Lecture 10: February 11
Lecturer: Naveen Garg
Scribes: Ambreen Bashir

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

10.1 Introduction

Given a graph G, each edge e has an associated resistance r_{e}. The energy of a $s-t$ flow f is given by $E(f)=\sum_{e} r_{e} f^{2}(e)$. The electrical flow of value F from source node s to a sink node t is the flow of value F from s to t that minimises the energy. The electrical flow can be computed in linear time. We can use this idea to compute maximum s-t flow in a graph with each edge having capacity C_{e}. In other words, our intent is to use electrical machinery to determine max flow. For this, we propose a width - dependent multiplicative update algorithm.

10.2 Simultaneous Minimization Problem

Given some convex functions $h_{1}, h_{2}, \ldots, h_{m}$, with each $h_{i}: Q \rightarrow \mathbb{R}^{+}$, over a convex set Q. We want to find a point in Q for which all the convex functions have a small value.

$$
\forall i \quad h_{i}(x) \leq 1
$$

To compute the point, we will use an oracle which on receiving a multiplier y_{i} will output a point x where the convex combination of all the functions will be atmost 1.

$$
\frac{\sum_{i} y_{i} h_{i}(x)}{\sum_{i} y_{i}} \leq 1 \quad \forall y_{i} \geq 0
$$

For this point, different functions will have different values but the convex combination of all functions will be atmost 1 .

10.3 Algorithm

We propose an iterative algorithm as follows:
In every round, r, we give an associated y_{i}^{r} which is initially taken as 1 to the oracle. Using y_{i}^{r}, oracle takes the convex combination of h_{i} s and outputs a point x^{r} where the value of the convex combination of all functions will be small $\left(\sum_{i} \underline{y_{i}^{r}} h_{i}(x) \leq 1\right)$. The individual functions can have higher values. For the functions having high values, we define $w^{r}=\frac{1}{\max _{i} h_{i}\left(x^{r}\right)}$ to ensure $w_{r} h_{i}(x)$

```
Algorithm 1 Width dependent multiplicative update algorithm
    procedure WidthDependent \(\left(h_{i}(x)\right)\)
        Initially, \(y_{i} \leftarrow 1\)
        while \(\sum_{r} w^{r} \geq \frac{\ln m}{\epsilon^{2}}\) do
            Given \(y_{i}^{r}\) find \(x^{r} \in Q\) for which \(\sum_{i} \underline{y_{i}^{r}} h_{i}(x) \leq 1\)
            Step size: \(w_{r}=\frac{1}{\max _{i} h_{i}\left(x^{r}\right)} \Longrightarrow w_{r} h_{i}(x) \leq 1 \quad \forall i\)
            Update \(y_{i}^{r+1} \leftarrow y_{i}^{r} e^{\epsilon w^{r} h_{i} x^{r}}\)
        return \(w^{r}, x^{r} \quad \forall r \quad \triangleright\) where \(w^{r}\) is the step size and \(x^{r}\) is the point picked at every step
```

is at most 1 for all functions. In the next step, y_{i} is updated for the next round. For the functions having high value, y_{i} is kept high and y_{i} is small for functions with low value. This is done inorder to lower the value of functions when next point is picked. But a small change $(1+\epsilon)$ is made to keep it controlled. This is achieved by $w_{r} h_{i}(x) \leq 1$. These steps are repeated for some r rounds until the desired value of sum of w^{r} is obtained which is discussed later.

The final solution \bar{x} is defined as the convex combination of all the points taken at each round.

$$
\bar{x}=\frac{\sum_{r} w^{r} x^{r}}{\sum_{r} w^{r}}
$$

10.3.1 Analysis

Claim 1:

$$
\sum_{r} w^{r} \sum_{i} \underline{y_{i}^{r}} h_{i}\left(x^{r}\right) \geq \frac{\max _{i} \sum r w^{r} h_{i}\left(x^{r}\right)}{e^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}}
$$

Proof: Change in the value of y_{i} at each step is given by:

$$
\begin{array}{rlr}
y_{i}^{r+1}-y_{i}^{r} & =\left(y_{i}^{r} e^{\epsilon w^{r} h_{i}\left(x^{r}\right)}\right)-y_{i}^{r} & \\
& =y_{i}^{r}\left(e^{\epsilon w^{r} h_{i}\left(x^{r}\right)}-1\right) & \\
& \leq y_{i}^{r} \epsilon w^{r} h_{i}\left(x^{r}\right) e^{\epsilon w_{r} h_{i}\left(x^{r}\right)} & \left(e^{x}-1 \leq x e^{x}-\text { Taylors series }\right) \\
& \leq y_{i}^{r} \epsilon w^{r} h_{i}\left(x^{r}\right) e^{\epsilon} & \left(w^{r} h_{i}(x) \leq 1 \quad \text { always }\right) \\
& \leq \epsilon e^{\epsilon} w^{r} h_{i}\left(x^{r}\right) y_{i}^{r} &
\end{array}
$$

Thus summing over all the functions;

$$
\sum_{i} y_{i}^{r+1}-\sum_{i} y_{i}^{r} \leq \epsilon e^{\epsilon} w^{r} \sum_{i} h_{i}\left(x^{r}\right) y_{i}^{r}
$$

Summing over the rounds:

$$
\sum_{r} \sum_{i} y_{i}^{r+1}-\sum_{i} y_{i}^{r} \leq \epsilon e^{\epsilon} \sum_{r} w^{r} \sum_{i} h_{i}\left(x^{r}\right) y_{i}^{r}
$$

$$
\begin{align*}
& \sum_{r} w^{r} \sum_{i} \underline{y_{i}^{r}} h_{i}\left(x^{r}\right) \geq \frac{1}{\epsilon e^{\epsilon}} \sum_{r} \frac{\sum_{i} y_{i}^{r+1}-\sum_{i} y_{i}^{r}}{\sum_{i} y_{i}^{r}} \\
& \geq \frac{1}{\epsilon e^{\epsilon}} \int_{\sum_{i} y_{i}^{1}}^{\sum_{i} y_{i}^{N}} \frac{1}{x} d x \\
& \geq \frac{1}{\epsilon e^{\epsilon}} \ln \frac{\sum_{i} y_{i}^{N}}{\sum_{i} y_{i}^{1}} \\
& \geq \frac{1}{\epsilon e^{\epsilon}}\left(\ln \sum_{i} y_{i}^{N}-\ln \sum_{i} y_{i}^{1}\right) \\
& \geq \frac{\ln \sum_{i} y_{i}^{N}}{\epsilon e^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}} \\
& \geq \frac{\ln \max _{i} y_{i}^{N}}{\epsilon e^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}} \\
& \geq \frac{\ln \max _{i} e^{\epsilon w^{r} h_{i}\left(x^{r}\right)}}{\epsilon \epsilon^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}} \\
& \geq \frac{y_{i} y_{i}^{r}}{\sum_{i}} \\
& \geq \max _{i} \frac{\epsilon w^{r} h_{i}\left(x^{r}\right)}{\epsilon e^{\epsilon} h_{i}\left(x^{r}\right)}-\frac{\ln m}{\epsilon e^{\epsilon}} \\
& \geq \max _{i} \frac{\sum_{r} w^{r} h_{i}\left(x^{r}\right)}{e^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}} \\
& \epsilon e^{\epsilon} \tag{1}
\end{align*} \quad\left(y_{i}\right. \text { is the sum of the total number of rounds)}
$$

Hence we have proved claim 1.

Stopping criteria:

Since value returned by the oracle will always be at most 1

$$
\begin{align*}
\sum_{r} w^{r} & \geq \sum_{r} w^{r} \sum_{i} \underline{y_{i}^{r}} h_{i}\left(x^{r}\right) \\
\sum_{r} w^{r} & \geq \max _{i} \frac{\sum_{i} r w^{r} h_{i}\left(x^{r}\right)}{e^{\epsilon}}-\frac{\ln m}{\epsilon e^{\epsilon}} \tag{1}\\
e^{\epsilon} \sum_{r} w^{r} & \geq \max _{i} \sum_{r} w^{r} h_{i}\left(x^{r}\right)-\frac{\ln m}{\epsilon} \\
e^{\epsilon} & \geq \max _{i} \frac{\sum_{r} w^{r} h_{i}\left(x^{r}\right)}{\sum_{r} w^{r}}-\frac{\ln m}{\epsilon \sum_{r} w^{r}} \\
e^{\epsilon} & \geq \max _{i} h_{i}(\bar{x})-\frac{\ln m}{\epsilon \sum_{r} w^{r}} \tag{2}
\end{align*}
$$

\bar{x} is the point where the final solution is given. The value of the functions at point $\bar{x}, h_{i}(\bar{x})$ is less than any other $h_{i}(x)$

$$
h_{i}(\bar{x})=h_{i}\left(\frac{\sum_{r} w^{r} x^{r}}{\sum_{r} w^{r}}\right) \leq \sum_{r} \frac{w^{r} h_{i}\left(x^{r}\right)}{\sum_{r} w^{r}}
$$

Thus,

$$
\begin{equation*}
\max _{i} h_{i}(\bar{x}) \leq(1+\epsilon)+\frac{\ln m}{\epsilon \sum_{r} w^{r}} \tag{2}
\end{equation*}
$$

The stopping criteria for the algorithm will be given by the fact that it will be run till the term $\frac{\ln m}{\epsilon \sum_{r} w^{r}} \leq \epsilon$. Therefore,

$$
\sum_{r} w^{r} \geq \frac{\ln m}{\epsilon^{2}}
$$

And

$$
\max _{i} h_{i}(\bar{x}) \leq(1+\epsilon)+\epsilon=(1+2 \epsilon)
$$

Thus we have found a point \bar{x} such that all the functions are less than $1+2 \epsilon$

10.4 Width

The maximum value any function here can have value is at most ρ and not infinite. We try to keep the value of function $h_{i}(x)$ controlled. They should not have very high values but there should be a bound ρ which is the maximum value of any function at the point given by oracle. The ρ is known as width of the problem.

If $\max _{r} \max _{i} h_{i}\left(x^{r}\right)=\rho$ then,

$$
w^{r} \geq \frac{1}{\rho} \quad \forall r \quad\left(\text { since } w^{r}=\frac{1}{\max _{i} h_{i}\left(x^{r}\right)}\right)
$$

This implies that the number of rounds, N is atmost $\rho \frac{\ln m}{\epsilon^{2}}$ and the algorithm will get completed in N rounds.

If we have an oracle and a width ρ to control, then we can get $(1+2 \epsilon)$ approximation algorithm. The running time will be atmost $\rho \frac{\ln m}{\epsilon^{2}}$. For low values of ρ, running time will be low.

10.5 Max Flow Algorithms

The algorithm discussed above can be used to compute approximate max flows in a graph. But there are two assumptions to be followed:

- Every edge has a capacity $C_{e}=1$.
- The value of the flow, F is known

The domain Q contains the set of all possible valid flows i.e., set of all flows of value F from s to t. The flows obey the conservation constraint but violate the capacity constraint.

The oracle required will find a flow of value F where value of $\sum_{e} y_{e} h_{e}(x)$ is minimum for any given y_{e}. We need to find $x \in Q$ such that $\forall e, h_{e}(x) \leq 1$ (i.e. they should meet the capacity constraints).

