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20.1 Important Results

We state some important results which will be used in following sections. We omit the proofs here.

20.1.1 Chebyshev’s Inequality

If X is a random variable with mean µ and variance σ2, then, for any k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2

20.1.2 Chernoff Bound

Let X1, X2, ..., Xn be independent Poisson trials with P{Xi = 1} = pi. If X =
n∑

i=1

Xi and if E[X] ≤ µ,

then for any η ∈ (0, 1]:

P{X ≥ (1 + η)µ} ≤ e−
η2µ
3

20.1.3 Mean Value Theorem (MVT)

Let f be a continuous function on [a, b] that is differentiable on (a, b). Then there exists [at least one] ξ in
(a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a

20.2 Previous Lecture

Following sketching algorithm, called “Count Sketch”, was analysed in previous lecture.

Algorithm

Initialize
C[1...k]← −→0 , where k := 3

ϵ2 ;
Choose a random hash function h : [n]→ [k] from a 2−universal family;
Choose a random hash function g : [n]→ {−1, 1} from a 2−universal family;

Process(j, r)
C[h(j)]← C[h(j)] + r × g(j);

Output
On query a, report g(a)× C[h(a)];
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If we assume that X is a random variable which denotes the value ‘g(a) × C[h(a)]’ returned by the al-
gorithm stated above. Then it has been proved in previous lecture that

E[X] = fa and Var(X) =

−f2
a +

∑
j∈[n]

f2
j

k
(20.1)

20.3 The Quality of the Algorithm’s Estimate

Let fa and fa denote estimated and actual frequency respectively of token a. Also let

(∥f−a∥2)2 = −f2
a +

∑
j∈[n]

f2
j

(∥f∥2)2 =
∑
j∈[n]

f2
j

So equation (20.1) implies Var(X) = (∥f−a∥2)
2

k

Let ϵ be any positive real number. Then Chebyshev’s inequality implies

P [ |f̄a − fa| ≥ ϵ
√
(∥f−a∥2)2 ] = P [ |X − E(X)| ≥ ϵ

√
k Var(X) ] ≤ Var(X)

ϵ2k (Var(X))
=

1

ϵ2k
=

1

3
(20.2)

where we have taken ϵ2k = 3.

20.4 Multiple hash functions for better estimate

Algorithm

Initialize
C[1...t][1...k]← −→0 , where k := 3

ϵ2 and t := O
(
log( 1δ )

)
;

Choose t independent random hash functions h1, h2, ..., ht : [n]→ [k] each from a 2−universal family;
Choose t independent random hash functions g1, g2, ..., gt : [n]→ {−1, 1} each from a 2−universal family;

Process(j, r)
for i = 1 to t do C[i][hi(j)]← C[i][hi(j)] + r × gi(j);

Output
On query a, report median

1≤i≤t
(gi(a)×C[i][hi(a)]);

Analysis

If we assume that Xi is a random variable which takes the value gi(a)× C[i][hi(a)]. Then equations (20.1)
and (20.2) imply that

E[Xi] = fa , Var(Xi) =

−f2
a +

∑
j∈[n]

f2
j

k
=

(∥f−a∥2)2

k
∀ i = 1, 2, ..., t. (20.3)

P [ |Xi − fa| ≥ ϵ
√
(∥f−a∥2)2 ] = P [ |Xi − E(Xi)| ≥ ϵ

√
k Var(Xi) ] ≤

1

3
∀ i = 1, 2, ..., t. (20.4)
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For i=1, 2, ..., t; define random variable Wi by

Wi =

{
1, if |Xi − fa| ≥ ϵ

√
(∥f−a∥2)2;

0, otherwise;

Then equation (20.4) implies that E(Wi) ≤ 1
3 , ∀ i = 1, 2, ..., t. If we define random variable W =

t∑
i=1

Wi,

then E(W ) ≤ t
3 . Let Z be the random variable which denotes the value median

1≤i≤t
(gi(a)×C[i][hi(a)]) re-

turned by the algorithm. Then |Z − fa| ≥ ϵ
√
(∥f−a∥2)2 only if more than t

2 random variables out of t

random variables Xi ( i = 1, 2, ..., t ) satisfy |Xi − fa| ≥ ϵ
√

(∥f−a∥2)2. Hence |Z − fa| ≥ ϵ(∥f−a∥2) only if
W > t

2 . Therefore

P{ |Z − fa| ≥ ϵ(∥f−a∥2) } ≤ P{ W >
t

2
}

= P{W >

(
1 +

1

2

)
× t

3
}

≤ e−
( 1

2 )
2
( t

3 )
3 using Chernoff Bound

= e−
t
36 = δ

⇒
P{ |Z − fa| ≥ ϵ(∥f−a∥2) } ≤ δ

where we have taken t = 36× log( 1δ ) i.e. t = O
(
log( 1δ )

)
.

Space Bound

With a suitable choice of hash family, we can store the hash functions above in O(t log(n)) space. Each of the
tk counters in the sketch uses O(log(m)) space. This gives us an overall space bound of O(t log(n)+tk log(m)),
which is

O

(
1

ϵ2
. log

(
1

δ

)
. (log(m) + log(n))

)

20.5 Lemma

Let n > 0 be an integer and let x1, x2, ..., xn ≥ 0 and k ≥ 1 be reals. Then(
n∑

i=1

xi

)(
n∑

i=1

x2k−1
i

)
≤ n1− 1

k

(
n∑

i=1

xk
i

)2

Proof

Let v = max
i∈[n]

(xi). Since vk ≤
n∑

i=1

xk
i , so we have

vk−1 =
(
vk
) (k−1)

k ≤

(
n∑

i=1

xk
i

) (k−1)
k

(20.5)

Let f(x) = xk, then f is convex function on the set of real numbers for k ≥ 1. Hence

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi)
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⇒ (
1

n

n∑
i=1

xi

)k

≤ 1

n

n∑
i=1

xk
i since f(x) = xk

⇒
1

n

n∑
i=1

xi ≤

(
1

n

n∑
i=1

xk
i

) 1
k

⇒
n∑

i=1

xi ≤ n

(
1

n

) 1
k

(
n∑

i=1

xk
i

) 1
k

⇒
n∑

i=1

xi ≤ n1− 1
k

(
n∑

i=1

xk
i

) 1
k

(20.6)

Hence we have(
n∑

i=1

xi

)(
n∑

i=1

x2k−1
i

)
≤

(
n∑

i=1

xi

)(
n∑

i=1

xk−1
i xk

i

)

≤

(
n∑

i=1

xi

)(
n∑

i=1

vk−1xk
i

)
because v = max

i∈[n]
(xi)

=

(
n∑

i=1

xi

)
vk−1

(
n∑

i=1

xk
i

)

≤

(
n∑

i=1

xi

)(
n∑

i=1

xk
i

) (k−1)
k
(

n∑
i=1

xk
i

)
using (20.5)

≤ n1− 1
k

(
n∑

i=1

xk
i

) 1
k
(

n∑
i=1

xk
i

) (k−1)
k
(

n∑
i=1

xk
i

)
using (20.6)

= n1− 1
k

(
n∑

i=1

xk
i

)2

which completes the proof.

20.6 Higher moments of frequency

For k > 0, the kth moment Fk of frequency is defined as Fk =
n∑

j=1

fk
j

Hence F1 =
n∑

j=1

fj = length of the stream = m.

The 0th moment F0 of frequency is defined as F0 =
n∑

j=1
fj>0

f0
j = number of distinct tokens in the stream.

20.7 Algorithm and quality of its estimate

Algorithm

Pick a random element in the stream. If this is token a, then count number of occurrences of token a beyond
this point. Let this count be r. Return m{rk − (r − 1)k}
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Analysis

Since algorithm picks the token randomly so r is the value of some random variable Y (say). So Y is a
random variable which denotes the total number of remaining occurrences (start counting from where the
token is picked and go towards the end of the stream) of picked token in the stream. Also let X be a random
variable which denotes the value m{rk − (r − 1)k} returned by the algorithm. Then X = m{rk − (r − 1)k}
if and only if Y = r. Also let A be a random variable which denotes the picked token. Then we have

P{X = m{rk − (r − 1)k} | A = j} = P{Y = r | A = j} = 1

fj
where r = 1, 2, 3, ..., fj

since fj is the frequency of token j and one of these fj occurrences of token j is picked. We also have

P{A = j} = fj
m

since token j occurs fj times in the stream of length m.

If x denotes value taken by random variable X, then we have

E(X | token j is picked) =
∑
x

x× P (X = x | token j is picked)

=
∑
x

x× P (X = x | A = j)

=

fj∑
r=1

m{rk − (r − 1)k} × P{X = m{rk − (r − 1)k} | A = j}

=

fj∑
r=1

m{rk − (r − 1)k} ×P{Y = r | A = j}

=

fj∑
r=1

m{rk − (r − 1)k} × 1

fj

=
m

fj
× fk

j

= m× fk−1
j

So we have

E(X) =

n∑
j=1

E(X|A = j)× P (A = j)

=

n∑
j=1

E(X | token j is picked)×P(A = j)

=

n∑
j=1

m× fk−1
j × fj

m

=

n∑
j=1

fk
j

= Fk
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We also have

Var(X) ≤ E(X2)

=

n∑
j=1

P(A = j)× E(X2 | A = j)

=

n∑
j=1

(
fj
m
×
∑
x

x2 × P (X = x | A = j)

)

=

n∑
j=1

fj
m
×

fj∑
r=1

m2{rk − (r − 1)k}2 ×P(Y = r | A = j)


=

n∑
j=1

fj
m
×

fj∑
r=1

m2{rk − (r − 1)k}2 × 1

fj


= m×

n∑
j=1

 fj∑
r=1

{rk − (r − 1)k}2


= m×
n∑

j=1

 fj∑
r=1

{rk − (r − 1)k} × {rk − (r − 1)k}


= m×

n∑
j=1

 fj∑
r=1

k × ξk−1 × {rk − (r − 1)k}

 using MVT with f(x) = xk and ξ ∈ (r− 1, r)

< m×
n∑

j=1

 fj∑
r=1

k × rk−1 × {rk − (r − 1)k}

 because ξ < r

≤ m×
n∑

j=1

 fj∑
r=1

k × fk−1
j × {rk − (r − 1)k}

 because r ≤ fj

= m× k ×
n∑

j=1

fk−1
j

 fj∑
r=1

{rk − (r − 1)k}


= m× k ×

n∑
j=1

fk−1
j fk

j

= k ×

 n∑
j=1

fj

×
 n∑

j=1

f2k−1
j

 because m = length of the stream =

 n∑
j=1

fj


≤ k × n1− 1

k ×

 n∑
j=1

fk
j

2

Lemma 20.5

= kn1− 1
k (Fk)

2

Hence we have proved that E(X) = Fk and Var(X) < kn1− 1
k (Fk)

2
. Therefore Chebyshev’s Inequality

implies that

Pr[ |F k − Fk| ≥ tFk ] = Pr[ |X − E(X)| ≥ tE(X) ] ≤ Var(X)

t2 (E(X))2
<

kn1− 1
kF 2

k

t2F 2
k

=
1

2

where we have chosen t such that t2 = 2kn1− 1
k
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20.8 Median of Means

Algorithm

Suppose using the algorithm given in previous section, we find st estimates Xij for i = 1, 2, ..., t and

j = 1, 2, ..., s. Return median
1≤i≤t

 s∑
j=1

Xij

s


Analysis

We have E(Xij) = Fk and Var(Xij) ≤ kn1− 1
k (Fk)

2
. Let Xi =

s∑
j=1

Xij

s , then E(Xi) = Fk and Var(Xi) ≤
kn1− 1

k (Fk)
2

s .

P{|Xi − Fk| ≥ ϵFk} = P{|Xi − E(Xi)| ≥ ϵFk}

≤ kn1− 1
k (Fk)

2

sϵ2(Fk)2
using Chebyshev′s Inequality

=
1

3

where we have taken s = 3kn1− 1
k

ϵ2 . Therefore

P{|Xi − Fk| ≥ ϵFk} ≤
1

3
∀ i = 1, 2, ..., t. (20.7)

For i=1, 2, ..., t; define random variable Wi by

Wi =

{
1, if |Xi − Fk| ≥ ϵFk;
0, otherwise;

Then equation (20.7) implies that E(Wi) ≤ 1
3 , ∀ i = 1, 2, ..., t. If we define random variable W =

t∑
i=1

Wi,

then E(W ) ≤ t
3 . Let Z be the random variable which denotes the value median

1≤i≤t

 s∑
j=1

Xij

s

 returned by

the algorithm. Then |Z − Fk| ≥ ϵFk only if more than t
2 random variables out of t random variables

Xi ( i = 1, 2, ..., t ) satisfy |Xi − Fk| ≥ ϵFk. Hence |Z − Fk| ≥ ϵFk only if W > t
2 . Therefore

P{|Xi − Fk| ≥ ϵFk} ≤ P{ W >
t

2
}

= P{W >

(
1 +

1

2

)
× t

3
}

≤ e−
( 1

2 )
2
( t

3 )
3 using Chernoff Bound

= e−
t
36 = δ

⇒
P{|Xi − Fk| ≥ ϵFk} ≤ δ

where we have taken t = 36× log( 1δ ) i.e. t = O
(
log( 1δ )

)
.

Space Bound

space ≤ st. (log(m) + log(n)) = O

(
1

ϵ2
. log

(
1

δ

)
.kn(1−

1
k ) (log(m) + log(n))

)
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