The Linear Complementarity Problem and Lemke's Algorithm

November 11, 2014

Given an $n \times n$ matrix \boldsymbol{M}, and a vector \boldsymbol{q}, the linear complementarity problem ${ }^{1}$ asks for a vector \boldsymbol{y} satisfying the following conditions:

$$
\begin{equation*}
\boldsymbol{M} \boldsymbol{y} \leq \boldsymbol{q}, \quad \boldsymbol{y} \geq 0 \quad \text { and } \quad \boldsymbol{y} \cdot(\boldsymbol{q}-\boldsymbol{M} \boldsymbol{y})=0 . \tag{1}
\end{equation*}
$$

The problem is interesting only when $\boldsymbol{q} \nsupseteq 0$, since otherwise $\boldsymbol{y}=0$ is a trivial solution. Let us introduce slack variables \boldsymbol{v} to obtain the equivalent formulation.

$$
\begin{equation*}
\boldsymbol{M y}+\boldsymbol{v}=\boldsymbol{q}, \quad \boldsymbol{y} \geq 0, \quad \boldsymbol{v} \geq 0 \quad \text { and } \quad \boldsymbol{y} \cdot \boldsymbol{v}=0 . \tag{2}
\end{equation*}
$$

The reason for imposing non-negativity on the slack variables is that the first condition in (1) implies $\boldsymbol{q}-\boldsymbol{M} \boldsymbol{y} \geq 0$. Let \mathcal{P} be the polyhedron in $2 n$ dimensional space defined by the first three conditions; we will assume that \mathcal{P} is non-degenerate ${ }^{2}$. Under this condition, any solution to (2) will be a vertex of \mathcal{P}, since it must satisfy $2 n$ equalities. Note that the set of solutions may be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the system, which is called the augmented LCP:

$$
\begin{equation*}
\boldsymbol{M} \boldsymbol{y}+\boldsymbol{v}-z \mathbf{1}=\boldsymbol{q}, \quad \boldsymbol{y} \geq 0, \quad \boldsymbol{v} \geq 0, \quad z \geq 0 \quad \text { and } \quad \boldsymbol{y} \cdot \boldsymbol{v}=0 \tag{3}
\end{equation*}
$$

Let \mathcal{P}^{\prime} be the polyhedron in $2 n+1$ dimensional space defined by the first four conditions of the augmented LCP; again we will assume that \mathcal{P}^{\prime} is non-degenerate. Since any solution to (3) must still satisfy $2 n$ equalities, the set of solutions, say S, will be a subset of the one-skeleton of \mathcal{P}^{\prime}, i.e., it will consist of edges and vertices of \mathcal{P}^{\prime}. Any solution to the original system must satisfy the additional condition $z=0$ and hence will be a vertex of \mathcal{P}^{\prime}.

Now S turns out to have some nice properties. Any point of S is fully labeled in the sense that for each $i, y_{i}=0$ or $v_{i}=0 .^{3}$ We will say that a point of S has double label i if $y_{i}=0$ and $v_{i}=0$ are both satisfied at this point. Clearly, such a point will be a vertex of \mathcal{P}^{\prime} and it will have only one double label. Since there are exactly two ways of relaxing this double label, this vertex must have exactly two edges of S incident at it. Clearly, a solution to the original system (i.e., satisfying $z=0$) will be a vertex of \mathcal{P}^{\prime} that does not have a double label. On relaxing $z=0$, we get the unique edge of S incident at this vertex.

As a result of these observations, it follows that S consists of paths and cycles. Of these paths, Lemke's algorithm explores a special one. An unbounded edge of S such that the vertex of \mathcal{P}^{\prime} it is incident on has $z>0$ is called a ray. Among the rays, one is special - the one on which $\boldsymbol{y}=0$. This is called the primary ray and the rest are called secondary rays. Now Lemke's algorithm explores, via pivoting, the path starting with the primary ray. This path must end either in a vertex satisfying $z=0$, i.e., a solution to the original system, or a secondary ray. In the latter case, the algorithm is unsuccessful in finding a solution to the original system; in particular, the original system may not have a solution.

Remark: Observe that $z \mathbf{1}$ can be replaced by $z \boldsymbol{a}$, where vector \boldsymbol{a} has a 1 in each row in which \boldsymbol{q} is negative and has either a 0 or a 1 in the remaining rows, without changing its role; in our algorithm,

[^0]we will set a row of \boldsymbol{a} to 1 if and only if the corresponding row of \boldsymbol{q} is negative. As mentioned above, if \boldsymbol{q} has no negative components, (1) has the trivial solution $\boldsymbol{y}=0$. Additionally, in this case Lemke's algorithm cannot be used for finding a non-trivial solution, since it is simply not applicable. However, Lemke-Howson scheme is applicable for such a case; it follows a complementary path in the original polyhedron (2) starting at $\boldsymbol{y}=0$, and guarantees termination at a non-trivial solution if the polyhedron is bounded.

References

[1] Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)

[^0]: ${ }^{1}$ We refer the reader to [1] for a comprehensive treatment of notions presented in this section.
 ${ }^{2}$ A polyhedron in n-dimension is said to be non-degenerate if on its d-dimensional face exactly $n-d$ of its constraints hold with equality. For example on vertices (0-dimensional face) exactly n constraints hold with equality. There are many other equivalent ways to describe this notion.
 ${ }^{3}$ These are also known as almost complementary solutions in the literature.

