
COL758: Advanced Algorithms Spring 2019

Lecture 13: February 21
Lecturer: Naveen Garg Scribe: Anant Chhajwani

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

13.1 Shortest Paths

In this lecture, we first revised combinatorial algorithms for shortest path problem on weighted directed
graphs with negative edges, this included Bellman-Ford for single source shortest path (SSSP) and Floyd-
Warshall for all pairs shortest path (APSP). Later we studied Seidel’s algorithm, which is an algebraic
algorithm to solve all pairs shortest path problem on unweighted, undirected graphs.

The table below shows standard algorithms with their running time for variants of shortest path problem:

l : E → R+ l : E → R
Single Source Dijkstra (m + n log n) Bellman-Ford (mn)
All Pairs n× Dijkstra (mn + n2 log n) Floyd-Warshall (n3)

13.2 Bellman-Ford (SSSP with negative edges)

We use an array di[v] to store an upper bound on the distance of v from s after ith round.

Input: A directed graph G = (V,E), a length function l : E → R, and a source vertex s ∈ V .

Result: ∀v ∈ V, dn−1[v] stores distance of v from s
d0[s]← 0; d0[v]←∞;
for i← 1 to n− 1 do

for all u ∈ V do
di[u]← min(di−1[u], min

(v,u)∈E
(di−1[v] + l(v, u));

end

end
Algorithm 1: Bellman-Ford

Note: We assume there are no negative weight cycles in graph, as it can cause shortest path length to
be −∞ for some vertex v.

Invariant: di[v] is the length of the shortest path from s to v having at most i edges.

Proof by Induction: Since d0[s] = 0 and d0[v] =∞, the invariant holds for i = 0. To verify for i + 1,
suppose the shortest s− v path containing at most i + 1 edges has

1. exactly i + 1 edges, then there is a neighbour w of v that lies on s − v path and has i edges on its
s− w path. Since the length of shortest s− w path with at most i edges is given by di[w], the length
of shortest s− v path with i + 1 edges is di+1[v] = di[w] + l(w, v).

2. less than i+ 1 edges, then the length of shortest s− v path will be same as previous iteration, hence
di+1[v] = di[v].

13-1



Lecture 13: February 21 13-2

Since any shortest path can use at most n− 1 edges, dn−1[v] stores the length of shortest s− v path.

Running Time: Every iteration of inner for loop takes time equal to in-degree of u, therefore each
iteration of outer for loop takes time equal to sum of in-degree over all vertices u ∈ V , which equals O(m).
Therefore, total time taken is O(mn).

13.3 Floyd-Warshall (APSP with negative edges)

We use an array di[u, v] to store an upper bound on the distance of v from u after ith round.

Input: A directed graph G = (V,E) and a length function l : E → R.

Result: ∀(u, v) ∈ V × V, dn[u, v] stores distance of v from u
d0[u, u]← 0;
if (u, v) ∈ E then d0[u, v]← l(u, v), else d0[u, v]←∞;
i← 0;
for all w ∈ V do

i← i + 1;
for all (u, v) ∈ V × V do

di[u, v]← min(di−1[u, v], di−1[u,w] + di−1[w, v]);
end

end
Algorithm 2: Floyd-Warshall

Let w1, w2, . . . , wn be the vertices in the order of execution of outer for-loop in above algorithm.

Invariant: di[u, v] is the length of the shortest path from u to v which is only allowed to use vertices
{w1, w2, . . . , wi} as internal vertices in a path.

Proof by Induction: For i = 0, no vertex is allowed to be an internal vertex in a path, therefore the
shortest path can only be an edge. Hence, d0[u, u] = 0, d0[u, v] = l(u, v) if (u, v) ∈ E, otherwise d0[u, v] =∞.
To check for i + 1, suppose the shortest path from u to v which is allowed to use only w1, w2, . . . , wi+1 as
internal vertices

1. uses wi+1 as internal vertex, then consider two parts of this shortest u − v path, one path is
u − wi+1 and other is wi+1 − v. Both these paths use only w1, . . . , wi as internal vertices, therefore
length of these paths are di[u,w] and di[w, v]. So, total length of shortest u − v path is di+1[u, v] =
di[u,wi+1] + di[wi+1, v].

2. does not use wi+1 as internal vertex, then it uses only w1, . . . , wi as internal vertices, therefore
di+1[u, v] = di[u, v].

Running Time: Since outer for loop performs n iterations and inner for loop performs n2 iterations,
total time taken is O(n3).

13.4 Seidel’s Algorithm (APSP on undirected, unweighted graphs)

Seidel’s algorithm is an algebraic algorithm to solve all pairs shortest path problem in undirected, unweighted
graphs in time O(nω log n), where O(nω) is time for multiply two n × n square matrices. The current best
known value for ω is 2.373. Also, naive matrix multiplication has ω = 3, and using Strassen’s algorithm we
can get ω = log2 7 = 2.81.



Lecture 13: February 21 13-3

Definition: The square of a graph G = (V,E) is the graph G2 = (V,E2) such that (u, v) ∈ E2 if and
only if there is a path of length ≤ 2 between u and v in graph G.

Lemma: The adjacency matrix of G2 is A ∗A + A, where A is the adjacency matrix of G, ∗ is boolean
AND operation and + is boolean OR operation.

Proof: The adjacency matrix A (n × n square matrix) of a graph G = (V,E) contains a 1 at (i, j) iff
(i, j) ∈ E. Also, the (i, j) entry of A ∗A contains a 1 iff there exists k such that A[i, k] = 1 and A[k, j] = 1.
Therefore, A ∗ A has a 1 at (i, j) if there is a 2-length path between i and j. Thus, A ∗ A + A has a 1 at
(i, j) if there is a 2-length or 1-length path between i and j.

Question: Given d2(u, v) (length of shortest path between u and v in G2) can we compute d(u, v) (length
of shortest path between u and v in G)?

Answer: Lets take an example, say d2(u, v) = 10. Then we can say that d(u, v) ≤ 20 because for each
edge in G2 there is a corresponding path of length ≤ 2 in G. Now, is it possible to have d(u, v) = 18? No,
since this would imply d2(u, v) = 9 because for every two consecutive edges in u− v path of length 18 in G
we have an edge in G2. Thus, we conclude that d(u, v) = 19 or 20.

Generalizing this argument we get a relation between d(u, v) and d2(u, v) as

d2(u, v) =

⌈
d(u, v)

2

⌉
Therefore, d(u, v) = 2d2(u, v) or 2d2(u, v)− 1.



Lecture 13: February 21 13-4

Question: How to decide whether d(u, v) equals 2d2(u, v) or 2d2(u, v)− 1?

Answer: Let w be neighbor of v in graph G. Also, let us suppose we are given d2(u, v) = 6. Then we
know that d(u, v) = 11 or 12. Now, if d2(u,w) = 5 then we must have d(u, v) = 11 since d(u,w) ≤ 10 and
(w, v) ∈ E. Also, if d(u, v) = 11 then there exists a neighbor w of v in G such that d2(u,w) = 5, because in
the shortest u − v path of length 11 in G there is a neighbor w which is 10 units far from u, d(u,w) = 10.
Thus, we can generalize this statement in the following lemma.

Lemma 1: d(u, v) = 2d2(u, v)−1 iff there exists a neighbor w of v in G such that d2(u,w) = d2(u, v)−1.

Lemma 2: d(u, v) = 2d2(u, v)− 1 iff
∑

(w,v)∈E d2(u,w) < d2(u, v)× deg(v).

Proof: Lets take same example where d2(u, v) = 6 and d(u, v) = 11. We also know a neighbor w of v
in G having d2(u,w) = 5. Then we can not have d2(u,w

′
) = 7 for some neighbor w

′
of v, because there is

a length 2 path from w
′

to w passing through v and so we must have d2(u,w
′
) ≤ d2(u,w) + 1 = 6. This

proves lemma 2.

Let D2 be a n× n matrix with entries D2[u, v] = d2(u, v). Then, multiplying D2 with adjacency matrix
A of G we get a matrix with entries D2A[u, v] =

∑
(w,v)∈E d2(u,w). Now, we can obtain matrix D with

entries as D[u, v] = 2D2[u, v]− 1[D2A[u, v] < D2[u, v]× deg(v)].

Notes:

1. This is a recursive algorithm since it computes d(u, v), distances in G from d2(u, v), distance is G2. We
construct adjacency matrix A

′
of G2 from adjacency matrix A of G using boolean matrix operations

given by A
′

= A ∗A + A.



Lecture 13: February 21 13-5

2. At each recursive step, we use the formula D[u, v] = 2D2[u, v]−1[D2A[u, v] < D2[u, v]× deg(v)] which
requires multiplying matrices D2 and A in O(nω) time and then perform some matrix operations in
O(n2) time. Thus, each recursive step takes O(nω) time.

3. The base case of our recursion is Dn−1[u, v] = 1, u 6= v and Dn−1[u, u] = 0, since any shortest path
is of length at most n − 1. Since we square the graph at each recursive step, the recursion depth is
O(log n) and total running time of Seidel’s algorithm is O(nω log n).


