

Approximate distances in weighted graphs

T. Kavitha Indian Institute of Science, Bangalore.

(Joint work with Surender Baswana)

. – p.1/2

• G: a weighted undirected graph with m edges and n vertices

• G: a weighted undirected graph with m edges and n vertices

 the APSP problem: compute shortest paths/distances between each pair of vertices. • G: a weighted undirected graph with m edges and n vertices

 the APSP problem: compute shortest paths/distances between each pair of vertices.

 build a data structure to answer shortest path/distance queries efficiently.

• can do it in $\tilde{O}(mn)$ time to produce an $n \times n$ matrix containing distances.

• can do it in $\tilde{O}(mn)$ time to produce an $n \times n$ matrix containing distances.

 build a smaller data structure to answer approximate distance queries efficiently. • can do it in $\tilde{O}(mn)$ time to produce an $n \times n$ matrix containing distances.

 build a smaller data structure to answer approximate distance queries efficiently.

• $\hat{\delta}(u, v)$ is a *t*-stretch estimate of $\delta(u, v)$ if

 $\delta(u,v) \le \hat{\delta}(u,v) \le t\delta(u,v)$

• of size $O(n^2)$ in time $O(n^2 \log n)$ [Cohen-Zwick]

• of size $O(n^2)$ in time $O(n^2 \log n)$ [Cohen-Zwick]

• of size $O(n^{3/2})$ in expected time $O(m\sqrt{n})$ [Thorup-Zwick]

• of size $O(n^2)$ in time $O(n^2 \log n)$ [Cohen-Zwick]

• of size $O(n^{3/2})$ in expected time $O(m\sqrt{n})$ [Thorup-Zwick]

• *new result:* of size $O(n^{3/2})$ in expected time $O(\min(n^2 \log n, m\sqrt{n}))$

• of size $O(n^2)$ in time $O(n^2 \log n)$ [Cohen-Zwick]

• of size $O(n^{3/2})$ in expected time $O(m\sqrt{n})$ [Thorup-Zwick]

• *new result:* of size $O(n^{3/2})$ in expected time $O(\min(n^2 \log n, m\sqrt{n}))$

• however, our query answering time is $O(\log n)$.

Approximate Distance Oracles

• a data structure of size $O(kn^{k+1/k})$ constructed in expected time $O(kmn^{1/k})$

- reports (2k - 1)-stretch distances in O(k) time.

Approximate Distance Oracles

• a data structure of size $O(kn^{k+1/k})$ constructed in expected time $O(kmn^{1/k})$

- reports (2k - 1)-stretch distances in O(k) time.

new result:

• a data structure of size $O(kn^{k+1/k})$ constructed in expected time $O(\min(n^2, kmn^{1/k}))$

Approximate Distance Oracles

• a data structure of size $O(kn^{k+1/k})$ constructed in expected time $O(kmn^{1/k})$

- reports (2k - 1)-stretch distances in O(k) time.

new result:

• a data structure of size $O(kn^{k+1/k})$ constructed in expected time $O(\min(n^2, kmn^{1/k}))$

- reports (2k - 1)-stretch distances in O(k)time, for any k > 2.

• sample each vertex indep. with prob. $1/\sqrt{n}$.

• let S be the set of sampled vertices.

• let S be the set of sampled vertices.

•
$$E[|S|] = \sqrt{n}$$
.

b(v): set of all vertices closer to v than s(v).

b(v): set of all vertices closer to v than s(v). $E[|b(v)|] = \sqrt{n}$.

1. each v stores distances to all vertices in b(v).

1. each v stores distances to all vertices in b(v).

2. each $s \in S$ stores distances to all vertices.

1. each v stores distances to all vertices in b(v).

2. each $s \in S$ stores distances to all vertices.

$$-$$
 if $query = (v, u)$,

- 1. each v stores distances to all vertices in b(v).
- 2. each $s \in S$ stores distances to all vertices.
- if *query* = (v, u),
 - if $u \in b(v)$ return $\delta(v, u)$.

- 1. each v stores distances to all vertices in b(v).
- 2. each $s \in S$ stores distances to all vertices.
- if *query* = (v, u),
 - if $u \in b(v)$ return $\delta(v, u)$.
 - else return $\delta(v, s(v)) + \delta(s(v), u)$.

- 1. each v stores distances to all vertices in b(v).
- 2. each $s \in S$ stores distances to all vertices.

$$- if query = (v, u),$$

- if $u \in b(v)$ return $\delta(v, u)$.
- else return $\delta(v, s(v)) + \delta(s(v), u)$.

 $\leq \delta(v,u) + \delta(s(v),v) + \delta(v,u)$

- 1. each v stores distances to all vertices in b(v).
- 2. each $s \in S$ stores distances to all vertices.

$$- if query = (v, u),$$

- if $u \in b(v)$ return $\delta(v, u)$.
- else return $\delta(v, s(v)) + \delta(s(v), u)$.

 $\leq \delta(v, u) + \delta(s(v), v) + \delta(v, u)$ $\leq 3\delta(v, u).$

1. each v computes distances to vertices in b(v) by performing a truncated Dijkstra.

1. each v computes distances to vertices in b(v) by performing a truncated Dijkstra.

- the expected running time is $O(m\sqrt{n})$.

1. each v computes distances to vertices in b(v) by performing a truncated Dijkstra.

- the expected running time is $O(m\sqrt{n})$.

2. each $s \in S$ stores distances to all vertices by performing a Dijkstra in the entire graph.

1. each v computes distances to vertices in b(v) by performing a truncated Dijkstra.

- the expected running time is $O(m\sqrt{n})$.

2. each $s \in S$ stores distances to all vertices by performing a Dijkstra in the entire graph.

- the expected running time is $O(m\sqrt{n})$.

\Box the size of the data structure is $O(n^{3/2})$.

- \Box the size of the data structure is $O(n^{3/2})$.
- * the query answering time is O(1).

A faster algorithm

- *improving step 1*: each v performs truncated Dijkstra in a subgraph G' of G.

- an edge like (v, w) cannot lie in b(u), for any u.

- an edge like (v, w) cannot lie in b(u), for any u.
- G' contains no such edge: $E[|G'|] = n^{3/2}$.

– the expected running time is $O(m_{G'}\sqrt{n})$.

- the expected running time is $O(m_{G'}\sqrt{n})$.
- the exp. time for this step now is $O(n^2)$.

– the expected running time is $O(m_{G'}\sqrt{n})$.

- the exp. time for this step now is $O(n^2)$.

- we now need to improve step 2: each $s \in S$ computes distances to all vertices in G.

• sample vertices from S to form S_1 .

- sample vertices from S to form S_1 .
- we have

$$S_0 = S \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{(\log n)/2} \supseteq \emptyset.$$

- sample vertices from S to form S_1 .
- we have

$$S_0 = S \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{(\log n)/2} \supseteq \emptyset.$$

• S_{i+1} is obtained by sampling each vertex in S_i with prob. 1/2.

- sample vertices from S to form S_1 .
- we have

$$S_0 = S \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{(\log n)/2} \supseteq \emptyset.$$

- S_{i+1} is obtained by sampling each vertex in S_i with prob. 1/2.
- each $s_i \in S_i$ does a Dijkstra in the subgraph G_{i+1} .

 $G_1 = \cup_v$ edges of the form above.

• $E[|S_i|] = \sqrt{n}/2^i$ and $E[|G_{i+1}|] = n^{3/2}.2^i$

A faster algorithm

• $E[|S_i|] = \sqrt{n/2^i}$ and $E[|G_{i+1}|] = n^{3/2} \cdot 2^i$ \rightsquigarrow exp. time for step 2 now is $O(n^2 \log n)$.

A faster algorithm

- $E[|S_i|] = \sqrt{n/2^i}$ and $E[|G_{i+1}|] = n^{3/2} \cdot 2^i$ \rightsquigarrow exp. time for step 2 now is $O(n^2 \log n)$.
- each v stores distances to all vertices in b(v)and vertices $s(v), s_1(v), s_2(v), \ldots$

A faster algorithm

- $E[|S_i|] = \sqrt{n/2^i}$ and $E[|G_{i+1}|] = n^{3/2} \cdot 2^i$ \rightsquigarrow exp. time for step 2 now is $O(n^2 \log n)$.
- each v stores distances to all vertices in b(v)and vertices $s(v), s_1(v), s_2(v), \ldots$
- each s ∈ S stores all the distances that it computes.

$$- if query = (v, u),$$

- if
$$query = (v, u)$$
,

• if
$$u \in b(v)$$
 return $\delta(v, u)$.

$$- \text{ if } query = (v, u),$$

• if
$$u \in b(v)$$
 return $\delta(v, u)$.

• else return

$$\min_{0 \le i \le (\log n)/2} \delta(v, s_i(v)) + \delta(s_i(v), u).$$

$$- \text{ if } query = (v, u),$$

• if
$$u \in b(v)$$
 return $\delta(v, u)$.

• else return

$$\min_{0 \le i \le (\log n)/2} \delta(v, s_i(v)) + \delta(s_i(v), u).$$

 $\leq \delta(v, u) + \delta(s_i(v), v) + \delta(v, u) \leq 3\delta(v, u)$ for some $s_i(v)$ which knows $\delta(s_i(v), u)$.

 $\delta(v, s_1(v)) + \delta(s_1(v), u) \le 3\delta(u, v).$

Analysis

• computing the minimum of $\delta(v, s_i(v)) + \delta(s_i(v), u)$, for $0 \le i \le (\log n)/2$ takes $O(\log n)$ time.

Analysis

• computing the minimum of $\delta(v, s_i(v)) + \delta(s_i(v), u)$, for $0 \le i \le (\log n)/2$ takes $O(\log n)$ time.

• time to construct the data structure: $O(n^2 \log n)$.

Analysis

- computing the minimum of $\delta(v, s_i(v)) + \delta(s_i(v), u)$, for $0 \le i \le (\log n)/2$ takes $O(\log n)$ time.
- time to construct the data structure: $O(n^2 \log n)$.
- space requirement: $O(n^{3/2})$

• sample vertices from V to form S_1 .

• sample vertices from V to form S_1 .

we have

$$S_0 = V \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{\log n} \supseteq \emptyset.$$

• sample vertices from V to form S_1 .

we have

$$S_0 = V \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{\log n} \supseteq \emptyset.$$

• S_{i+1} is obtained by sampling each vertex in S_i with prob. 1/2.

- each $s_i \in S_i$ does a Dijkstra in the subgraph G_{i+1} .
- G_{i+1} : consists of all edges incident on each v whose weight is less than $\delta(v, s_{i+1}(v))$.

• For each v, u in G $d[v, u] \leftarrow \min_{0 \le i \le \log n} (\delta(v, s_i(v)) + \hat{\delta}(u, s_i(v)), \delta(u, s_i(u)) + \hat{\delta}(v, s_i(u)))$

$\delta(u,v) \le d[u,v] \le 2\delta(u,v) + w_{uv}$

 $\delta(u,v) \le d[u,v] \le 2\delta(u,v) + w_{uv}$

• $E[|S_i|] = n/2^i$ and $E[|G_{i+1}|] = n.2^i$

 $\delta(u,v) \le d[u,v] \le 2\delta(u,v) + w_{uv}$

• $E[|S_i|] = n/2^i$ and $E[|G_{i+1}|] = n.2^i$ \rightsquigarrow exp. time for building d is $O(n^2 \log n)$.

 $\delta(u,v) \le d[u,v] \le 2\delta(u,v) + w_{uv}$

- $E[|S_i|] = n/2^i$ and $E[|G_{i+1}|] = n.2^i$ \rightsquigarrow exp. time for building d is $O(n^2 \log n)$.
- all-pairs-(2, w)-approx. distances in exp. $O(n^2 \log n)$ time.

easy to show that

 $\delta(u,v) \le d[u,v] \le 2\delta(u,v) + w_{uv}$

- $E[|S_i|] = n/2^i$ and $E[|G_{i+1}|] = n.2^i$ \rightsquigarrow exp. time for building d is $O(n^2 \log n)$.
- all-pairs-(2, w)-approx. distances in exp. $O(n^2 \log n)$ time.