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16.1 Red-Blue Matching Problem : When Unique Matching Exist
This was introduced in the previous class.
Problem Statement: Given a graph G = (U, V,E) with each e ∈ E is either red or blue, does there exist
a perfect matching with exactly k red edges?

Consider the n × n matrix A, whose entries are given as

A(i, j) =

 y, (i, j) ∈ E and is red
1, (i, j) ∈ E and is blue
0, otherwise

Assume that there exist a unique red-blue perfect matching.

det(A) = p(y) =

n∑
n=0

aiy
i

Let us define p(y) the determinant of A as a function of y. Then the p(y) will be a polynomial with degree
atmost n. Observe that the Graph G will have a unique perfect matching with exactly k red edges if and
only if p(y) has a term of the form ±yk.
We will use Lagrangian interpolation to find the polynomial p(y). We will need n+1 points say (y0, y1, · · · , yn)
to find all the coefficients of p(y). We will find the value of p(y) at these n+1 points p(y0), p(y1), . . . , p(yn) by
computing the determinant of A at y = yi for each i. Then we can easily find if there is a perfect matching
with k red edges by observing the coefficient of yk.

16.2 Red-Blue Matching Problem : More than one Perfect Match-
ing Exist

In the previous section we saw the Red-Blue Matching Problem. One assumption that we took was that
there is a unique Red-Blue perfect matching with k red edges. In this section, we will prove show that graph
G will contain a unique minimum weight perfect matching with Probability more than 0.5.

16.2.1 Isolation Lemma
Assign every edge e ∈ E in the Graph G has a weight we from the set S = {1, 2, 3, · · · , 2m} picked at random
and independent of other edge.

We can show that

P(there exist a unique minimum weight perfect matching) ≥ 1

2
(16.1)
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This is known as "isolation lemma" which was proved for sets by Mulmuley, Vazirani, and Vazirani in 1987.
Proof:
Definition 1: We will call an edge e confused if ∃ two minimum weight matchings M1,M2 such that e ∈M1

and e /∈M2.

If no edge is confused then G has a unique minimum weight matching since M1 will be equal to M2.
For a given edge e,

P (e is confused) ≤ 1

2m
(16.2)

To prove 16.1 we need to prove 16.2 first. The proof of 16.2 is as follows:

Let us arbitrarily choose an edge e. We choose weights for all the edges in E randomly except this particular
edge e. We define M1 to be the minimum weight Perfect Matching in graph G without the edge e and M2

be a minimum weight Perfect Matching without the vertices of edge e = (u, v) where u ∈ U and v ∈ V .
By addition of edge e to M2, we get a perfect matching of n edges. Let W1 and W2 be the respective weights
of the matching.

Note that we have constructed M1 and M2 in such a way that M1 contain n edges whereas M2 contain n-1
edges so that we can add the edge e to M2 to make it a minimum weight perfect matching.

Case 1. If W2 ≥W1, then e is never confused so M1 and M2 can’t be a minimum weight matchings.
Case 2. If W2 < W1 , then if the weight of e is W1 −W2 then we will get e to be confused.

Since we are picking weights randomly and independent of other edges from the set S = {1, 2, · · · , 2m} so

P(e is confused ) ≤ 1

2m

Here we have proved 16.2.

P(some edge is confused) ≤ m

2m
≤ 1

2
(16.3)

which is equivalent of saying

P(min weight perfect matching is not unique) ≤ 1

2
⇒ P(min weight perfect matching is unique ≥ 1

2

Here we have proved 16.1.
In 16.3 we have used Union Bound which states that the probability that at least one of the events happens
is no greater than the sum of the probabilities of the individual events.

16.2.2 Red-Blue Matching when the matching is not unique
Given edges e ∈ E with weights we chosen uniformly from set S = {1, 2, 3, · · · , 2m}. We define matrix A as

A(i, j) =

 2wey, (i, j) ∈ E and is red
2we , (i, j) ∈ E and is blue
0, otherwise

Every red-blue perfect matching M with k red edges contributes

±yk2
∑

e we = ±yk2w(M) to det(A)

where
∑

e we = w(M) where w(M) is the sum of the weight of the edges of the perfect matching and

det(A) = p(y) =

n∑
n=0

aiy
i
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If G contains a red blue matching, then ak, the coefficient of yk is non-zero with Probability ≥ 1

2
(16.4)

This can be proved using isolation lemma. We can see that the

coefficient of yk = ±2w(M1) ± 2w(M2) ± · · · ± 2w(Mt)

where ±w(M1) is the sum of the minimum weight perfect matching edges and ±w(Mt) is the sum of the
perfect matching edges weights other than the minimum weight.
Taking 2w(M1) out as common we get:

coefficient of yk = 2w(M1)(±1±2w(M2)−w(M1) ± · · · ± 2w(Mt)−w(M1))

Note that the coloured term in the above expression will always be even and hence the coefficient of yk will
always be odd if the minimum weight perfect matching is unique (as we will have either +1 or -1. This will
ensure that the coefficient of yk will be odd). As shown above in 16.1 that this probability is ≥ 1

2 .
If the minimum weight perfect matching is not unique then ±1 terms will cancel each other.

We can repeat this multiple times to be sure that the graph G has red-blue matching or not.
Also note that no deterministic polynomial time algorithm exist for this red-blue matching problem and only
randomised algorithm exist. Hence, there is active research going on in this field.

16.2.3 Bipartite Graph Matching vs Red-Blue Matching
In Bipartite Matching we picked xi,j from the field F randomly and with Probability ≥ 1 − 1

n2 we have
det(A) 6= 0 , iff G has a perfect matching.
In Red Blue Matching we picked wi,j from the set S = {1, 2, 3, · · · , 2m} randomly and independently. With
Probability ≥ 1

2 we can say that the minimum weight perfect matching is unique and coefficient of yk 6= 0

Homework: Using the ideas for existence of red-blue perfect matching, give an algorithm to find the
red-blue perfect matching if it exists like we did for Bipartite Matching.

16.2.4 Bipartite Graph Matching using Polynomial Number of Processors
Definition 2: Parallel Random Access Machine (PRAM) : Multiple processors are connected in parallel
with a single shared memory unit. In this, n number of processors can perform independent operations on
n number of data in a particular unit of time.

Definition 3: In complexity theory, the class NC (for "Nick’s Class") is the set of decision problems decidable
in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a
problem is in NC if there exist constants c and k such that it can be solved in time O(logcn) using O(nk)
parallel processors.

Bipartite Graph Matching can be parallelised because this require only finding the determinant of a matrix
and this can be done efficiently if we have large number (but polynomial) of parallel processors.

• Matrix multiplication can be done in NC1 (NCk = O(logk(n))). Here n denotes size of the matrix
n× n.

• Also note that Addition of n numbers can be done in NC1 time and we will require n parallel processor
to do it.

• Determinant can be computed in NC2 time.

• Hence Bipartite Matching can be solved in RNC2 time where RNC stands for randomised NC. This
is because we need to compute determinants only.

Note : This section 16.2.4 was discussed in the class in brief.


