
Approximate distances in weighted

graphs

T. Kavitha
Indian Institute of Science, Bangalore.

(Joint work with Surender Baswana)

. – p.1/25

The problem

� : a weighted undirected graph with � edges
and � vertices

the APSP problem: compute shortest
paths/distances between each pair of vertices.

build a data structure to answer shortest

path/distance queries efficiently.

. – p.2/25

The problem

� : a weighted undirected graph with � edges
and � vertices

� the APSP problem: compute shortest
paths/distances between each pair of vertices.

build a data structure to answer shortest

path/distance queries efficiently.

. – p.2/25

The problem

� : a weighted undirected graph with � edges
and � vertices

� the APSP problem: compute shortest
paths/distances between each pair of vertices.

� build a data structure to answer shortest

path/distance queries efficiently.

. – p.2/25

The problem

� can do it in

� � � � �

time to produce an � � �

matrix containing distances.

build a smaller data structure to answer
approximate distance queries efficiently.

is a -stretch estimate of if

. – p.3/25

The problem

� can do it in

� � � � �

time to produce an � � �

matrix containing distances.

� build a smaller data structure to answer
approximate distance queries efficiently.

is a -stretch estimate of if

. – p.3/25

The problem

� can do it in

� � � � �

time to produce an � � �

matrix containing distances.

� build a smaller data structure to answer
approximate distance queries efficiently.

�
��� �
��
�

�
�

is a

�

-stretch estimate of

� �
�
�

�
�

if

� �
�
�

�
� �� �
�
�

�
� � � �
��
�

�
�

. – p.3/25

Data structures for -stretch dist.

of size in time [Cohen-Zwick]

of size in expected time
[Thorup-Zwick]

new result: of size in expected time

however, our query answering time is .

. – p.4/25

Data structures for -stretch dist.

� of size

� � � �

in time

� � � � �� � �

[Cohen-Zwick]

of size in expected time
[Thorup-Zwick]

new result: of size in expected time

however, our query answering time is .

. – p.4/25

Data structures for -stretch dist.

� of size

� � � �

in time

� � � � �� � �

[Cohen-Zwick]

� of size

� � � � � �

in expected time
� � � �

[Thorup-Zwick]

new result: of size in expected time

however, our query answering time is .

. – p.4/25

Data structures for -stretch dist.

� of size

� � � �

in time

� � � � �� � �

[Cohen-Zwick]

� of size

� � � � � �

in expected time
� � � �

[Thorup-Zwick]

� new result: of size
� � � � � �

in expected time

� � ��� � � � � �� ��
�

� � � �

however, our query answering time is .

. – p.4/25

Data structures for -stretch dist.

� of size

� � � �

in time

� � � � �� � �

[Cohen-Zwick]

� of size

� � � � � �

in expected time
� � � �

[Thorup-Zwick]

� new result: of size
� � � � � �

in expected time

� � ��� � � � � �� ��
�

� � � �

� however, our query answering time is

� � � � � �

.

. – p.4/25

Approximate Distance Oracles

� a data structure of size

�� �
��� � � � �

constructed
in expected time

�� � � � � � �

– reports

��� � � � �

-stretch distances in

�� �

time.

. – p.5/25

Approximate Distance Oracles

� a data structure of size

�� �
��� � � � �

constructed
in expected time

�� � � � � � �

– reports

��� � � � �

-stretch distances in

�� �

time.

new result:

� a data structure of size

�� �
��� � � � �

constructed
in expected time

� � ��� � � �
�

� � � � � � � �

– reports -stretch distances in

time, for any .

. – p.6/25

Approximate Distance Oracles

� a data structure of size

�� �
��� � � � �

constructed
in expected time

�� � � � � � �

– reports

��� � � � �

-stretch distances in

�� �

time.

new result:

� a data structure of size

�� �
��� � � � �

constructed
in expected time

� � ��� � � �
�

� � � � � � � �

– reports
��� � � � �

-stretch distances in

�� �

time, for any

� � �

. . – p.6/25

The Thorup-Zwick algorithm

�����

� �� ����

�����

�����

	 		 	�

�����

���

����������
� �� ����

�����
�����

����������
�����

���
!!�""

##�$$
%%�&&

''�((
))�**

+ ++ +�,,

--�..

� sample each vertex indep. with prob.

� / �.

. – p.7/25

The Thorup-Zwick algorithm

�����

� �� ����

�����
�����

	 		 	�

�����

���

�����
� �� ����

����� ���������������
� �� ����

��������
!!�""

##�$$%%�&&
''�((

))�**
++�,,

--�..

let be the set of sampled vertices.

.

. – p.8/25

The Thorup-Zwick algorithm

�����

� �� ����

�����
�����

	 		 	�

�����

���

�����
� �� ����

����� ���������������
� �� ����

��������
!!�""

##�$$%%�&&
''�((

))�**
++�,,

--�..

� let

/

be the set of sampled vertices.

.

. – p.8/25

The Thorup-Zwick algorithm

�����

� �� ����

�����
�����

	 		 	�

�����

���

�����
� �� ����

����� ���������������
� �� ����

��������
!!�""

##�$$%%�&&
''�((

))�**
++�,,

--�..

� let

/

be the set of sampled vertices.

� /0 /01 2 �.
. – p.8/25

The Thorup-Zwick algorithm

�����

� �� ����

�����

� �� ����
		�

�����

���
� �� ����

����� ���������������
� �� ����

����������
���

!!�""##�$$
%%�&&

''�((
))�**

++�,,
- -- -- -..

v

s(v)

/ �
�

�

: set of all vertices closer to � than 0 �
�

�

.

. – p.9/25

The Thorup-Zwick algorithm

�����

� �� ����

�����

� �� ����
		�

�����

���
� �� ����

����� ���������������
� �� ����

����������
���

!!�""##�$$
%%�&&

''�((
))�**

++�,,
- -- -- -..

v

s(v)

/ �
�

�

: set of all vertices closer to � than 0 �
�

�

.

/ 0 / �
�

� 01 2 �.
. – p.10/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each stores distances to all vertices.

– if query ,

if return .

else return .

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query ,

if return .

else return .

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query 2 �
�
�

�
�

,

if return .

else return .

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return
� �
�
�

�
�

.

else return .

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return
� �
�
�

�
�

.

� else return

� �
�
�

0 �
�

� � � � 0 �
�

�
�

�
�

.

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return
� �
�
�

�
�

.

� else return

� �
�
�

0 �
�

� � � � 0 �
�

�
�

�
�

.
� �
�
�

�
� � � 0 �
�

�
�

�
� � �
�
�

�
�

.

. – p.11/25

The Thorup-Zwick algorithm

1. each � stores distances to all vertices in

/ �
�

�

.

2. each 0 � /

stores distances to all vertices.

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return
� �
�
�

�
�

.

� else return

� �
�
�

0 �
�

� � � � 0 �
�

�
�

�
�

.
� �
�
�

�
� � � 0 �
�

�
�

�
� � �
�
�

�
�

� � �
�
�

�
�

.

. – p.11/25

The Thorup-Zwick algorithm

1. each computes distances to vertices in
by performing a truncated Dijkstra.

– the expected running time is .

2. each stores distances to all vertices by
performing a Dijkstra in the entire graph.

– the expected running time is .

. – p.12/25

The Thorup-Zwick algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra.

– the expected running time is .

2. each stores distances to all vertices by
performing a Dijkstra in the entire graph.

– the expected running time is .

. – p.12/25

The Thorup-Zwick algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra.

– the expected running time is
� � � �

.

2. each stores distances to all vertices by
performing a Dijkstra in the entire graph.

– the expected running time is .

. – p.12/25

The Thorup-Zwick algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra.

– the expected running time is
� � � �

.

2. each 0 � /

stores distances to all vertices by
performing a Dijkstra in the entire graph.

– the expected running time is .

. – p.12/25

The Thorup-Zwick algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra.

– the expected running time is
� � � �

.

2. each 0 � /

stores distances to all vertices by
performing a Dijkstra in the entire graph.

– the expected running time is

� � � �

.

. – p.12/25

The Thorup-Zwick algorithm

the size of the data structure is

� � � � � �
.

the query answering time is .

. – p.13/25

The Thorup-Zwick algorithm

the size of the data structure is

� � � � � �
.

� the query answering time is
� � �

.

. – p.13/25

A faster algorithm

v

s(v)

– improving step 1: each performs truncated
Dijkstra in a subgraph of .

. – p.14/25

A faster algorithm

�����

� �� ����

��
�
��

� �� ����
		�

�����

���

����� �����

�����
� �� ����

�����
�����

�����

�����
���

!!�""
##�$$

%%�&&
''�((

))))))
**

++�,,

--�..

v

s(v)

– improving step 1: each � performs truncated
Dijkstra in a subgraph

/

of .

. – p.14/25

A faster algorithm

�����

�����

�����

�����
		�

�����

���

����� �����

�����

�����
�����

�����

�����
�����

���
!!�""

##�$$
%%�&&

' '' '' '
((

))�**

++�,,
--�..

v

w

s(v)

– an edge like
�
�
�

/ �

cannot lie in

/ �
�

�

, for any �.

– contains no such edge: .

. – p.15/25

A faster algorithm

�����

�����

�����

�����
		�

�����

���

����� �����

�����

�����
�����

�����

�����
�����

���
!!�""

##�$$
%%�&&

' '' '' '
((

))�**

++�,,
--�..

v

w

s(v)

– an edge like
�
�
�

/ �

cannot lie in

/ �
�

�

, for any �.

–

/

contains no such edge:

/0 / 01 2 � � � �

.
. – p.15/25

A faster algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra in
/

.

– the expected running time is .

– the exp. time for this step now is .

—————————————————–
– we now need to improve step 2:

each computes distances to all vertices in
.

. – p.16/25

A faster algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra in
/

.

– the expected running time is
� ��� � � �

.

– the exp. time for this step now is .

—————————————————–
– we now need to improve step 2:

each computes distances to all vertices in
.

. – p.16/25

A faster algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra in
/

.

– the expected running time is
� ��� � � �

.

– the exp. time for this step now is

� � � �

.

—————————————————–
– we now need to improve step 2:

each computes distances to all vertices in
.

. – p.16/25

A faster algorithm

1. each � computes distances to vertices in

/ �
�

�

by performing a truncated Dijkstra in
/

.

– the expected running time is
� ��� � � �

.

– the exp. time for this step now is

� � � �

.

—————————————————–
– we now need to improve step 2:

each 0 � /

computes distances to all vertices in
.

. – p.16/25

A faster algorithm

sample vertices from to form .

we have

is obtained by sampling each vertex in
with prob. .

each does a Dijkstra in the subgraph
.

. – p.17/25

A faster algorithm

� sample vertices from

/

to form

/ � .

we have

is obtained by sampling each vertex in
with prob. .

each does a Dijkstra in the subgraph
.

. – p.17/25

A faster algorithm

� sample vertices from

/

to form

/ � .

� we have

/�
� 2 / / � / � � � �

/�
� ��� � 	
 � �

�
�

is obtained by sampling each vertex in
with prob. .

each does a Dijkstra in the subgraph
.

. – p.17/25

A faster algorithm

� sample vertices from

/

to form

/ � .

� we have

/�
� 2 / / � / � � � �

/�
� ��� � 	
 � �

�
�

� /�
� � � is obtained by sampling each vertex in

/
�

with prob.

� /��

.

each does a Dijkstra in the subgraph
.

. – p.17/25

A faster algorithm

� sample vertices from

/

to form

/ � .

� we have

/�
� 2 / / � / � � � �

/�
� ��� � 	
 � �

�
�

� /�
� � � is obtained by sampling each vertex in

/
�

with prob.

� /��

.

� each 0 � � /
� does a Dijkstra in the subgraph

� � � .

. – p.17/25

A faster algorithm

�����
�����

�����

�����
			

�����

���
�����

� �� ���������

�����
�����

�����

�����
�����

� �� ��
!!�""

##�$$
% %% %% %&&

' '' '�((

))�**
++�,,

--�..

s(v)

(v)s
v

1

� 2 /10 edges of the form above.

. – p.18/25

A faster algorithm

� / 0 /
�

01 2 � /�� �

and

/0
� � � 01 2 � � � �
�

� �

exp. time for step 2 now is .

each stores distances to all vertices in
and vertices .

each stores all the distances that it
computes.

space required is .

. – p.19/25

A faster algorithm

� / 0 /
�

01 2 � /�� �

and

/0
� � � 01 2 � � � �
�

� �

� exp. time for step 2 now is
� � � � �� � �

.

each stores distances to all vertices in
and vertices .

each stores all the distances that it
computes.

space required is .

. – p.19/25

A faster algorithm

� / 0 /
�

01 2 � /�� �

and

/0
� � � 01 2 � � � �
�

� �

� exp. time for step 2 now is
� � � � �� � �

.

� each � stores distances to all vertices in

/ �
�

�

and vertices 0 �
�

�
�

0 � �
�

�
�

0 � �
�

�
� � � � .

each stores all the distances that it
computes.

space required is .

. – p.19/25

A faster algorithm

� / 0 /
�

01 2 � /�� �

and

/0
� � � 01 2 � � � �
�

� �

� exp. time for step 2 now is
� � � � �� � �

.

� each � stores distances to all vertices in

/ �
�

�

and vertices 0 �
�

�
�

0 � �
�

�
�

0 � �
�

�
� � � � .

� each 0 � /

stores all the distances that it
computes.

space required is .

. – p.19/25

Answering queries

– if query 2 �
�
�

�
�

,

if return .

else return

for some which knows

. – p.20/25

Answering queries

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return

� �
�
�

�
�

.

else return

for some which knows

. – p.20/25

Answering queries

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return

� �
�
�

�
�

.

� else return

� � �

�� �� � �� � 	
 � �
� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
�

�

for some which knows

. – p.20/25

Answering queries

– if query 2 �
�
�

�
�

,

� if � � / �
�

�

return

� �
�
�

�
�

.

� else return

� � �

�� �� � �� � 	
 � �
� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
�

�

� �
�
�

�
� � � 0 � �
�

�
�

�
� � �
�
�

�
� � � �
�
�

�
�

for some 0 � �
�

�
which knows

� � 0 � �
�

�
�

�
�

�

. – p.20/25

A faster algorithm

�����

�����

�����

�����
		�

�����

���

����������
�����

�����
�����

����������
�����

���
!!�""

#%$$
&&�''

((�))
**�++

,,�--
..�//00�11

22�33
44�55

66�77

888%99 ::�;;
<<�== > >> >> >%???

@@�AA

B BB B�CC
DD�EE

FF�GG
H HH H�II

JJ�KK
LL�MM

s(v)

u

(v)s
v

(v)s

1

2

� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
� � � �
�
�

�
�

�

. – p.21/25

Analysis

computing the minimum of
, for

takes time.

time to construct the data structure:
.

space requirement:

. – p.22/25

Analysis

� computing the minimum of

� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
�

, for

� � � � �� � � / �

takes

� � � � � �

time.

time to construct the data structure:
.

space requirement:

. – p.22/25

Analysis

� computing the minimum of

� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
�

, for

� � � � �� � � / �

takes

� � � � � �

time.

� time to construct the data structure:

� � � � �� � �

.

space requirement:

. – p.22/25

Analysis

� computing the minimum of

� �
�
�

0 � �
�

� � � � 0 � �
�

�
�

�
�

, for

� � � � �� � � / �

takes

� � � � � �

time.

� time to construct the data structure:

� � � � �� � �

.

� space requirement:

� � � � � �

. – p.22/25

An Extension

sample vertices from to form .

we have

is obtained by sampling each vertex in
with prob. .

. – p.23/25

An Extension

� sample vertices from to form

/ � .

we have

is obtained by sampling each vertex in
with prob. .

. – p.23/25

An Extension

� sample vertices from to form

/ � .

� we have

/
� 2 / � / � � � �

/
�� � 	

�
�

is obtained by sampling each vertex in
with prob. .

. – p.23/25

An Extension

� sample vertices from to form

/ � .

� we have

/
� 2 / � / � � � �

/
�� � 	

�
�

� /
� � � is obtained by sampling each vertex in

/
�

with prob.
� /��

.

. – p.23/25

An Extension

� each 0 � � /
� does a Dijkstra in the subgraph

� � � .

� � � � : consists of all edges incident on each �

whose weight is less than
� �
�
�

0 � � � �
�

� �

.

� For each �
�

� in

� /
�
�

�
1 � � � � � �� �� � 	
� � �
�
�

0 � �
�

� � ��� �
��
�

0 � �
�

� �
�

� �
��
�

0 � �
�

� � �� �
�
�

0 � �
�

� � �

. – p.24/25

An Extension

easy to show that

and

exp. time for building is .

all-pairs- -approx. distances in exp.
time.

—————————————–
Thank you.

. – p.25/25

An Extension

� easy to show that

� �
�
�

�
� � /
�
�

�
1 � � �
�
�

�
� /�� 0

and

exp. time for building is .

all-pairs- -approx. distances in exp.
time.

—————————————–
Thank you.

. – p.25/25

An Extension

� easy to show that

� �
�
�

�
� � /
�
�

�
1 � � �
�
�

�
� /�� 0

� / 0 /
�

01 2 � /�� �

and

/ 0
� � � 01 2 �
�

� �

exp. time for building is .

all-pairs- -approx. distances in exp.
time.

—————————————–
Thank you.

. – p.25/25

An Extension

� easy to show that

� �
�
�

�
� � /
�
�

�
1 � � �
�
�

�
� /�� 0

� / 0 /
�

01 2 � /�� �

and

/ 0
� � � 01 2 �
�

� �

� exp. time for building
�

is

� � � � � � � �

.

all-pairs- -approx. distances in exp.
time.

—————————————–
Thank you.

. – p.25/25

An Extension

� easy to show that

� �
�
�

�
� � /
�
�

�
1 � � �
�
�

�
� /�� 0

� / 0 /
�

01 2 � /�� �

and

/ 0
� � � 01 2 �
�

� �

� exp. time for building
�

is

� � � � � � � �

.

� all-pairs-

���
�

/ �

-approx. distances in exp.

� � � � �� � �

time.

—————————————–
Thank you.

. – p.25/25

An Extension

� easy to show that

� �
�
�

�
� � /
�
�

�
1 � � �
�
�

�
� /�� 0

� / 0 /
�

01 2 � /�� �

and

/ 0
� � � 01 2 �
�

� �

� exp. time for building
�

is

� � � � � � � �

.

� all-pairs-

���
�

/ �

-approx. distances in exp.

� � � � �� � �

time.

—————————————–
Thank you.

. – p.25/25

	
	{
ed The problem}
	{
ed The problem}
	{
ed Data structures for 3-stretch dist.}
	{
ed Approximate Distance Oracles}
	{
ed Approximate Distance Oracles}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed Answering queries}
	{
ed A faster algorithm}
	{
ed Analysis}
	{
ed An Extension}
	{
ed An Extension}
	{
ed An Extension}

