Skip Lists

S_0 to S_3
Outline and Reading

- What is a skip list (§3.5)
- Operations
 - Search (§3.5.1)
 - Insertion (§3.5.2)
 - Deletion (§3.5.2)
- Implementation
- Analysis (§3.5.3)
 - Space usage
 - Search and update times
What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e.,
 \[S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h \]
 - List S_h contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT

\[S_3 \]
\[S_2 \]
\[S_1 \]
\[S_0 \]
We search for a key x in a skip list as follows:

- We start at the first position of the top list.
- At the current position p, we compare x with $y \leftarrow \text{key}(\text{after}(p))$
 - $x = y$: we return $\text{element}(\text{after}(p))$
 - $x > y$: we “scan forward”
 - $x < y$: we “drop down”
- If we try to drop down past the bottom list, we return NO_SUCH_KEY

Example: search for 78
Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution.
- It contains statements of the type:

 \[
 b \leftarrow \text{random}() \\
 \text{if } b = 0 \\
 \quad \text{do A …} \\
 \text{else } \{ b = 1 \} \\
 \quad \text{do B …}
 \]

- Its running time depends on the outcomes of the coin tosses.

- We analyze the expected running time of a randomized algorithm under the following assumptions:
 - the coins are unbiased, and
 - the coin tosses are independent.

- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads").

- We use a randomized algorithm to insert items into a skip list.
Insertion

To insert an item \((x, o)\) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
- If \(i \geq h\), we add to the skip list new lists \(S_{h+1}, \ldots, S_{i+1}\), each containing only the two special keys.
- We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with largest key less than \(x\) in each list \(S_0, S_1, \ldots, S_i\).
- For \(j \leftarrow 0, \ldots, i\), we insert item \((x, o)\) into list \(S_j\) after position \(p_j\).

Example: insert key 15, with \(i = 2\)

![Diagram of skip list insertion](image)
Deletion

To remove an item with key x from a skip list, we proceed as follows:

- We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_j is in list S_j.
- We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i.
- We remove all but one list containing only the two special keys.

Example: remove key 34
Implementation

- We can implement a skip list with quad-nodes.
- A quad-node stores:
 - item
 - link to the node before
 - link to the node after
 - link to the node below
 - link to the node after
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.
Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:

 Fact 1: The probability of getting i consecutive heads when flipping a coin is $1/2^i$.

 Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np.

Consider a skip list with n items:

- By Fact 1, we insert an item in list S_i with probability $1/2^i$.
- By Fact 2, the expected size of list S_i is $n/2^i$.

The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n$$

Thus, the expected space usage of a skip list with n items is $O(n)$.

Height

The running time of the search and insertion algorithms is affected by the height h of the skip list.

We show that with high probability, a skip list with n items has height $O(\log n)$.

We use the following additional probabilistic fact:

Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.

Consider a skip list with n items:

- By Fact 1, we insert an item in list S_i with probability $1/2^i$.
- By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$.
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one item is at most $n/2^{3\log n} = n/n^3 = 1/n^2$.

Thus a skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$.

1/18/2005 4:14 AM
Skip Lists
Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps

- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability

- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails

- By Fact 4, in each list the expected number of scan-forward steps is 2

- Thus, the expected number of scan-forward steps is $O(\log n)$

- We conclude that a search in a skip list takes $O(\log n)$ expected time

- The analysis of insertion and deletion gives similar results
Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with \(n \) items:
 - The expected space used is \(O(n) \).
 - The expected search, insertion and deletion time is \(O(\log n) \).
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.