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Note: BTEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

14.1 Recap

In last class, we have seen
e How to solve shortest path using matrix multiplication
e Saw a O(n* logn) time algorithm for solving APSP for unweighted, undirected graph.

Now we will look at the problem of finding a perfect matching in a bipartite graph.

14.2 Bipartite graph and the perfect matching problem

A graph G = (V, E), is bipartite if the vertex set V' can be partitioned into two sets A and B (the bipartition)
such that no edge in FE has both endpoints in the same set of the bipartition. A matching M C F is a set
of edges such that every vertex of V is incident to at most one edge of M. If a vertex v has no edge of M
incident to it then v is said to be unmatched. A matching is perfect if no vertex is unmatched; in other
words, a matching is perfect if the cardinality of its bipartition are equal i.e. |A| = |B|. The problem is to
find a perfect matching if it exists.

Augmenting Path Algorithm

The classic algorithm for finding a perfect matching is the augmenting path algorithm.

Alternating Path
A path in which alternate edges belong to the matching M

Augmenting Path

An alternating path which begins and ends with an unmatched vertex.

Example

Red edge lies in the Matching M and Black edges denotes the other remaining edges.
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a —2 —b—11is an alternating path, 1 — b — 3 — ¢ is an alternating path, unmatched vertices are d and 5,
5—e—4—c—3—dis an augmenting path. Now take this augmenting path and flip its edges , i.e. edges of
the path in matching are removed and not in matching are put in matching so 5 — e—4 — ¢c—3 — d changes
to 5—e — 4—c — 3—d. Note that the matching has been extended from 2 to 3 in this path and the matching
degrees haven’t changed hence it’s a viable matching. In this we can create a perfect matching if it exists.
Now we need to see how to find an augmenting path.

Finding Augmenting Path

We use a DFS-like procedure to get augmenting paths, we start with an unmatched vertex v and go to the
matched neighbours of v and then to the unmatched neighbours of that vertex and so on. The DFS tree will
be an alternating tree with matched and unmatched vertices at alternating levels or iterations. When you
find another unmatched vertex u then we have found an augmenting path v to u , otherwise if we don’t find
an unmatched vertex other than v in this alternating path then Graph G does not have a perfect matching.
Let S denote a subset of the set U that will be included in the augmenting path while T be the subset of
V included in the augmenting path , T is also called the neighbourhood of S denoted by N(S) , note that
|S| —|T) =1 as after the starting vertex, for every v in T we include the corresponding u in S. S is called a
hall set.

Hall Set
A set S C U such that |[N(S)| < |S| where N(S) is the neighbourhood of S.

Hall Theorem
A bipartite graph G = (U, V, E) has a perfect matching iff it has no hall set.

In the augmenting path finding at every point we find a hall set and flip the matching , increasing the
matching by one. A similar algorithm is used for general graphs called the blossom algorithm. The running
time for the above classic algorithm is O(mn) as finding augmenting path is O(n) and the size of matching
increases by one edge every iteration.
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14.3 Schwartz-Zippel lemma

If p(z) is an univariate polynomial of degree d we know that P has atmost d roots. Now look at multivariate
case. Consider p(z1, 2, ..., ) to be a non-zero degree d polynomial in n variables over a field F. Let S be
a subset of F. Let z; be picked randomly and independently from S.

d
Plp(x1, 2, ...,2,) = 0] < 5]

So this is trivially true for a univariate polynomial, we will prove it for the general case.
p(T1, Tay ey Tpy) = xflq(acl, X2y ey Tne1) + 7(T1, T2, ... y)
therefore using bayes theorem we write:
P[p() = 0] = P[p() = 0lq() = 0]P[g = 0] + P[p() = 0lq() # 0]P[q() # 0]

P[p() = 0] < Plg() = 0] + P[p() = 0lq # 0]
d—k ko d
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This is because the degree of ¢() is atmost d — k and when we put (z1,z2,...2,—-1) in p() we get an atmost
k degree polynomial in z,, .
In the next lecture we will use this lemma to get a matrix based method to solve the matching problem in
bipartite graphs.
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