
COL758: Advanced Algorithms Spring 2019

Lecture 17: March 11
Lecturer: Naveen Garg Scribe: Kshitij Morodia

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

17.1 Data Streaming Algorithms

Streaming algorithms are algorithms for processing sequences of data where the input is received as a stream.
A stream is a sequence of tokens on which we wish to compute some statistics.

The form of stream we will work with will have m number of tokens each of which is an integer. So we
define data stream as a definite length sequence of integers t1, t2, t3, ..., tm where ti ∈ {1, 2, 3, ..,n} where n
is the size of the universe from which the tokens are drawn.

Statistics that may be desired to be computed on this stream may consist of finding the most frequent
token, k-most frequent tokens or number of distinct tokens in the stream. These would be trivial problems
if we are not constrained by memory. But suppose the amount of space available is O(log n+ logm). We
would consider problems in which the space available to us is thus constrained.

17.2 Heavy Hitters in Data Stream

Our goal is to find the most frequently occurring tokens in a data stream. We will consider problems which
require us to find tokens with frequency greater than m/k. Such tokens that would satisfy this condition are
known as heavy hitters

Token with frequency greater than m/2

Consider the problem of finding an element j in the stream having a frequency of occurrence fj > m/2.

Algorithm:

Result: Outputs j
initialize: c← 0 ;
for each i do

if c = 0 then j ← ti ;
if ti = j then

c← c+ 1;
else

c← c− 1;
end

end
Algorithm 1: m/2 frequent token algorithm

Analysis:

It can be observed that value of j does not change while c > 0. The input stream can be divided into
segments such that each segment except the last ends with a token having counter c = 0. Let the values of
j during these segments be j1, j2, j3, .... In the nth segment the value jn appears exactly 1/2 times among
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the tokens in that segment. Therefore if indeed fj > m/2 in the stream, then the last segment would end
with c > 0 and the value would be j.

If there is no such token value with frequency greater than m/2 then j would have an arbitrary input
value.

Tokens with frequency greater than m/k (Misra-Gries)

Now consider a more general problem of finding all the tokens with a frequency greater than m/k. The
number of tokens that can have a frequency greater than m/k is at most k−1. Hence at most k−1 counters
will be maintained whereas in the case of m/2 we had just 1 counter. The aim of this procedure is to produce

frequency estimates (f̃j) of all the heavy hitters in the stream which then will be related to actual frequencies
fj .

Algorithm:

The algorithm maintains a set A of upto k − 1 pairs of tokens with their corresponding counter.

Result: Outputs A
initialize: A← ∅. A is a set of up to k − 1 pairs (j,cj) ;
for each i do

if ti ∈ A then
cti ← cti + 1 ;

else if |A| < k − 1 then
Add ti to A ;
cti ← 1 ;

else
for each j ∈ A do

cti ← cti − 1 ;
if cj = 0 then Remove j from A ;

end

end

end
Algorithm 2: m/k frequent tokens algorithm

Analysis:

Suppose a token j ∈ A has counter value f̃j (cj from the algorithm output) while fj is the frequency of token

j in the stream. We seek to establish a relationship between f̃j and fj . The algorithm can be thought of as

maintaining f̃j for all j ∈ A, where f̃j = 0 for all j 6∈ A.
Clearly,

f̃j ≤ fj
because the token counter can at most be incremented as many times as actual occurrence in stream con-
sidering the value may be decremented too occasionally.

The k− 1 storage can be though of as cache. When a token is seen in cache we increment its counter. If
the counter was not in cache then we decrement the counters in cache including the counter of this token.
So the increment by 1 is made m times while the total decrementation is by at most k each time. Hence the
number of time the decrement step can be performed (d) is less than m/k.

=⇒ d ≤ m

k

From fj = f̃j + d we get,

fj −
m

k
≤ f̃j ≤ fj
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We can see that A consists of at least every token that has a frequency greater than m
k . Therefore, every

token j which has a frequency more than m/k is in A.{
j : fk >

m

k

}
⊆ A

Now, may consist of some tokens which are not heavy hitters. We can get all the heavy hitters in A with
2 passes through the stream:

• 1stpass : get all the heavy hitters and some extra elements (A).

• 2ndpass : Remove all the false positives by counting the actual frequency of all the elements of A.

17.3 Number of Distinct Elements

We want to find the number of distinct elements in the stream. For this we will use the idea of hashing. We
will use a hash function which matches values 1 to n to itself h : [n]→ [n]. This mapping should be thought
of as a random mapping where every distinct token is mapped to a corresponding distinct value which is
chosen randomly from 1 to n. Example of such a mapping: ha,b(x) = ax+ b mod n.

note: A 1-1 mapping cannot be ensured.

Algorithm:

Result: Outputs 2z+
1
2

initialize: z ← 0 ;
for each i do

z ← max(zeroes(h(i)), z);
end

Algorithm 3: distinct element estimation algorithm

The term 2z+
1
2 is an approximate number of distinct elements in the stream which would only holds for

a certain probability. The function zeroes(.) returns the number of trailing zeroes at the end of the binary
representation of a number.

17.4 Preliminaries

• X is a random variable

• E[X ] =
∑
i P [X = i] ∗ i

• E[X+Y ] = E[X ] + E[Y ]

• Var [X ] = E[(X - E[X ])2]

• Var [X+Y ] = Var [X ] + Var [Y ] (X and Y independent)

Proof:

Var [X+Y ]

= E[((X+Y )-E[X+Y ])2]

= E[((X -E[X ]) + (Y -E[Y ]))2]

= E[(X -E[X ])2+(Y -E[Y ])2+2(X -E[X ])(Y -E[Y ])]

= E[(X - E[X ])2] + E[(Y - E[Y ])2] + 2*covariance(X,Y )

= Var [X ] + Var [Y ] (covariance of independent random variables is 0 )

hence proved.
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• Markov’s Inequality:

X is a non-negative random variable such that E[X] exists and is known, then for any fixed positive k;

P [X ≥ k] ≤ E[X]

k

Proof:

E[X ] =
∑∞
i=0 i ∗ P [X = i]

=
∑t−1
i=0 i ∗ P [X = i] +

∑∞
i=t i ∗ P [X = i]

≥
∑∞
i=t i ∗ P [X = i]

≥ t ∗
∑∞
i=t P [X = i]

= t ∗ P [X ≥ t]
hence proved.

• Chebychev’s Inequality:

Let X be a random variable such that E[X]=µ and Var[X]=σ2 exists and is known, then for any fixed
positive k;

P [|X− µ| > k] ≤ σ2

k2

Proof:

X is a random variable

=⇒ (X− µ)2 is a non-negative random variable, with E[(X − µ)2] = σ2.

Applying Markov Inequality to this,

P [(X − µ)2 ≥ t2] ≤ E[(X−µ)2]
t2

=⇒ P [|X − µ| ≥ t] ≤ σ2

t2

hence proved.


