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0(u,v) is a t-stretch estimate of §(u,v) If
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5(u,v) < o(u,v) < t6(u,v)



| Datasstructures for 3-stretch dist.



| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]




| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

» of size O(n*?) in expected time O(m+/n)
[Thorup-Zwick]

—



Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

» of size O(n*?) in expected time O(m+/n)
[Thorup-Zwick]

» new result: of size O(n*?) in expected time
O(min(n?log n, my/n))

—



| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]
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» however, our query answering time is O(logn)
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| Approximate Distance Oracles

a data structure of size O(kn**!/*) constructed
in expected time O (kmn'/*)

— reports (2k — 1)-stretch distances in O(k)
time.

new result:

a data structure of size O(kn"*'/*) constructed
in expected time O(min(n?, kmn'/"))

— reports (2k — 1)-stretch distances in O(k) |

time, for any k& > 2.
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the size of the data structure is O(n?/?).

+ the query answering time is O(1).
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— Improving step 1: each v performs truncated

Dijkstra in a subgraph G’ of G. |
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1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra in ¢”.

— the exp. time for this step now is O(n?).

— we now need to improve step 2:
each s € S computes distances to all vertices In

G. _l
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we have
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with prob. 1/2.

each s; € S; does a Dijkstra in the subgraph

Git1. |
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1 = U, edges of the form above. |
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and
~ exp. time for step 2 now is O(n*logn).

each v stores distances to all vertices in b(v)
and vertices s(v), s1(v), s2(v), . . ..

each s € S stores all the distances that it

computes.
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—if query = (v, u),

if u € b(v) return é(v, u).
else return

min ~ d(v, s;(v)) + (s;(v), u).

0<i<(logn)/2

for some s;(v) which knows d(s;(v), u).

—



A faster. algorithm




I Analysis




I Analysis

e computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
takes O(logn) time.



Analysis

e computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
takes O(logn) time.

e time to construct the data structure:
O(n?logn).

—



I Analysis

computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
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time to construct the data structure:
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we have

So=V 2528 2 Sign 20

S;+1 Is obtained by sampling each vertex in S;
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each s; € S; does a Dijkstra in the subgraph
Git1.

(7;+1. consists of all edges incident on each v
whose weight is less than

Foreachv,uin G )
d[v, u] <= ming<i<iogn(0(v, s;(v)) + ?(u, si(v)),
O(u, s;(u)) + (v, s;(u)))
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