Approximate distances in weighted
graphs

T. Kavitha
Indian Institute of Science, Bangalore.

(Joint work with Surender Baswana) |

| T heproblem

GG . aweighted undirected graph with m edges
and n vertices

| T heproblem

GG . aweighted undirected graph with m edges
and n vertices

the APSP problem: compute shortest
paths/distances between each pair of vertices.

—

| T heproblem

GG . aweighted undirected graph with m edges
and n vertices

the APSP problem: compute shortest
paths/distances between each pair of vertices.

builld a data structure to answer shortest

path/distance queries efficiently.

| T heproblem

can do it in O(mn) time to produce an n x n
matrix containing distances.

| T heproblem

can do it in O(mn) time to produce an n x n
matrix containing distances.

build a data structure to answer
distance queries efficiently.

—

| T heproblem

can do it in O(mn) time to produce an n x n
matrix containing distances.

build a data structure to answer
distance queries efficiently.

ey

0(u,v) is a t-stretch estimate of §(u,v) If

—

5(u,v) < o(u,v) < t6(u,v)

| Datasstructures for 3-stretch dist.

| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

» of size O(n*?) in expected time O(m+/n)
[Thorup-Zwick]

—

Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

» of size O(n*?) in expected time O(m+/n)
[Thorup-Zwick]

» new result: of size O(n*?) in expected time
O(min(n?log n, my/n))

—

| Datasstructures for 3-stretch dist.

» of size O(n?) intime O(n”logn) [Cohen-Zwick]

» of size O(n*?) in expected time O(m+/n)
[Thorup-Zwick]

» new result: of size O(n*?) in expected time
O(min(n?log n, my/n))

» however, our query answering time is O(logn)

]

| Approximate Distance Oracles

» a data structure of size O(kn""'/*) constructed
in expected time O (kmn'/*)

— reports (2k — 1)-stretch distances in O(k)
time.

—

Approximate Distance Oracles

» a data structure of size O(kn""'/*) constructed
in expected time O (kmn'/*)

— reports (2k — 1)-stretch distances in O(k)
time.

new result:

» a data structure of size O(kn"*'/*) constructed

in expected time O(min(n’, kmn'/*))

| Approximate Distance Oracles

a data structure of size O(kn**!/*) constructed
in expected time O (kmn'/*)

— reports (2k — 1)-stretch distances in O(k)
time.

new result:

a data structure of size O(kn"*'/*) constructed
in expected time O(min(n?, kmn'/"))

— reports (2k — 1)-stretch distances in O(k) |

time, for any k& > 2.

| T he lhorup-Zwick algorithm

sample each vertex indep. with prob. 1/4/n.

B

| T he lhorup-Zwick algorithm

| T he lhorup-Zwick algorithm

o let S be the set of sampled vertices.

—

| T he lhorup-Zwick algorithm

o let S be the set of sampled vertices.

- —

T he lhorup-Zwick algorithm

. ‘.'(V) |

b(v): set of all vertices closer to v than s(v).

—

T he lhorup-Zwick algorithm

. ‘.'(V) |

b(v): set of all vertices closer to v than s(v).

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—if query = (v, u),

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—if query = (v, u),

if u € b(v) return é(v, u).

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—if query = (v, u),

if u € b(v) return é(v, u).
else return 6(v, s(v)) + d(s(v), u).

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—if query = (v, u),

if u € b(v) return é(v, u).
else return 6(v, s(v)) + d(s(v), u).

—

| T he lhorup-Zwick algorithm

1. each v stores distances to all vertices in b(v).

2. each s € S stores distances to all vertices.

—if query = (v, u),

if u € b(v) return é(v, u).
else return 6(v, s(v)) + d(s(v), u).

—

| I he lhorup-Zwick algorithm

| T he lhorup-Zwick algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra.

| T he lhorup-Zwick algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra.

I I he lhorup-Zwick algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra.

2. each s € S stores distances to all vertices by
performing a Dijkstra in the entire graph.

—

I I he lhorup-Zwick algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra.

2. each s € S stores distances to all vertices by
performing a Dijkstra in the entire graph.

—

| T he lhorup-Zwick algorithm

the size of the data structure is O(n?/?).

T he lhorup-Zwick algorithm

the size of the data structure is O(n?/?).

+ the query answering time is O(1).

I A faster. algorithm

I A faster algorithm

® °
S(v) e
°)
o
O 9} °
\\\ B ’,/ ()
o Py o

— Improving step 1: each v performs truncated

Dijkstra in a subgraph G’ of G. |

I A faster. algorithm

—an edge like (v, w) cannot lie in b(u), for any wu.

I A faster. algorithm

—an edge like (v, w) cannot lie in b(u), for any wu.

— (G’ contains no such edge:

I A faster. algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra in ¢”.

I A faster. algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra in ¢”.

| A faster. algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra in ¢”.

— the exp. time for this step now is O(n?).

B

| A faster. algorithm

1. each v computes distances to vertices in b(v)
by performing a truncated Dijkstra in ¢”.

— the exp. time for this step now is O(n?).

— we now need to improve step 2:
each s € S computes distances to all vertices In

G. _l

I A faster. algorithm

I A faster. algorithm

o sample vertices from S to form S;.

A faster. algorithm

o sample vertices from S to form S;.

e we have

50232512522"'5(1ogn)/22@-

—

| A faster. algorithm

sample vertices from S to form .5;.

we have

50252512522"'5(1ogn)/22@-

S;+1 Is obtained by sampling each vertex in S;
with prob. 1/2.

—

| A faster. algorithm

sample vertices from S to form .5;.

we have

50252512522“'5(1ogn)/22@-

S;+1 Is obtained by sampling each vertex in S;
with prob. 1/2.

each s; € S; does a Dijkstra in the subgraph

Git1. |

| A faster. algorithm

1 = U, edges of the form above. |

I A faster. algorithm

and

I A faster. algorithm

and
~ exp. time for step 2 now is O(n*logn).

I A faster. algorithm

and
~ exp. time for step 2 now is O(n*logn).

each v stores distances to all vertices in b(v)
and vertices s(v), s1(v), s2(v),

—

| A faster. algorithm

and
~ exp. time for step 2 now is O(n*logn).

each v stores distances to all vertices in b(v)
and vertices s(v), s1(v), s2(v),

each s € S stores all the distances that it

computes.

| Answering queries

—if query = (v, u),

| Answering queries

—if query = (v, u),

o if u € b(v) return é(v, u).

| Answering queries

—if query = (v, u),

o if u € b(v) return é(v, u).
o else return

min ~ d(v, s;(v)) + (s;(v), u).

0<i<(logn)/2

—

| Answering queries

—if query = (v, u),

if u € b(v) return é(v, u).
else return

min ~ d(v, s;(v)) + (s;(v), u).

0<i<(logn)/2

for some s;(v) which knows d(s;(v), u).

—

A faster. algorithm

I Analysis

I Analysis

e computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
takes O(logn) time.

Analysis

e computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
takes O(logn) time.

e time to construct the data structure:
O(n?logn).

—

I Analysis

computing the minimum of
0(v, s;(v)) + d(s;(v),u), for 0 < i < (logn)/2
takes O(logn) time.

time to construct the data structure:
O(n?logn).

space requirement: O(n?/?)

—

| An Extension

| An Extension

o sample vertices from V' to form .5;.

| An Extension

sample vertices from 1/ to form S;.

we have

| An Extension

sample vertices from 1/ to form S;.

we have

So=V 2528 2 Sign 20

S;+1 Is obtained by sampling each vertex in S;

with prob. 1/2.

| An Extension

each s; € S; does a Dijkstra in the subgraph
Git1.

(7;+1. consists of all edges incident on each v
whose weight is less than

Foreachv,uin G)
d[v, u] <= ming<i<iogn(0(v, s;(v)) + ?(u, si(v)),
O(u, s;(u)) + (v, s;(u)))

B

| An Extension

| An Extension

e easy to show that

O(u,v) < dlu,v] < 20(u,v) 4+ Wyy

| An Extension

e easy to show that

O(u,v) < dlu,v] < 20(u,v) 4+ Wyy

| An Extension

e easy to show that

~ X

O(u,v) < dlu,v] < 20(u,v) 4+ Wyy

| =n/2"and E[|Gi1]] = n.2"
0. time for building d is

| An Extension

easy to show that

O(u,v) < dlu,v] < 20(u,v) 4+ Wyy

~ exp. time for building d Is

all-pairs-(2, w)-approx. distances in exp.

O(n’logn) time.

| An Extension

easy to show that

O(u,v) < dlu,v] < 20(u,v) 4+ Wyy

~ exp. time for building d Is

all-pairs-(2, w)-approx. distances in exp.

O(n’logn) time.

	
	{
ed The problem}
	{
ed The problem}
	{
ed Data structures for 3-stretch dist.}
	{
ed Approximate Distance Oracles}
	{
ed Approximate Distance Oracles}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed The Thorup-Zwick algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed A faster algorithm}
	{
ed Answering queries}
	{
ed A faster algorithm}
	{
ed Analysis}
	{
ed An Extension}
	{
ed An Extension}
	{
ed An Extension}

