
The Linear Complementarity Problem and Lemke’s Algorithm

November 11, 2014

Given an n× n matrix M , and a vector q, the linear complementarity problem1 asks for a vector y
satisfying the following conditions:

My ≤ q, y ≥ 0 and y · (q −My) = 0. (1)

The problem is interesting only when q 6≥ 0, since otherwise y = 0 is a trivial solution. Let us
introduce slack variables v to obtain the equivalent formulation.

My + v = q, y ≥ 0, v ≥ 0 and y · v = 0. (2)

The reason for imposing non-negativity on the slack variables is that the first condition in (1) implies
q −My ≥ 0. Let P be the polyhedron in 2n dimensional space defined by the first three conditions; we
will assume that P is non-degenerate2. Under this condition, any solution to (2) will be a vertex of P,
since it must satisfy 2n equalities. Note that the set of solutions may be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the system, which is called
the augmented LCP:

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0. (3)

Let P ′ be the polyhedron in 2n + 1 dimensional space defined by the first four conditions of the
augmented LCP; again we will assume that P ′ is non-degenerate. Since any solution to (3) must still
satisfy 2n equalities, the set of solutions, say S, will be a subset of the one-skeleton of P ′, i.e., it will
consist of edges and vertices of P ′. Any solution to the original system must satisfy the additional
condition z = 0 and hence will be a vertex of P ′.

Now S turns out to have some nice properties. Any point of S is fully labeled in the sense that for
each i, yi = 0 or vi = 0.3 We will say that a point of S has double label i if yi = 0 and vi = 0 are both
satisfied at this point. Clearly, such a point will be a vertex of P ′ and it will have only one double label.
Since there are exactly two ways of relaxing this double label, this vertex must have exactly two edges
of S incident at it. Clearly, a solution to the original system (i.e., satisfying z = 0) will be a vertex of P ′

that does not have a double label. On relaxing z = 0, we get the unique edge of S incident at this vertex.
As a result of these observations, it follows that S consists of paths and cycles. Of these paths, Lemke’s

algorithm explores a special one. An unbounded edge of S such that the vertex of P ′ it is incident on
has z > 0 is called a ray. Among the rays, one is special – the one on which y = 0. This is called the
primary ray and the rest are called secondary rays. Now Lemke’s algorithm explores, via pivoting, the
path starting with the primary ray. This path must end either in a vertex satisfying z = 0, i.e., a solution
to the original system, or a secondary ray. In the latter case, the algorithm is unsuccessful in finding a
solution to the original system; in particular, the original system may not have a solution.

Remark: Observe that z1 can be replaced by za, where vector a has a 1 in each row in which q
is negative and has either a 0 or a 1 in the remaining rows, without changing its role; in our algorithm,

1We refer the reader to [1] for a comprehensive treatment of notions presented in this section.
2A polyhedron in n-dimension is said to be non-degenerate if on its d-dimensional face exactly n − d of its constraints

hold with equality. For example on vertices (0-dimensional face) exactly n constraints hold with equality. There are many
other equivalent ways to describe this notion.

3These are also known as almost complementary solutions in the literature.
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we will set a row of a to 1 if and only if the corresponding row of q is negative. As mentioned above,
if q has no negative components, (1) has the trivial solution y = 0. Additionally, in this case Lemke’s
algorithm cannot be used for finding a non-trivial solution, since it is simply not applicable. However,
Lemke-Howson scheme is applicable for such a case; it follows a complementary path in the original
polyhedron (2) starting at y = 0, and guarantees termination at a non-trivial solution if the polyhedron
is bounded.

References

[1] Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston
(1992)

2


