COL758: Advanced Algorithms

Note: ${ }^{A} T_{E} X$ template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Important Results

We state some important results which will be used in following sections. We omit the proofs here.

20.1.1 Chebyshev's Inequality

If X is a random variable with mean μ and variance σ^{2}, then, for any $k>0$,

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

20.1.2 Chernoff Bound

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent Poisson trials with $P\left\{X_{i}=1\right\}=p_{i}$. If $X=\sum_{i=1}^{n} X_{i}$ and if $E[X] \leq \mu$, then for any $\eta \in(0,1]$:

$$
P\{X \geq(1+\eta) \mu\} \leq e^{-\frac{\eta^{2} \mu}{3}}
$$

20.1.3 Mean Value Theorem (MVT)

Let f be a continuous function on $[a, b]$ that is differentiable on (a, b). Then there exists [at least one] ξ in (a, b) such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

20.2 Previous Lecture

Following sketching algorithm, called "Count Sketch", was analysed in previous lecture.

Algorithm

Initialize
 $$
C[1 \ldots k] \leftarrow \overrightarrow{0} \text {, where } k:=\frac{3}{\epsilon^{2}} \text {; }
$$

Choose a random hash function $h:[n] \rightarrow[k]$ from a 2 -universal family;
Choose a random hash function $g:[n] \rightarrow\{-1,1\}$ from a $2-$ universal family;
Process (j, r)
$C[h(j)] \leftarrow C[h(j)]+r \times g(j) ;$
Output
On query a, report $g(a) \times C[h(a)]$;

If we assume that X is a random variable which denotes the value ' $g(a) \times C[h(a)]$ ' returned by the algorithm stated above. Then it has been proved in previous lecture that

$$
\begin{equation*}
E[X]=f_{a} \quad \text { and } \quad \operatorname{Var}(X)=\frac{-f_{a}^{2}+\sum_{j \in[n]} f_{j}^{2}}{k} \tag{20.1}
\end{equation*}
$$

20.3 The Quality of the Algorithm's Estimate

Let \bar{f}_{a} and f_{a} denote estimated and actual frequency respectively of token a. Also let

$$
\begin{aligned}
\left(\left\|f_{-a}\right\|_{2}\right)^{2} & =-f_{a}^{2}+\sum_{j \in[n]} f_{j}^{2} \\
\left(\|f\|_{2}\right)^{2} & =\sum_{j \in[n]} f_{j}^{2}
\end{aligned}
$$

So equation (20.1) implies $\operatorname{Var}(X)=\frac{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}{k}$
Let ϵ be any positive real number. Then Chebyshev's inequality implies

$$
\begin{equation*}
P\left[\left|\bar{f}_{a}-f_{a}\right| \geq \epsilon \sqrt{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}\right]=P[|X-E(X)| \geq \epsilon \sqrt{k \operatorname{Var}(X)}] \leq \frac{\operatorname{Var}(X)}{\epsilon^{2} k(\operatorname{Var}(X))}=\frac{1}{\epsilon^{2} k}=\frac{1}{3} \tag{20.2}
\end{equation*}
$$

where we have taken $\epsilon^{2} k=3$.

20.4 Multiple hash functions for better estimate

Algorithm

Initialize

$C[1 \ldots t][1 \ldots k] \leftarrow \overrightarrow{0}$, where $k:=\frac{3}{\epsilon^{2}}$ and $t:=O\left(\log \left(\frac{1}{\delta}\right)\right)$;
Choose t independent random hash functions $h_{1}, h_{2}, \ldots, h_{t}:[n] \rightarrow[k]$ each from a 2 -universal family; Choose t independent random hash functions $g_{1}, g_{2}, \ldots, g_{t}:[n] \rightarrow\{-1,1\}$ each from a 2 -universal family;
Process (j, r)
for $i=1$ to t do $C[i]\left[h_{i}(j)\right] \leftarrow C[i]\left[h_{i}(j)\right]+r \times g_{i}(j)$;
Output
On query a, report $\underset{\mathbf{1} \leq \mathbf{i} \leq \mathbf{t}}{\operatorname{median}}\left(\mathbf{g}_{\mathbf{i}}(\mathbf{a}) \times \mathbf{C}[\mathbf{i}]\left[\mathbf{h}_{\mathbf{i}}(\mathbf{a})\right]\right)$;

Analysis

If we assume that X_{i} is a random variable which takes the value $g_{i}(a) \times C[i]\left[h_{i}(a)\right]$. Then equations (20.1) and (20.2) imply that

$$
\begin{gather*}
E\left[X_{i}\right]=f_{a}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{-f_{a}^{2}+\sum_{j \in[n]} f_{j}^{2}}{k}=\frac{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}{k} \quad \forall i=1,2, \ldots, t . \tag{20.3}\\
P\left[\left|X_{i}-f_{a}\right| \geq \epsilon \sqrt{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}\right]=P\left[\left|X_{i}-E\left(X_{i}\right)\right| \geq \epsilon \sqrt{k \operatorname{Var}\left(X_{i}\right)}\right] \leq \frac{1}{3} \quad \forall i=1,2, \ldots, t . \tag{20.4}
\end{gather*}
$$

For $\mathrm{i}=1,2, \ldots, \mathrm{t}$; define random variable W_{i} by
$W_{i}= \begin{cases}1, & \text { if }\left|X_{i}-f_{a}\right| \geq \epsilon \sqrt{\left(\left\|f_{-a}\right\|_{2}\right)^{2}} ; \\ 0, & \text { otherwise } ;\end{cases}$
Then equation (20.4) implies that $E\left(W_{i}\right) \leq \frac{1}{3}, \forall i=1,2, \ldots, t$. If we define random variable $W=\sum_{i=1}^{t} W_{i}$, then $E(W) \leq \frac{t}{3}$. Let Z be the random variable which denotes the value $\underset{\mathbf{1} \leq \mathbf{i} \leq \mathbf{t}}{\operatorname{median}}\left(\mathbf{g}_{\mathbf{i}}(\mathbf{a}) \times \mathbf{C}[\mathbf{i}]\left[\mathbf{h}_{\mathbf{i}}(\mathbf{a})\right]\right)$ returned by the algorithm. Then $\left|Z-f_{a}\right| \geq \epsilon \sqrt{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}$ only if more than $\frac{t}{2}$ random variables out of t random variables $X_{i}(i=1,2, \ldots, t)$ satisfy $\left|X_{i}-f_{a}\right| \geq \epsilon \sqrt{\left(\left\|f_{-a}\right\|_{2}\right)^{2}}$. Hence $\left|Z-f_{a}\right| \geq \epsilon\left(\left\|f_{-a}\right\|_{2}\right)$ only if $W>\frac{t}{2}$. Therefore

$$
\begin{aligned}
P\left\{\left|Z-f_{a}\right| \geq \epsilon\left(\left\|f_{-a}\right\|_{2}\right)\right\} & \leq P\left\{W>\frac{t}{2}\right\} \\
& =P\left\{W>\left(1+\frac{1}{2}\right) \times \frac{t}{3}\right\} \\
& \leq e^{-\frac{\left(\frac{1}{2}\right)^{2}\left(\frac{t}{3}\right)}{3}} \quad \text { using Chernoff Bound } \\
& =e^{-\frac{t}{36}}=\delta \\
\Rightarrow \quad P\{\mid Z & \left.-f_{a} \mid \geq \epsilon\left(\left\|f_{-a}\right\|_{2}\right)\right\} \leq \delta
\end{aligned}
$$

where we have taken $t=36 \times \log \left(\frac{1}{\delta}\right)$ i.e. $t=O\left(\log \left(\frac{1}{\delta}\right)\right)$.

Space Bound

With a suitable choice of hash family, we can store the hash functions above in $O(t \log (n))$ space. Each of the $t k$ counters in the sketch uses $O(\log (m))$ space. This gives us an overall space bound of $O(t \log (n)+t k \log (m))$, which is

$$
O\left(\frac{1}{\epsilon^{2}} \cdot \log \left(\frac{1}{\delta}\right) \cdot(\log (m)+\log (n))\right)
$$

20.5 Lemma

Let $n>0$ be an integer and let $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ and $k \geq 1$ be reals. Then

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{2 k-1}\right) \leq n^{1-\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{2}
$$

Proof

Let $v=\max _{i \in[n]}\left(x_{i}\right)$. Since $v^{k} \leq \sum_{i=1}^{n} x_{i}^{k}$, so we have

$$
\begin{equation*}
v^{k-1}=\left(v^{k}\right)^{\frac{(k-1)}{k}} \leq\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{(k-1)}{k}} \tag{20.5}
\end{equation*}
$$

Let $f(x)=x^{k}$, then f is convex function on the set of real numbers for $k \geq 1$. Hence

$$
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

$$
\begin{array}{lc}
\Rightarrow & \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{k} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \\
\Rightarrow & \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{1}{k}} \\
\Rightarrow & \sum_{i=1}^{n} x_{i} \leq n\left(\frac{1}{n}\right)^{\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{1}{k}} \\
\Rightarrow & \sum_{i=1}^{n} x_{i} \leq n^{1-\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{1}{k}}
\end{array}
$$

Hence we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{2 k-1}\right) & \leq\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{k-1} x_{i}^{k}\right) \\
& \leq\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} v^{k-1} x_{i}^{k}\right) \quad \text { because } v=\max _{i \in[n]}\left(x_{i}\right) \\
& =\left(\sum_{i=1}^{n} x_{i}\right) v^{k-1}\left(\sum_{i=1}^{n} x_{i}^{k}\right) \\
& \leq\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{(k-1)}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right) \quad u \operatorname{sing}(20.5) \\
& \leq n^{1-\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\frac{(k-1)}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right) \quad \text { using }(20.6) \\
& =n^{1-\frac{1}{k}}\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{2}
\end{aligned}
$$

which completes the proof.

20.6 Higher moments of frequency

For $k>0$, the k th moment F_{k} of frequency is defined as $F_{k}=\sum_{j=1}^{n} f_{j}^{k}$
Hence $F_{1}=\sum_{j=1}^{n} f_{j}=$ length of the stream $=m$.
The 0th moment F_{0} of frequency is defined as $F_{0}=\sum_{\substack{j=1 \\ f_{j}>0}}^{n} f_{j}^{0}=$ number of distinct tokens in the stream.

20.7 Algorithm and quality of its estimate

Algorithm

Pick a random element in the stream. If this is token a, then count number of occurrences of token a beyond this point. Let this count be r. Return $m\left\{r^{k}-(r-1)^{k}\right\}$

Analysis

Since algorithm picks the token randomly so r is the value of some random variable Y (say). So Y is a random variable which denotes the total number of remaining occurrences (start counting from where the token is picked and go towards the end of the stream) of picked token in the stream. Also let X be a random variable which denotes the value $m\left\{r^{k}-(r-1)^{k}\right\}$ returned by the algorithm. Then $X=m\left\{r^{k}-(r-1)^{k}\right\}$ if and only if $Y=r$. Also let A be a random variable which denotes the picked token. Then we have

$$
P\left\{X=m\left\{r^{k}-(r-1)^{k}\right\} \mid A=j\right\}=\mathbf{P}\{\mathbf{Y}=\mathbf{r} \mid \mathbf{A}=\mathbf{j}\}=\frac{\mathbf{1}}{\mathbf{f}_{\mathbf{j}}} \quad \text { where } r=1,2,3, \ldots, f_{j}
$$

since f_{j} is the frequency of token j and one of these f_{j} occurrences of token j is picked. We also have

$$
\mathbf{P}\{\mathbf{A}=\mathbf{j}\}=\frac{\mathbf{f}_{\mathbf{j}}}{\mathbf{m}}
$$

since token j occurs f_{j} times in the stream of length m.
If x denotes value taken by random variable X, then we have

$$
\begin{aligned}
E(X \mid \text { token } j \text { is picked }) & =\sum_{x} x \times P(X=x \mid \text { token } j \text { is picked }) \\
& =\sum_{x} x \times P(X=x \mid A=j) \\
& =\sum_{r=1}^{f_{j}} m\left\{r^{k}-(r-1)^{k}\right\} \times P\left\{X=m\left\{r^{k}-(r-1)^{k}\right\} \mid A=j\right\} \\
& =\sum_{r=1}^{f_{j}} m\left\{r^{k}-(r-1)^{k}\right\} \times \mathbf{P}\{\mathbf{Y}=\mathbf{r} \mid \mathbf{A}=\mathbf{j}\} \\
& =\sum_{r=1}^{f_{j}} m\left\{r^{k}-(r-1)^{k}\right\} \times \frac{\mathbf{1}}{\mathbf{f}_{\mathbf{j}}} \\
& =\frac{m}{f_{j}} \times f_{j}^{k} \\
& =m \times f_{j}^{k-1}
\end{aligned}
$$

So we have

$$
\begin{aligned}
E(X) & =\sum_{j=1}^{n} E(X \mid A=j) \times P(A=j) \\
& =\sum_{j=1}^{n} E(X \mid \text { token } j \text { is picked }) \times \mathbf{P}(\mathbf{A}=\mathbf{j}) \\
& =\sum_{j=1}^{n} m \times f_{j}^{k-1} \times \frac{\mathbf{f}_{\mathbf{j}}}{\mathbf{m}} \\
& =\sum_{j=1}^{n} f_{j}^{k} \\
& =F_{k}
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \operatorname{Var}(X) \leq E\left(X^{2}\right) \\
& =\sum_{j=1}^{n} \mathbf{P}(\mathbf{A}=\mathbf{j}) \times E\left(X^{2} \mid A=j\right) \\
& =\sum_{j=1}^{n}\left(\frac{\mathbf{f}_{\mathbf{j}}}{\mathbf{m}} \times \sum_{x} x^{2} \times P(X=x \mid A=j)\right) \\
& =\sum_{j=1}^{n}\left(\frac{f_{j}}{m} \times \sum_{r=1}^{f_{j}} m^{2}\left\{r^{k}-(r-1)^{k}\right\}^{2} \times \mathbf{P}(\mathbf{Y}=\mathbf{r} \mid \mathbf{A}=\mathbf{j})\right) \\
& =\sum_{j=1}^{n}\left(\frac{f_{j}}{m} \times \sum_{r=1}^{f_{j}} m^{2}\left\{r^{k}-(r-1)^{k}\right\}^{2} \times \frac{\mathbf{1}}{\mathbf{f}_{\mathbf{j}}}\right) \\
& =m \times \sum_{j=1}^{n}\left(\sum_{r=1}^{f_{j}}\left\{r^{k}-(r-1)^{k}\right\}^{2}\right) \\
& =m \times \sum_{j=1}^{n}\left(\sum_{r=1}^{f_{j}}\left\{r^{k}-(r-1)^{k}\right\} \times\left\{r^{k}-(r-1)^{k}\right\}\right) \\
& =m \times \sum_{j=1}^{n}\left(\sum_{r=1}^{f_{j}} k \times \xi^{k-1} \times\left\{r^{k}-(r-1)^{k}\right\}\right) \quad \text { using MVT with } \mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{k}} \text { and } \xi \in(\mathbf{r}-\mathbf{1}, \mathbf{r}) \\
& <m \times \sum_{j=1}^{n}\left(\sum_{r=1}^{f_{j}} k \times r^{k-1} \times\left\{r^{k}-(r-1)^{k}\right\}\right) \quad \text { because } \xi<\mathbf{r} \\
& \leq m \times \sum_{j=1}^{n}\left(\sum_{r=1}^{f_{j}} k \times f_{j}^{k-1} \times\left\{r^{k}-(r-1)^{k}\right\}\right) \quad \text { because } \mathbf{r} \leq \mathbf{f}_{\mathbf{j}} \\
& =m \times k \times \sum_{j=1}^{n} f_{j}^{k-1}\left(\sum_{r=1}^{f_{j}}\left\{r^{k}-(r-1)^{k}\right\}\right) \\
& =m \times k \times \sum_{j=1}^{n} f_{j}^{k-1} f_{j}^{k} \\
& =k \times\left(\sum_{j=1}^{n} f_{j}\right) \times\left(\sum_{j=1}^{n} f_{j}^{2 k-1}\right) \quad \text { because } m=\text { length of the stream }=\left(\sum_{j=1}^{n} f_{j}\right) \\
& \leq k \times n^{1-\frac{1}{k}} \times\left(\sum_{j=1}^{n} f_{j}^{k}\right)^{2} \\
& =k n^{1-\frac{1}{k}}\left(F_{k}\right)^{2} \\
& \text { Lemma } 20.5
\end{aligned}
$$

Hence we have proved that $E(X)=F_{k}$ and $\operatorname{Var}(X)<k n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}$. Therefore Chebyshev's Inequality implies that

$$
\operatorname{Pr}\left[\left|\bar{F}_{k}-F_{k}\right| \geq t F_{k}\right]=\operatorname{Pr}[|X-E(X)| \geq t E(X)] \leq \frac{\operatorname{Var}(X)}{t^{2}(E(X))^{2}}<\frac{k n^{1-\frac{1}{k}} F_{k}^{2}}{t^{2} F_{k}^{2}}=\frac{1}{2}
$$

where we have chosen t such that $t^{2}=2 k n^{1-\frac{1}{k}}$

20.8 Median of Means

Algorithm

Suppose using the algorithm given in previous section, we find st estimates $X_{i j}$ for $i=1,2, \ldots, t$ and $j=1,2, \ldots, s$. Return $\underset{1 \leq i \leq \mathbf{t}}{\operatorname{median}}\left(\frac{\sum_{\mathrm{j}=1}^{\mathrm{s}} \mathbf{x}_{\mathrm{ij}}}{\mathbf{s}}\right)$

Analysis

We have $E\left(X_{i j}\right)=F_{k}$ and $\operatorname{Var}\left(X_{i j}\right) \leq k n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}$. Let $X_{i}=\frac{\sum_{j=1}^{s} X_{i j}}{s}$, then $E\left(X_{i}\right)=F_{k}$ and $\operatorname{Var}\left(X_{i}\right) \leq$ $\frac{k n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}}{s}$.

$$
\begin{aligned}
P\left\{\left|X_{i}-F_{k}\right| \geq \epsilon F_{k}\right\} & =P\left\{\left|X_{i}-E\left(X_{i}\right)\right| \geq \epsilon F_{k}\right\} \\
& \leq \frac{k n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}}{s \epsilon^{2}\left(F_{k}\right)^{2}} \quad \text { using Chebyshev's Inequality } \\
& =\frac{1}{3}
\end{aligned}
$$

where we have taken $s=\frac{3 k n^{1-\frac{1}{k}}}{\epsilon^{2}}$. Therefore

$$
\begin{equation*}
P\left\{\left|X_{i}-F_{k}\right| \geq \epsilon F_{k}\right\} \leq \frac{1}{3} \quad \forall i=1,2, \ldots, t \tag{20.7}
\end{equation*}
$$

For $\mathrm{i}=1,2, \ldots, \mathrm{t}$; define random variable W_{i} by
$W_{i}= \begin{cases}1, & \text { if }\left|X_{i}-F_{k}\right| \geq \epsilon F_{k} ; \\ 0, & \text { otherwise } ;\end{cases}$
Then equation (20.7) implies that $E\left(W_{i}\right) \leq \frac{1}{3}, \forall i=1,2, \ldots, t$. If we define random variable $W=\sum_{i=1}^{t} W_{i}$, then $E(W) \leq \frac{t}{3}$. Let Z be the random variable which denotes the value $\underset{\mathbf{1} \leq \mathbf{i} \leq \mathbf{t}}{ }\left(\frac{\sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{s}} \mathbf{x}_{\mathbf{i j}}}{\mathbf{s}}\right)$ returned by the algorithm. Then $\left|Z-F_{k}\right| \geq \epsilon F_{k}$ only if more than $\frac{t}{2}$ random variables out of t random variables $X_{i}(i=1,2, \ldots, t)$ satisfy $\left|X_{i}-F_{k}\right| \geq \epsilon F_{k}$. Hence $\left|Z-F_{k}\right| \geq \epsilon F_{k}$ only if $W>\frac{t}{2}$. Therefore

$$
\begin{aligned}
P\left\{\left|X_{i}-F_{k}\right| \geq \epsilon F_{k}\right\} & \leq P\left\{W>\frac{t}{2}\right\} \\
& =P\left\{W>\left(1+\frac{1}{2}\right) \times \frac{t}{3}\right\} \\
& \leq e^{-\frac{\left(\frac{1}{2}\right)^{2}\left(\frac{t}{3}\right)}{3}} \quad \text { using Chernoff Bound } \\
& =e^{-\frac{t}{36}}=\delta \\
\Rightarrow \quad & P\left\{\left|X_{i}-F_{k}\right| \geq \epsilon F_{k}\right\} \leq \delta
\end{aligned}
$$

where we have taken $t=36 \times \log \left(\frac{1}{\delta}\right)$ i.e. $t=O\left(\log \left(\frac{1}{\delta}\right)\right)$.

Space Bound

$$
\text { space } \leq \text { st. }(\log (m)+\log (n))=O\left(\frac{1}{\epsilon^{2}} \cdot \log \left(\frac{1}{\delta}\right) \cdot k n^{\left(1-\frac{1}{k}\right)}(\log (m)+\log (n))\right)
$$

References

1. Amit Chakrabarti, CS49: Data Stream Algorithms, Lecture Notes, Fall 2011.
2. Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer, 2013.
3. Sheldon M. Ross, Introduction to Probability Models, Academic Press, 2010.
