Why Sorting?

“When in doubt, sort” – one of the principles of algorithm design. Sorting used as a subroutine in many of the algorithms:

- Searching in databases: we can do binary search on sorted data
- A large number of computer graphics and computational geometry problems
- Closest pair, element uniqueness
Why Sorting? (2)

- A large number of sorting algorithms are developed representing different algorithm design techniques.
- A lower bound for sorting $\Omega(n \log n)$ is used to prove lower bounds of other problems.
Sorting Algorithms so far

- Insertion sort, selection sort
 - Worst-case running time $\Theta(n^2)$; in-place
- Heap sort
 - Worst-case running time $\Theta(n \log n)$.
Divide and Conquer

- *Divide-and-conquer* method for algorithm design:
 - **Divide**: if the input size is too large to deal with in a straightforward manner, divide the problem into two or more disjoint subproblems
 - **Conquer**: use divide and conquer recursively to solve the subproblems
 - **Combine**: take the solutions to the subproblems and “merge” these solutions into a solution for the original problem
Merge Sort Algorithm

- **Divide**: If S has at least two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S_1 and S_2, each containing about half of the elements of S. (i.e. S_1 contains the first $\lceil n/2 \rceil$ elements and S_2 contains the remaining $\lfloor n/2 \rfloor$ elements).

- **Conquer**: Sort sequences S_1 and S_2 using Merge Sort.

- **Combine**: Put back the elements into S by merging the sorted sequences S_1 and S_2 into one sorted sequence.
Merge Sort: Algorithm

\[
\text{Merge-Sort}(A, p, r) \\
\text{if } p < r \text{ then} \\
\quad q \leftarrow (p+r)/2 \\
\quad \text{Merge-Sort}(A, p, q) \\
\quad \text{Merge-Sort}(A, q+1, r) \\
\quad \text{Merge}(A, p, q, r)
\]

\[
\text{Merge}(A, p, q, r) \\
\text{Take the smallest of the two topmost elements of} \\
\text{sequences } A[p..q] \text{ and } A[q+1..r] \text{ and put into the} \\
\text{resulting sequence. Repeat this, until both sequences} \\
\text{are empty. Copy the resulting sequence into } A[p..r].
\]
MergeSort (Example)
Merging Two Sequences (cont.)

- Some pictures:
 a) S_1: 24 → 45 → 63 → 85
 S_2: 17 → 31 → 50 → 96
 S: 17
 b) S_1: 24 → 45 → 63 → 85
 S_2: 31 → 50 → 96
 S: 17
Merging Two Sequences (cont.)

c) \[S_1 \quad 45 \quad 63 \quad 85 \]
\[S_2 \quad 31 \quad 50 \quad 96 \]
\[S \quad 17 \quad 24 \]

d) \[S_1 \quad 45 \quad 63 \quad 85 \]
\[S_2 \quad 50 \quad 96 \]
\[S \quad 17 \quad 24 \quad 31 \]
Merging Two Sequences (cont.)

e) $S_1 \ 63 \ 85$

$S_2 \ 50 \ 96$

$S \ 17 \ 24 \ 31 \ 45$

f) $S_1 \ 63 \ 85$

$S_2 \ 96$

$S \ 17 \ 24 \ 31 \ 45 \ 50$
Merging Two Sequences (cont.)

\[
\begin{align*}
&g) & S_1 & 85 \\
& & S_2 & 96 \\
S & 17 & 24 & 31 & 45 & 50 & 63 \\
&h) \\
& & S_1 \\
& & S_2 & 96 \\
S & 17 & 24 & 31 & 45 & 50 & 63 & 85
\end{align*}
\]
Merging Two Sequences (cont.)

i)

S_1

S_2

S 17 24 31 45 50 63 85 96
Merge Sort Revisited

- To sort n numbers
 - if $n=1$ done!
 - recursively sort 2 lists of numbers $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ elements
 - merge 2 sorted lists in $\Theta(n)$ time

- Strategy
 - break problem into similar (smaller) subproblems
 - recursively solve subproblems
 - combine solutions to answer
Recurrences

- Running times of algorithms with **Recursive calls** can be described using recurrences.
- A **recurrence** is an equation or inequality that describes a function in terms of its value on smaller inputs.

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases}
\]

- Example: Merge Sort
Solving Recurrences

- Repeated substitution method
 - Expanding the recurrence by substitution and noticing patterns
- Substitution method
 - guessing the solutions
 - verifying the solution by the mathematical induction
- Recursion-trees
- Master method
 - templates for different classes of recurrences
Repeated Substitution Method

Let’s find the running time of merge sort (let’s assume that $n=2^b$, for some b).

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{if } n > 1
\end{cases}$$

\[T(n) = 2T(n/2) + n \quad \text{substitute}\]
\[= 2(2T(n/4) + n/2) + n \quad \text{expand}\]
\[= 2^2 T(n/4) + 2n \quad \text{substitute}\]
\[= 2^2(2T(n/8) + n/4) + 2n \quad \text{expand}\]
\[= 2^3 T(n/8) + 3n \quad \text{observe the pattern}\]

\[T(n) = 2^i T(n/2^i) + in \]
\[= 2^{\lg n} T(n/n) + n \lg n = n + n \lg n\]
Repeated Substitution Method

- The procedure is straightforward:
 - Substitute
 - Expand
 - Substitute
 - Expand
 - …
 - Observe a pattern and write how your expression looks after the i-th substitution
 - Find out what the value of i (e.g., $\lg n$) should be to get the base case of the recurrence (say $T(1)$)
 - Insert the value of $T(1)$ and the expression of i into your expression
Java Implementation of Merge-Sort

```java
public interface SortObject {
    //sort sequence S in nondecreasing order using comparator c
    public void sort (Sequence S, Comparator c);
}
```
public class ListMergeSort implements SortObject {

 public void sort(Sequence S, Comparator c) {
 int n = S.size();
 if (n < 2) return; // sequence with 0/1 element is sorted.
 // divide
 Sequence S1 = (Sequence) S.newContainer();
 // put the first half of S into S1
 for (int i = 1; i <= (n+1)/2; i++) {
 S1.insertLast(S.remove(S.first()));
 }
 Sequence S2 = (Sequence) S.newContainer();
 // put the second half of S into S2
 for (int i = 1; i <= n/2; i++) {
 S2.insertLast(S.remove(S.first()));
 }
 sort(S1, c); // recur
 sort(S2, c);
 merge(S1, S2, c, S); // conquer
 }
}
public void merge(Sequence S1, Sequence S2, Comparator c, Sequence S) {
 while(!S1.isEmpty() && !S2.isEmpty()) {
 if(c.isLessThanOrEqualTo(S1.first().element(),
 S2.first().element())) {
 // S1’s 1st elt <= S2’s 1st elt
 S.insertLast(S1.remove(S1.first()));
 } else { // S2’s 1st elt is the smaller one
 S.insertLast(S2.remove(S2.first()));
 }
 }if(S1.isEmpty()) {
 while(!S2.isEmpty()) {
 S.insertLast(S2.remove(S2.first()));
 }
 }if(S2.isEmpty()) {
 while(!S1.isEmpty()) {
 S.insertLast(S1.remove(S1.first()));
 }
 }}