COL758: Advanced Algorithms

Lecture 15: February 25

Lecturer: Naveen Garg

Note: $\square T_{EX}$ template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Matching in Bipartite Graphs

We want to check if bipartite graph G=(U,V,E) has a perfect matching, where |U|=|V|=n.

Consider the $n \times n$ matrix A, whose entries are given as

$$A(i,j) = \begin{cases} x_{ij}, & (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$

$$V \to \\ U \\ \downarrow \\ \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Det(A) is a multivariate polynomial (m variables) with degree n. Each term in the determinant (ignoring the sign) can be thought of as a permutation, with exactly 1 element of every row and 1 from every column. Each of these terms (monomials) has a degree n.

All permutations appear in the determinant (with some sign). This can be proved through induction. For a 2×2 matrix, only 2 permutations are possible. When we calculate the determinant of 3×3 matrices, we choose the first element of the permutation and take all possibilities, given that we choose that first element. This argument can be extended for all n. Let S_n be the set of all permutations.

$$Det(A) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i=1}^n A(i, \sigma(i))$$

The determinant is **not** the zero polynomial **iff** \exists a perfect matching in G.

If there is a perfect matching, we can set all the variables corresponding to the edges in the matching to be 1 and all others 0. Then the determinant =1 or =-1 since there is only 1 non-zero term in the determinant. If the determinant is non-zero \implies there is at least one term which is not cancelled \implies taking all the edges corresponding to this term (permutation) will make a perfect matching.

15.1.1 Schwartz-Zippel Lemma

Consider $p(x_1, x_2, ..., x_n)$ to be a non-zero degree d polynomial in n variables over a field \mathbb{F} . Let S be a subset of \mathbb{F} . Let x_i be picked randomly and independently from S.

$$P[p(x_1, x_2, ..., x_n) = 0] \le \frac{d}{|S|}$$

Take S to be the field \mathbb{Z} mod p for some $p \ge n^3$. Let each x_{ij} be picked randomly and independently from S and its value substituted in A to give A'. Det(A) is a multivariate polynomial (m variables) with degree n.

Spring 2019

Scribe: Sukriti Gupta

Probability that G has a perfect matching but $\det(A') = 0 \le \frac{n}{n^3} = \frac{1}{n^2}$ Time required for computing determinant of an $n \times n$ matrix, inverting an $n \times n$ matrix, multiplying two n

Time required for computing determinant of an n × n matrix, inverting an n × n matrix, multiplying two n × n matrices is $O(n^{\omega})$. The current best known algorithm for matrix multiplication has value of $\omega = 2.373$

15.1.2 How to find a perfect matching: Algorithm 1

Take an edge at random. Remove it. If determinant =0, the edge was in the matching (wrong with probability $\frac{1}{n^2}$), else, when determinant $\neq 0$, the edge is not necessarily in the matching (always correct) (there is a perfect matching in G-e, so we can remove e). This elsewithm will take $\Omega(m, m^{\omega})$ time.

This algorithm will take $O(m n^{\omega})$ time.

Error: Since the matching has n edges, we go in the wrong conditon at most n times. The algorithm fails when there was a perfect matching but we could not find it.

$$P(Algorithm fails) \leq \frac{1}{n}$$

15.1.3 How to find a perfect matching: Algorithm 2

We are trying to find v_j such that $(u_1, v_j) \in E$ and $Det(A'_{-1,-j}) \neq 0$.

$$Det(A') = x_{11}Det(A'_{-1,-1}) \pm x_{12}Det(A'_{-1,-2}) \pm \dots \pm x_{1n}Det(A'_{-1,-n})$$

If we have an A' such that the det(A') $\neq 0$, at least one of these terms is non-zero. Take any of these non-zero terms, say, x_{1j} Det $(A'_{-1,-j})$. Now, the edge represented by x_{1j} is in the perfect matching and we continue the process on $A'_{-1,-j}$. This can be done since $\text{Det}(A'_{-1,-j}) \neq 0 \implies \exists$ a perfect matching in $A'_{-1,-j}$.

There is only one step in the algorithm where we can make a mistake, the first step that is finding an A' such that $det(A') \neq 0$.

$$P[error] = \frac{1}{n^2}$$

If we find that the determinant is still 0 even after k tries

$$P[error] = (\frac{1}{n^2})^k$$

To find the non-zero terms of det(A'), we can use Cramer's Rule, which states that the j^{th} element of the first column of $(A')^{-1}$ when multiplied to the det(A') gives the value of $\text{Det}(A'_{-1,-j})$. We can therefore use the following algorithm:

matching $\leftarrow \phi$; **while** size of matching $\neq n$ **do** If Det(A')=0, exit; else $\text{B}=(A')^{-1}$ find j such that $B_{j1} \neq 0$ and $A'_{1j} \neq 0$ Include (1,j) in matching $A'=A'_{-1,-j}$ end

This algorithm will take $O(n^{\omega+1} + n^2) = O(n^{\omega+1})$ time with success probability (probability that it found a perfect matching, given that it existed) = $1 - \frac{1}{n^2}$

15.2 Red Blue Matching Problem

Consider a bipartite graph G=(U,V,E) such that each edge $e \in E$ is either blue or red. Find a perfect matching with exactly k red edges. Does there exist a perfect matching with exactly k red edges?

Assumption: If there does exist a perfect matching with exactly k red edges, it is unique.

Consider the following matrix A.

$$A(i,j) = \begin{cases} y, & (i,j) \in \mathcal{E} \text{ and is red} \\ 1, & (i,j) \in \mathcal{E} \text{ and is blue} \\ 0, & \text{otherwise} \end{cases}$$

Det(A) is a polynomial in y of degree at most n. Coefficient of y^k is non-zero **iff** G has a red-blue perfect matching.

We can compute Det(A') at n+1 points to find out the coefficients of Det(A).