Approximate distances in weighted graphs

T. Kavitha Indian Institute of Science, Bangalore.

(Joint work with Surender Baswana)

The problem

- G : a weighted undirected graph with m edges and n vertices

The problem

- G : a weighted undirected graph with m edges and n vertices
- the APSP problem: compute shortest paths/distances between each pair of vertices.
- G : a weighted undirected graph with m edges and n vertices
- the APSP problem: compute shortest paths/distances between each pair of vertices.
- build a data structure to answer shortest path/distance queries efficiently.

The problem

- can do it in $\tilde{O}(m n)$ time to produce an $n \times n$ matrix containing distances.

The problem

- can do it in $\tilde{O}(m n)$ time to produce an $n \times n$ matrix containing distances.
- build a smaller data structure to answer approximate distance queries efficiently.

The problem

- can do it in $\tilde{O}(m n)$ time to produce an $n \times n$ matrix containing distances.
- build a smaller data structure to answer approximate distance queries efficiently.
- $\hat{\delta}(u, v)$ is a t-stretch estimate of $\delta(u, v)$ if

$$
\delta(u, v) \leq \hat{\delta}(u, v) \leq t \delta(u, v)
$$

Data structures for 3-stretch dist.

Data structures for 3 -stretch dist.

- of size $O\left(n^{2}\right)$ in time $O\left(n^{2} \log n\right)$ [Cohen-Zwick]

Data structures for 3-stretch dist.

- of size $O\left(n^{2}\right)$ in time $O\left(n^{2} \log n\right)$ [Cohen-Zwick]
- of size $O\left(n^{3 / 2}\right)$ in expected time $O(m \sqrt{n})$
[Thorup-Zwick]

Data structures for 3-stretch dist.

- of size $O\left(n^{2}\right)$ in time $O\left(n^{2} \log n\right)$ [Cohen-Zwick]
- of size $O\left(n^{3 / 2}\right)$ in expected time $O(m \sqrt{n})$
[Thorup-Zwick]
- new result: of size $O\left(n^{3 / 2}\right)$ in expected time
$O\left(\min \left(n^{2} \log n, m \sqrt{n}\right)\right)$

Data structures for 3 -stretch dist.

- of size $O\left(n^{2}\right)$ in time $O\left(n^{2} \log n\right)$ [Cohen-Zwick]
- of size $O\left(n^{3 / 2}\right)$ in expected time $O(m \sqrt{n})$
[Thorup-Zwick]
- new result: of size $O\left(n^{3 / 2}\right)$ in expected time $O\left(\min \left(n^{2} \log n, m \sqrt{n}\right)\right)$
- however, our query answering time is $O(\log n)$.

Approximate Distance Oracles

- a data structure of size $O\left(k n^{k+1 / k}\right)$ constructed in expected time $O\left(k m n^{1 / k}\right)$
- reports $(2 k-1)$-stretch distances in $O(k)$ time.

Approximate Distance Oracles

- a data structure of size $O\left(k n^{k+1 / k}\right)$ constructed in expected time $O\left(k m n^{1 / k}\right)$
- reports $(2 k-1)$-stretch distances in $O(k)$ time.
new result:
- a data structure of size $O\left(k n^{k+1 / k}\right)$ constructed in expected time $O\left(\min \left(n^{2}, k m n^{1 / k}\right)\right)$

Approximate Distance Oracles

- a data structure of size $O\left(k n^{k+1 / k}\right)$ constructed in expected time $O\left(k m n^{1 / k}\right)$
- reports $(2 k-1)$-stretch distances in $O(k)$ time.

new result:

- a data structure of size $O\left(k n^{k+1 / k}\right)$ constructed in expected time $O\left(\min \left(n^{2}, k m n^{1 / k}\right)\right)$
- reports $(2 k-1)$-stretch distances in $O(k)$ time, for any $k>2$.

The Thorup-Zwick algorithm

- sample each vertex indep. with prob. $1 / \sqrt{n}$.

The Thorup-Zwick algorithm

The Thorup-Zwick algorithm

let S be the set of sampled vertices.

The Thorup-Zwick algorithm

\bullet

- let S be the set of sampled vertices.
- $E[|S|]=\sqrt{n}$.

The Thorup-Zwick algorithm

-
$b(v)$: set of all vertices closer to v than $s(v)$.

The Thorup-Zwick algorithm

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

- if query $=(v, u)$,

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.
- else return $\delta(v, s(v))+\delta(s(v), u)$.

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.
- else return $\delta(v, s(v))+\delta(s(v), u)$.

$$
\leq \delta(v, u)+\delta(s(v), v)+\delta(v, u)
$$

The Thorup-Zwick algorithm

1. each v stores distances to all vertices in $b(v)$.
2. each $s \in S$ stores distances to all vertices.

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.
- else return $\delta(v, s(v))+\delta(s(v), u)$.

$$
\begin{aligned}
& \leq \delta(v, u)+\delta(s(v), v)+\delta(v, u) \\
& \leq 3 \delta(v, u)
\end{aligned}
$$

The Thorup-Zwick algorithm

The Thorup-Zwick algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra.

The Thorup-Zwick algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra.

- the expected running time is $O(m \sqrt{n})$.

The Thorup-Zwick algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra.

- the expected running time is $O(m \sqrt{n})$.

2. each $s \in S$ stores distances to all vertices by performing a Dijkstra in the entire graph.

The Thorup-Zwick algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra.

- the expected running time is $O(m \sqrt{n})$.

2. each $s \in S$ stores distances to all vertices by performing a Dijkstra in the entire graph.

- the expected running time is $O(m \sqrt{n})$.

The Thorup-Zwick algorithm

\square the size of the data structure is $O\left(n^{3 / 2}\right)$.

The Thorup-Zwick algorithm

\square the size of the data structure is $O\left(n^{3 / 2}\right)$.

* the query answering time is $O(1)$.

A faster algorithm

A faster algorithm

- improving step 1: each v performs truncated Dijkstra in a subgraph $G^{\prime \prime}$ of G.

A faster algorithm

- an edge like (v, w) cannot lie in $b(u)$, for any u.

A faster algorithm

- an edge like (v, w) cannot lie in $b(u)$, for any u.
- G^{\prime} contains no such edge: $E\left[\left|G^{\prime}\right|\right]=n^{3 / 2}$.

A faster algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra in G^{\prime}.

A faster algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra in G^{\prime}.

- the expected running time is $O\left(m_{G^{\prime}} \sqrt{n}\right)$.

A faster algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra in G^{\prime}.

- the expected running time is $O\left(m_{G^{\prime}} \sqrt{n}\right)$.
- the exp. time for this step now is $O\left(n^{2}\right)$.

A faster algorithm

1. each v computes distances to vertices in $b(v)$ by performing a truncated Dijkstra in G^{\prime}.

- the expected running time is $O\left(m_{G^{\prime}} \sqrt{n}\right)$.
- the exp. time for this step now is $O\left(n^{2}\right)$.
- we now need to improve step 2: each $s \in S$ computes distances to all vertices in G.

A faster algorithm

A faster algorithm

- sample vertices from S to form S_{1}.

A faster algorithm

- sample vertices from S to form S_{1}.
- we have

$$
S_{0}=S \supseteq S_{1} \supseteq S_{2} \supseteq \cdots S_{(\log n) / 2} \supseteq \emptyset
$$

A faster algorithm

- sample vertices from S to form S_{1}.
- we have

$$
S_{0}=S \supseteq S_{1} \supseteq S_{2} \supseteq \cdots S_{(\log n) / 2} \supseteq \emptyset
$$

- S_{i+1} is obtained by sampling each vertex in S_{i} with prob. $1 / 2$.

A faster algorithm

- sample vertices from S to form S_{1}.
- we have

$$
S_{0}=S \supseteq S_{1} \supseteq S_{2} \supseteq \cdots S_{(\log n) / 2} \supseteq \emptyset
$$

- S_{i+1} is obtained by sampling each vertex in S_{i} with prob. $1 / 2$.
- each $s_{i} \in S_{i}$ does a Dijkstra in the subgraph G_{i+1}.

A faster algorithm

$G_{1}=\cup_{v}$ edges of the form above.

A faster algorithm

- $E\left[\left|S_{i}\right|\right]=\sqrt{n} / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n^{3 / 2} \cdot 2^{i}$

A faster algorithm

- $E\left[\left|S_{i}\right|\right]=\sqrt{n} / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n^{3 / 2} .2^{i}$ \rightsquigarrow exp. time for step 2 now is $O\left(n^{2} \log n\right)$.

A faster algorithm

- $E\left[\left|S_{i}\right|\right]=\sqrt{n} / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n^{3 / 2} \cdot 2^{i}$ \rightsquigarrow exp. time for step 2 now is $O\left(n^{2} \log n\right)$.
- each v stores distances to all vertices in $b(v)$ and vertices $s(v), s_{1}(v), s_{2}(v), \ldots$.

A faster algorithm

- $E\left[\left|S_{i}\right|\right]=\sqrt{n} / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n^{3 / 2} \cdot 2^{i}$ \rightsquigarrow exp. time for step 2 now is $O\left(n^{2} \log n\right)$.
- each v stores distances to all vertices in $b(v)$ and vertices $s(v), s_{1}(v), s_{2}(v), \ldots$.
- each $s \in S$ stores all the distances that it computes.

Answering queries

- if query $=(v, u)$,

Answering queries

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.

Answering queries

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.
- else return

$$
\min _{0 \leq i \leq(\log n) / 2} \delta\left(v, s_{i}(v)\right)+\delta\left(s_{i}(v), u\right)
$$

Answering queries

- if query $=(v, u)$,
- if $u \in b(v)$ return $\delta(v, u)$.
- else return

$$
\min _{0 \leq i \leq(\log n) / 2} \delta\left(v, s_{i}(v)\right)+\delta\left(s_{i}(v), u\right)
$$

$\leq \delta(v, u)+\delta\left(s_{i}(v), v\right)+\delta(v, u) \leq 3 \delta(v, u)$
for some $s_{i}(v)$ which knows $\delta\left(s_{i}(v), u\right)$.

A faster algorithm

$\delta\left(v, s_{1}(v)\right)+\delta\left(s_{1}(v), u\right) \leq 3 \delta(u, v)$.

Analysis L

Analysis

- computing the minimum of $\delta\left(v, s_{i}(v)\right)+\delta\left(s_{i}(v), u\right)$, for $0 \leq i \leq(\log n) / 2$ takes $O(\log n)$ time.

Analysis

- computing the minimum of $\delta\left(v, s_{i}(v)\right)+\delta\left(s_{i}(v), u\right)$, for $0 \leq i \leq(\log n) / 2$ takes $O(\log n)$ time.
- time to construct the data structure:
$O\left(n^{2} \log n\right)$.

Analysis

- computing the minimum of
$\delta\left(v, s_{i}(v)\right)+\delta\left(s_{i}(v), u\right)$, for $0 \leq i \leq(\log n) / 2$ takes $O(\log n)$ time.
- time to construct the data structure:
$O\left(n^{2} \log n\right)$.
- space requirement: $O\left(n^{3 / 2}\right)$

An Extension

An Extension

- sample vertices from V to form S_{1}.

An Extension

- sample vertices from V to form S_{1}.
- we have

$$
S_{0}=V \supseteq S_{1} \supseteq S_{2} \supseteq \cdots S_{\log n} \supseteq \emptyset
$$

An Extension

- sample vertices from V to form S_{1}.
- we have

$$
S_{0}=V \supseteq S_{1} \supseteq S_{2} \supseteq \cdots S_{\log n} \supseteq \emptyset
$$

- S_{i+1} is obtained by sampling each vertex in S_{i} with prob. $1 / 2$.

An Extension

- each $s_{i} \in S_{i}$ does a Dijkstra in the subgraph G_{i+1}.
- G_{i+1} : consists of all edges incident on each v whose weight is less than $\delta\left(v, s_{i+1}(v)\right)$.
- For each v, u in G $d[v, u] \leftarrow \min _{0 \leq i \leq \log n}\left(\delta\left(v, s_{i}(v)\right)+\hat{\delta}\left(u, s_{i}(v)\right)\right.$,

$$
\left.\delta\left(u, s_{i}(u)\right)+\hat{\delta}\left(v, s_{i}(u)\right)\right)
$$

An Extension

An Extension

- easy to show that

$$
\delta(u, v) \leq d[u, v] \leq 2 \delta(u, v)+w_{u v}
$$

An Extension

- easy to show that

$$
\delta(u, v) \leq d[u, v] \leq 2 \delta(u, v)+w_{u v}
$$

- $E\left[\left|S_{i}\right|\right]=n / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n .2^{i}$

An Extension

- easy to show that

$$
\delta(u, v) \leq d[u, v] \leq 2 \delta(u, v)+w_{u v}
$$

- $E\left[\left|S_{i}\right|\right]=n / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n .2^{i}$
\rightsquigarrow exp. time for building d is $O\left(n^{2} \log n\right)$.

An Extension

- easy to show that

$$
\delta(u, v) \leq d[u, v] \leq 2 \delta(u, v)+w_{u v}
$$

- $E\left[\left|S_{i}\right|\right]=n / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n .2^{i}$
$\rightsquigarrow \exp$. time for building d is $O\left(n^{2} \log n\right)$.
- all-pairs-(2,w)-approx. distances in exp. $O\left(n^{2} \log n\right)$ time.

An Extension

- easy to show that

$$
\delta(u, v) \leq d[u, v] \leq 2 \delta(u, v)+w_{u v}
$$

- $E\left[\left|S_{i}\right|\right]=n / 2^{i}$ and $E\left[\left|G_{i+1}\right|\right]=n .2^{i}$
$\rightsquigarrow \exp$. time for building d is $O\left(n^{2} \log n\right)$.
- all-pairs-(2,w)-approx. distances in exp. $O\left(n^{2} \log n\right)$ time.

