COL758: Advanced Algorithms

Lecture 21: April 11

Lecturer: Naveen Garg
Scribe: Sachin Kr Chauhan

Note: ${ }^{A} T_{E} X$ template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 Background

In last class, we did the following -

$$
\begin{equation*}
\text { Compute } F_{k}=\sum_{i=1}^{n} f_{i}^{k} \text { of a stream } \sigma \tag{21.0}
\end{equation*}
$$

Using an algorithm with space requirement $\tilde{O}\left(n^{1-1 / k}\right)$
If r is number of occurrences of picked token after the point l
Output for $F_{k}=m\left(r^{k}-(r-1)^{k}\right) \forall k \geq 2$
The final Estimator was evaluated as Median-of-Means of the above output.
Shortcomings of above estimator -
The above algorithm works in sub-linear space for estimating $k^{t h}$ frequency moment.
Even for $k=2$, the second frequency moment, it fails to be poly-logarithmic.
Now, we will study an algorithm which allows to estimate F_{2} in logarithmic space.

21.2 Tug-of-War Sketch

21.2.1 Basic Algorithm

1. Initialize:

Pick a random hash function from a 4-Universal Family \mathcal{H}

$$
\mathrm{h}:[\mathrm{n}] \rightarrow\{-1,+1\}
$$

$x=0$
2. Process (\mathbf{j}, \mathbf{c}):

$$
x=x+c . h(j)
$$

3. Output: x^{2}

The random variable x is pulled in the + ve direction by tokens with $+\mathrm{ve} \mathrm{h}(\mathrm{j})$ and -ve direction by other tokens, thus the name Tug-of-War Sketch.

21.2.2 Analysis

X is a random variable which denotes the value of x after algorithm has processed σ.
Lets define $Y_{j}=h(j) \quad \forall j \epsilon[n]$
Hence, $\quad X=\sum_{j=1}^{n} f_{j} Y_{j}$

4-Universal Hash Family

For hash function h from a 4-Universal Family \mathcal{H}

$$
\operatorname{Pr}_{h \in \mathcal{H}}[Y=1]=\operatorname{Pr}_{h \in \mathcal{H}}[Y=-1]=\frac{1}{2}
$$

\mathcal{H} is 4-universal (and hence also 2-universal). This means that for $\mathrm{i} \neq \mathrm{j}$,

$$
\begin{array}{rlrl}
\mathbb{E}\left[Y_{i} Y_{j}\right] & =\mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right] \\
\mathbb{E}\left[Y_{j}\right] & =0 & \forall j \epsilon[n] \\
\mathbb{E}\left[Y_{j}^{2}\right] & =1 & \forall j \epsilon[n] \tag{21.3}
\end{array}
$$

For all distinct i,j,k,l,

$$
\begin{equation*}
\mathbb{E}\left[Y_{i} Y_{j} Y_{k} Y_{l}\right]=\mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right] \mathbb{E}\left[Y_{k}\right] \mathbb{E}\left[Y_{l}\right]=0 \tag{21.4}
\end{equation*}
$$

When all 4 terms are same,

$$
\begin{equation*}
\mathbb{E}\left[Y_{i} Y_{j} Y_{k} Y_{l}\right]=\mathbb{E}\left[Y_{i} Y_{i} Y_{i} Y_{i}\right]=\mathbb{E}\left[Y_{i}^{4}\right]=1 \tag{21.5}
\end{equation*}
$$

When two terms are appearing twice, i.e. $\mathrm{i}=\mathrm{k}$ and $\mathrm{j}=\mathrm{l}$,

$$
\begin{equation*}
\mathbb{E}\left[Y_{i} Y_{j} Y_{k} Y_{l}\right]=\mathbb{E}\left[Y_{i}^{2}\right] \mathbb{E}\left[Y_{j}^{2}\right]=1 \tag{21.6}
\end{equation*}
$$

Such terms can form 3 combinations - (a, a, b, b), (a, b, a, b) or (a, b, b, a)

Expectation

$$
\begin{align*}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i} f_{j} Y_{i} Y_{j}\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{n} f_{j}^{2} Y_{j}^{2}+\sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} f_{i} f_{j} Y_{i} Y_{j}\right] \\
& =\sum_{j=1}^{n} f_{j}^{2} \mathbb{E}\left[Y_{j}^{2}\right]+\sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} f_{i} f_{j} \mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right] \tag{From21.1}\\
& =F_{2} \quad \text { (From 21.0, 21.2 and 21.3) } \tag{21.7}
\end{align*}
$$

Variance

$$
\mathbb{E}\left[X^{4}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} f_{i} f_{j} f_{k} f_{l} \mathbb{E}\left[Y_{i} Y_{j} Y_{k} Y_{l}\right]
$$

Any index term appearing in quadruple (21.5) or pair (21.6) will survive, others will be 0 (by $21.2,21.4$)

$$
\begin{align*}
\mathbb{E}\left[X^{4}\right] & =1 *(\text { QuadrupleTerms })+3 *(\text { PairTerms })+C *(\text { SingleTerms }) \\
& =\sum_{i=1}^{n} f_{i}^{4} \mathbb{E}\left[Y_{i}^{4}\right]+3 \sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} f_{i}^{2} f_{j}^{2} \mathbb{E}\left[Y_{i}^{2}\right] \mathbb{E}\left[Y_{j}^{2}\right]+C \sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} \sum_{\substack{k=1 \\
k \neq i j}}^{n} \sum_{\substack{l=1 \\
l \neq i j k}}^{n} f_{i} f_{j} f_{k} f_{l} \mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j} Y_{k} Y_{l}\right] \\
& =\sum_{i=1}^{n} f_{i}^{4}+3 \sum_{i=1}^{n} \sum_{\substack{j=1 \\
i \neq j}}^{n} f_{i}^{2} f_{j}^{2}+0 \tag{From21.2to21.6}\\
& =\sum_{i=1}^{n} f_{i}^{4}+3\left(\left(\sum_{i=1}^{n} f_{j}^{2}\right)^{2}-\sum_{j=1}^{n} f_{j}^{4}\right) \quad \text { (From } 21.2 \text { to } \\
& =F_{4}+3\left(F_{2}^{2}-F_{4}\right) \tag{From21.0}\\
& =3 F_{2}^{2}-2 F_{4} \\
\operatorname{Var}\left[X^{2}\right] & =\mathbb{E}\left[X^{4}\right]-\left(\mathbb{E}\left[X^{2}\right]\right)^{2} \\
& =3 F_{2}^{2}-2 F_{4}-F_{2}^{2} \tag{From21.7}\\
& =2 F_{2}^{2}-2 F_{4}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Var}\left[X^{2}\right] \leq 2 F_{2}^{2} \tag{21.8}
\end{equation*}
$$

Bounds

By Chebychev's Inequality: For any fixed positive k,

$$
\operatorname{Pr}\left[\left|X^{2}-\mathbb{E}\left[X^{2}\right]\right|>k\right] \leq \frac{\operatorname{Var}\left[X^{2}\right]}{k^{2}}
$$

For $\mathrm{k}=\epsilon \mathbb{E}\left[X^{2}\right]$

$$
\begin{aligned}
\operatorname{Pr}\left[\left|X^{2}-\mathbb{E}\left[X^{2}\right]\right|>\epsilon \mathbb{E}\left[X^{2}\right]\right] & \leq \frac{\operatorname{Var}\left[X^{2}\right]}{\epsilon^{2}\left(\mathbb{E}\left[X^{2}\right]\right)^{2}} \\
\operatorname{Pr}\left[\left|X^{2}-F_{2}\right|>\epsilon F_{2}\right] & \leq \frac{2 F_{2}^{2}}{\epsilon^{2} F_{2}^{2}} \\
& =\frac{2}{\epsilon^{2}}
\end{aligned}
$$

(From 21.7 and 21.8)
$\operatorname{Pr}\left[\right.$ Estimate is between $(1-\epsilon) F_{2}$ and $\left.(1+\epsilon) F_{2}\right] \geq 1-\frac{2}{\epsilon^{2}}$

Mean Trick

We will first apply the mean trick to reduce the Variance.
We will evaluate t process with independent hash functions and consider their mean as the output.
This effectively reduces the Variance to $2 F_{2}^{2} / t$

$$
\begin{aligned}
\operatorname{Mean}_{i} & =\frac{1}{t} \sum_{j=1}^{t} X_{i j}^{2} \\
\operatorname{Pr}\left[\mid \text { Mean }_{i}-F_{2} \mid>\epsilon F_{2}\right] & \leq \frac{\operatorname{Var}\left[\text { Mean }_{i}\right]}{\epsilon^{2} F_{2}^{2}} \\
& =\frac{\operatorname{Var}\left[X^{2}\right]}{t \epsilon^{2} F_{2}^{2}} \\
& =\frac{2 F_{2}^{2}}{t \epsilon^{2} F_{2}^{2}} \\
& =\frac{2}{t \epsilon^{2}}
\end{aligned} \quad \text { (By Chebychev's Inequality) }
$$

$$
\begin{equation*}
\text { For } t=\frac{6}{\epsilon^{2}}, \quad \operatorname{Pr}\left[\mid \text { Mean }_{i}-F_{2} \mid>\epsilon F_{2}\right] \leq \frac{1}{3} \tag{21.9}
\end{equation*}
$$

$\operatorname{Pr}\left[\right.$ Mean is between $(1-\epsilon) F_{2}$ and $\left.(1+\epsilon) F_{2}\right] \geq 1-\frac{1}{3}=\frac{2}{3}$

Median Trick

Then, we apply the median trick to improve the confidence in the output.
We take k Meani's and take the median of those values.

$$
\begin{align*}
& \text { The } \begin{aligned}
\text { Estimate } & =\underset{1 \leq i \leq k}{\text { median } \text { Mean }_{i}} \\
\text { Let } Z & =Z_{1}+Z_{2}+Z_{3}+\ldots+Z_{k}
\end{aligned} \\
& \text { where } Z_{i}= \begin{cases}1 & \text { with probability } \mid \text { Mean }_{i}-F_{2} \mid>\epsilon F_{2} \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{Pr}\left[Z_{i}=1\right] \leq \frac{1}{3} \\
& \mathbb{E}[Z]=k \operatorname{Pr}\left[Z_{i}=1\right] \leq \frac{k}{3} \tag{From21.9}
\end{align*}
$$

By Chernoff Bounds:

$$
\begin{align*}
\operatorname{Pr}[Z & \geq(1+\eta) \mathbb{E}[Z]] \leq e^{-\frac{1}{3} \eta^{2} \mathbb{E}[Z]} \tag{21.10}\\
\operatorname{Pr}\left[\mid \text { Estimate }-F_{2} \mid>\epsilon F_{2}\right] & \leq \operatorname{Pr}\left[Z \geq \frac{k}{2}\right] \\
& =\operatorname{Pr}\left[Z \geq \frac{3}{2} \frac{k}{3}\right] \\
& =\operatorname{Pr}\left[Z \geq\left(1+\frac{1}{2}\right) \frac{k}{3}\right] \\
& \leq e^{-\frac{1}{3}\left(\frac{1}{2}\right)^{2} \frac{k}{3}} \tag{ByChernoffBound21.10}\\
& =\delta \tag{Assumed}
\end{align*}
$$

Hence, $\log \delta=-\frac{1}{3}\left(\frac{1}{2}\right)^{2} \frac{k}{3}=-\frac{k}{36}$

$$
\begin{equation*}
k=36 \log \frac{1}{\delta} \tag{21.11}
\end{equation*}
$$

$\operatorname{Pr}\left[\right.$ Estimate is between $(1-\epsilon) F_{2}$ and $\left.(1+\epsilon) F_{2}\right] \geq 1-\delta$

Matrix Visualization

We can visualize the final algorithm as running $t^{*} k$ independent copies of the original sketch, represented as a t ${ }^{*} \mathrm{k}$ sized random matrix. $h_{i j}$, the hash for $X_{i j}$, is selected randomly from the 4 -Universal Family \mathcal{H}. Each row is averaged to get the $M e a n_{i}$ and finally the median is calculated over the Means of the k rows.

Final Algorithm

```
Result: Output: \(\underset{1 \leq i \leq k}{\operatorname{median}}\left(\frac{1}{t} \sum_{j=1}^{t} X_{i j}^{2}\right)\)
    Initialize Matrix X \([\mathrm{t}, \mathrm{k}] \leftarrow 0\);
    for each \(s\) in stream \(\sigma\) do
        for each \(i\) in \(k\) do
            for each \(j\) in \(t\) do
                \(X_{i j}=X_{i j}+h(s)\)
            end
        end
    end
```


Space Requirements

The absolute value of x never exceeds the sum of all token frequencies i.e m , so the algorithm takes $\mathrm{O}(\log$ $\mathrm{m})$ bits to store this sketch and $\mathrm{O}(\log \mathrm{n})$ bits to store the individual hash function h.

$$
\begin{align*}
\text { Space requirements } & =\mathrm{O}(\mathrm{t}) * \mathrm{O}(\mathrm{k}) * \mathrm{O}(\text { Sketch }) \\
& =O\left(\frac{4}{\epsilon^{2}}\right) * O\left(36 \log \frac{1}{\delta}\right) * O(\log m+\log n) \tag{From21.9and21.11}\\
& =O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}(\log m+\log n)\right)
\end{align*}
$$

21.3 Online Algorithms

In the remaining few minutes, Online Algorithms were introduced. They can process the input in the order it is fed to the algorithm, without having the entire input available at start. Because whole input is not known, an online algorithm is forced to make decisions that may later turn out not to be optimal. The study of online algorithms has focused on the quality of decision-making that is possible in this setting. The competitive ratio of an algorithm, is defined as the worst-case ratio of its cost divided by the optimal cost, over all possible inputs. Lets understand Online Algorithms with a comparison with Streaming Algorithms.

Scenario	Online Algorithms	Streaming Algorithms
Data Stream Length	Unknown	Known and typically big
Evaluations	Every time step	At the end
Multipass	No	Maybe possible

