1

3
(From 21.9)

E[Z] = k Pr[Zi = 1] ≤ k

3

By Chernoff Bounds:

Pr[Z ≥ (1 + η)E[Z]] ≤ e− 1
3η

2E[Z] (21.10)

Pr[|Estimate− F2| > εF2] ≤ Pr
[
Z ≥ k

2

]
= Pr

[
Z ≥ 3

2

k

3

]
= Pr

[
Z ≥

(
1 +

1

2

)k
3

]
≤ e− 1

3 (
1
2)

2 k
3 (By Chernoff Bound 21.10)

= δ (Assumed)

Hence, log δ = −1

3

(1

2

)2 k
3

= − k

36

k = 36 log
1

δ
(21.11)

Pr[Estimate is between (1− ε)F2 and (1 + ε)F2] ≥ 1− δ

Lecture 21: April 11 21-5

Matrix Visualization

We can visualize the final algorithm as running t*k independent copies of the original sketch, represented
as a t*k sized random matrix. hij , the hash for Xij , is selected randomly from the 4-Universal Family H.
Each row is averaged to get the Meani and finally the median is calculated over the Means of the k rows.

≺ t �

X2
00 X2

01 ... X2
0j ... X2

0t Mean0

X2
10 X2

11 ... X2
1j ... X2

1t Mean1

...
X2
i0 X2

i1 ... X2
ij ... X2

it Meani
...
X2
k0 X2

k1 ... X2
kj ... X2

kt Meank≺
k

�

Final Algorithm

Result: Output: median
1≤i≤k

(
1
t

t∑
j=1

X2
ij

)
1 Initialize Matrix X[t,k] ← 0;
2 for each s in stream σ do
3 for each i in k do
4 for each j in t do
5 Xij = Xij + h(s)
6 end

7 end

8 end

Space Requirements

The absolute value of x never exceeds the sum of all token frequencies i.e m, so the algorithm takes O(log
m) bits to store this sketch and O(log n) bits to store the individual hash function h.

Space requirements = O(t) * O(k) * O(Sketch)

= O
(4

ε2

)
∗O
(

36log
1

δ

)
∗O(log m+ log n) (From 21.9 and 21.11)

= O
(1

ε2
log

1

δ
(log m+ log n)

)
21.3 Online Algorithms

In the remaining few minutes, Online Algorithms were introduced. They can process the input in the order
it is fed to the algorithm, without having the entire input available at start. Because whole input is not
known, an online algorithm is forced to make decisions that may later turn out not to be optimal. The
study of online algorithms has focused on the quality of decision-making that is possible in this setting. The
competitive ratio of an algorithm, is defined as the worst-case ratio of its cost divided by the optimal cost,
over all possible inputs. Lets understand Online Algorithms with a comparison with Streaming Algorithms.

Scenario Online Algorithms Streaming Algorithms
Data Stream Length Unknown Known and typically big

Evaluations Every time step At the end
Multipass No Maybe possible

