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Abstract

Large Knowledge Bases (KBs) have been built to access a comprehensive collection of facts in
a machine readable automatic format. Although these KBs are large, their coverage is far from
complete. Most relations between entities are found to be missing in many widely-used KBs.
Inference can be used to improve the coverage of such KBs and hence make them more suitable
for practical applications like search, dialogue and question answering. This inference process
is called Knowledge Base Completion (KBC).

In this dissertation, we analyze existing KBC systems and propose various new KBC meth-
ods and models. In particular, we exploit various attributes of KBs — language, structure and
temporal attributes to improve KBC performance. We also extensively study the evaluation of
KBC models and propose fair evaluation policies.

First, we studied different aspects of modeling KB structure and their impact on KBC per-
formance:

• KBC models can be categorized on the basis of the way they represent entities. Matrix
factorization (MF) models have a vector defined for each entity-pair, while tensor factor-
ization (TF) models maintain a vector for each entity. We compared the effectiveness of
the MF and TF paradigms for the general task of KBC. We recognized that special care is
needed to handle out-of-vocabulary entity-pairs when evaluating MF against TF. We also
propose the first fair unified KBC evaluation protocol to compare MF and TF approaches
for KBC.

• Our analysis of KBC models reveals that they often make entity predictions that are in-
compatible with the type required by the relation. For example, DistMult incorrectly pre-
dicts ‘Akira Isida’ (type-person) for the query ‘Chief Phillips (type-film), released in region,

?’. We propose an unsupervised typing gadget, which enhances KBC models (like Dist-
Mult and Complex) with type-compatibility checkers. The enhanced models (TypeDM
and TypeComplEx) showed improved KBC performance over the base models. Further
analysis revealed that our models better represent the latent types of entities and their
embeddings also predict supervised types better than the embeddings learned by baseline
models.
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While implementing the above models, we found that the norm (L1, L2, or L3) used for reg-
ularization or measuring distances, and the rate of negative sampling used to train the models,
can have significant consequences for KBC accuracy, sometimes overturning conventional wis-
dom about how various models compare with each other. Through our investigation of these
issues, we implemented a very competitive version of ComplEx KB embedding, better than
some follow-up systems.

Next, we study temporal KBs, which associate a relational fact (s, r, o) with a valid set of
times (often an instant or interval). We propose TIMEPLEX a Temporal Knowledge Base Com-
pletion (TKBC) model, primarily targeted to the link-prediction and time-interval prediction
tasks. To the best of our knowledge, this is the first work that predicts the time interval in which
the given fact is valid in a general model-independent manner. Also, this is the first work that
proposes a time-aware evaluation strategy for TKBC.

Finally, we study Open KBs where entities and relations are represented via textual schema-
free strings. Open KBC is generally performed using an inference rule corpus. Using linguis-
tic insights, we develop an algorithm —- Knowledge Guided Linguistic Rewrites (KGLR) —
which provides independent verification for statistically-generated Open KB inference rules.
The generated high precision rule corpus eventually helps in improving the KBC task perfor-
mance.



सार 
 
त#य% के (यापक सं-ह को एक मशीन पठनीय 6वचा9लत ;ा<प म= लाने के 9लए बड़ े@ानकोष 
(नॉलेज बेस – के.बी.) का HनमाIण Kकया गया है। हालांKक ये के.बी. बड़ ेह=, लेKकन इनका कवरेज 
अधरूा है। कई (यापक <प से उपयोग Kकए जाने वाले के.बी. मW इकाइय% (एंXटटZ) के बीच 
अ[धकांश संबंध (\रलेशन) गायब पाए जात ेह=। ऐसे के.बी. के कवरेज मW सधुार के 9लए अनमुान 
(इन_W स) का उपयोग Kकया जा सकता है और इससे उaहW (यावहा\रक अन;ुयोग% (जसेै खोज, 
संवाद और ;dन उeर) के 9लए अ[धक उपयfुत बनाया जा सकता है। यह इन_W स ;Kgया को 
नॉलेज बेस कंhलZशन (के.बी.सी.) कहा जाता है। 
 
इस थी9सस मW, हम मौजदूा के.बी.सी. 9स6टम का kवdलेषण करत ेह= और kव9भaन नई के.बी.सी. 
kव[धय% का ;6ताव करत ेह=। kवशषे <प से, हम के.बी.सी. ;दशIन मW सधुार करने के 9लए के.बी. 
कm kव9भaन kवशषेताओ ंका फायदा उठात ेह= - भाषा, संरचना और समय। हम के.बी.सी. मॉडल 
के मrूयांकन का भी बड़ ेपमैाने पर अsययन करत ेह= और Hनtपu मrूयांकन नीHतय% का ;6ताव 
रखत ेहै। 
 
सबसे पहले, हमने के.बी. संरचना के मॉड9लगं के kव9भaन पहलओु ंऔर के.बी.सी.पर उनके ;भाव 
का अsययन Kकया। 

• के.बी.सी. मॉडल को उनके vवारा एंXटटZज का ;HतHन[धwव करने के तरZके के आधार पर 
वगyकृत Kकया जा सकता है। मXै{fस फ़ैfटराइज़ेशन (एम.एफ.) मॉडल मW ;wयेक इकाई-
जोड़ी (एंXटटZ पेयर) के 9लए एक वेfटर प\रभाkषत होता है, जबKक टWसर फ़ैfटराइज़ेशन 
(टZ.एफ.) मॉडल ;wयेक इकाई (एंXटटZ) के 9लए एक वेfटर बनाए रखत ेह=। हमने 
एम.एफ. और टZ.एफ. कm ;भावशीलता कm तलुना के.बी.सी. मW  ;दशIन से कm। हमने 
माना Kक एम.एफ. और टZ.एफ. कm ;भावशीलता कm तलुना करत ेसमय आउट-ऑफ-
वोकैबलुरZ इकाई-जोड़ ेको kवशषे देखभाल कm आवdयकता होती है। और हम एम.एफ. 
और टZ.एफ. �िtटकोण% कm तलुना करने के 9लए पहले Hनtपu एकmकृत के.बी.सी. 
मrूयांकन ;ोटोकॉल का ;6ताव करत ेहै। 

• के.बी.सी. मॉडल के हमारे kवdलेषण से पता चलता है Kक वे अfसर ऐसी भkवtयवाणी 
करत ेह= जो असंगत होती ह= संबंध vवारा आवdयक ;कार के साथ। उदाहरण के 9लए, 
DistMult गलत भkवtयवाणी करता है – ‘'अकmरा इ9सदा (टाइप-पसIन)” कm, ;dन – ‘'चीफ 
Kफ9लhस (टाइप-Kफrम)”, “uे� मW \रलZज”, ?’ के पछेू जाने पर।  



• हम एक गैर-पयIवे�uत टाइkपगं गैजेट का ;6ताव करत ेह=, जो के.बी.सी. मॉडल (जसेै 
DistMult और ComplEx) को बेहतर करता है टाइप-संगतता चेकसI के साथ। एaहां6ड 
मॉडल (TypeDM और TypeComplEx) ने बेस मॉडल कm तलुना मW बेहतर के.बी.सी. 
;दशIन Xदखाया। आगे kवdलेषण से पता चला Kक हमारे मॉडल अ(यfत ;कार कm 
एंXटटZज का बेहतर ;HतHन[धwव करत ेह= और उनके ए�बे�डगं भी पयIवे�uत ;कार% कm 
भkवtयवाणी बेसलाइन मॉडल vवारा सीखी गई ए�बे�डगं से बेहतर है । 

 
उपरोfत मॉडल% को लागू करत ेसमय, हमने पाया Kक नॉमI के 9लए ;यfुत मानदंड (L1, L2, 
या L3) या द\ूरय% को मापने, और मॉडल% को ;9श�uत करने के 9लए उपयोग Kकए जाने वाले 
नकाराwमक नमनेू कm दर, केबीसी सटZकता के 9लए महwवपणूI प\रणाम हो सकत ेह=, यह कभी-
कभी kव9भaन मॉडल% कm एक दसूरे के साथ तलुना के पारंप\रक @ान को उलट देत ेह=। इनकm 
जांच के माsयम से, हमने ComplEx के.बी. ए�बे�डगं का एक बहुत हZ ;Hत6पधy सं6करण 
लाग ूKकया है। 
 
इसके बाद, हम टWपोरल के.बी. का अsययन करत ेह=, जो एक त#य (s, r, o) को एक वधै समय 
के सेट (अfसर एक पल या अतंराल) के साथ जोड़त ेह=। हम टZ.के.बी.सी. के 9लए TimePlex 
मॉडल ;6ताkवत करत ेहै, यह मॉडल म¢ुय <प से 9लकं-भkवtयवाणी और समय-अतंराल 
भkवtयवाणी के 9लए ल�uत है। हमारZ सव£eम जानकारZ के अनसुार, यह पहला काम है जो 
समय अतंराल कm भkवtयवाणी करता है िजसमW Xदया गया त#य सामाaय मॉडल-6वतं� तरZके 
से माaय है। साथ हZ, यह पहला काम है जो टZ.के.बी.सी.के 9लए समय के ;Hत जाग<क 
मrूयांकन रणनीHत का ;6ताव करता है। 
 
अतं मW, हम ओपन के.बी. का अsययन करत ेह= जहां 6कmमा-मfुत टेf6ट के माsयम से 
एंXटटZज और \रलेशंस का ;HतHन[धwव Kकया जाता है। ओपन के.बी.सी. आमतौर पर एक 
अनमुान (इन_W स) Hनयम कोष का उपयोग करके Kकया जाता है।  
 
हम एक एrगो\र#म kवक9सत करत ेह= — @ान Hनद¥9शत भाषाई पनुल¥खन (KGLR) — जो 
सांि¢यकmय <प से उwपaन ओपन केबी अनमुान Hनयम% के 9लए 6वतं� सwयापन ;दान करता 
है। भाषा कm अतं�Iिtट के ;योग से हम एक एrगो\रथम kवक9सत करत ेह= - @ान Hनद¥9शत 
भाषाई पनुल¥खन (के.जी.एल.आर.) -जो सांि¢यकmय <प से उwपaन ओपन के.बी. अनमुान 
(इन_W स) Hनयम% के 9लए 6वतं� सwयापन ;दान करता है। उwपaन उ©च प\रशvुधता Hनयम 
कॉपIस अतंतः के.बी.सी. कायI को बेहतर बनाने मW मदद करता है। 
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Chapter 1

Introduction

The explosion of textual information on the Web provides unprecedented opportunities for ac-
quiring structured knowledge [Etzioni et al., 2004, Etzioni, 2011]. An enormous amount of
data — structured as well as unstructured — is readily available to users. Knowledge Bases
(KBs) have been built to access this comprehensive collection of facts in a format suitable for
manipulation by programs, toward applications like search and question answering.

KBs are collections of facts, about people, things, and places in the world, and relationships
between them. Many human-curated and automatically generated KBs have been built, e.g.,
DBpedia [Auer et al., 2007], YAGO [Suchanek et al., 2007], Freebase [Bollacker et al., 2008],
NELL [Carlson et al., 2010], OLLIE KB [Mausam et al., 2012], Google’s Knowledge Graph
[Singhal, 2012], Bing’s Satori [Qian, 2013] and Wikidata [Vrandecic and Krötzsch, 2014].
These KBs are large: OLLIE KB has 5 billion extractions (facts) from over a billion web pages
and Google’s Knowledge Graph had grown to 500 billion facts on 5 billion entities by May
2020 1.

KBs contain a wide variety of data types. Apart from relations connecting entities, KBs
often include numerical attributes (such as ages, dates, time, financial, and geocoordinate in-
formation), textual attributes (such as names, descriptions, and titles/designations) and images
(profile photos, flags, posters). These different types of data can play a crucial role as extra
pieces of evidence for supporting a fact. E.g., the time information provides additional insights
on the validity of temporal facts: (Barack Obama, is President of, USA) is valid only during
2009–2017.

KBs are suitable for various practical applications like semantic search [Bast et al., 2016],
question answering systems [Rajpurkar et al., 2016, Unger et al., 2014, Lopez et al., 2013], rec-
ommendation systems [Guo et al., 2020], video and text analytics [Suchanek and Preda, 2014,
Krishna et al., 2017], and conversational assistants [Adiwardana et al., 2020] like Amazon’s

1https://en.wikipedia.org/wiki/Google_Knowledge_Graph

3
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Relation Percentage Unknown
Profession 68%

Place of birth 71%
Nationality 75%
Education 91%

Spouse 92%
Parents 94%

Children 94%
Siblings 96%
Ethnicity 99%

Table 1.1: Incompleteness of Freebase: The table lists the fraction of missing relations (com-
monly used) of entities (type PERSON) [Min et al., 2013, West et al., 2014]

.

Alexa, Apple’s Siri, Google Assistant and Microsoft’s Cortana. KBs have found widespread
use as a source of distant supervision for a variety of natural language processing (NLP) tasks,
such as fine typing [Ling and Weld, 2012], entity linking [Mintz et al., 2009, Fan et al., 2015]
and information extraction [Mintz et al., 2009].

KBs often suffer from incomplete coverage. Some KBs are incomplete because they are
maintained by human curators, who may miss important facts. Some KBs are extracted from
natural language resources and prone to loss of recall. World knowledge is continuously evolv-
ing, making it hard to keep track of new updates.

Relations between entities are frequently missing, limiting the performance of systems that
rely on the completeness of KBs to any extent. This incompleteness is evident from the percent-
age of facts missing from the KB. For example, 71% of records about people in Freebase have
missing place of birth, 94% have missing parents and 99% have missing ethnicity information.
(Table 1.1, compiled from Min et al. [2013], West et al. [2014], lists the fraction of entities of
type PERSON who have missing information of nine commonly used relations.) This problem
is not specific to Freebase; other knowledge repositories are similarly incomplete.

Another way in which KBs are incomplete is that the vast majority of facts about the world
are not encodable in the space of canonical predicates defined in the KB. E.g., Freebase en-
codes information about which players play for which teams, but not about how many points
each player scored in a particular game. This information may be present in natural language
text. One approach to bypass this missing fact issue is to allow “open” or “ontology-free” infor-
mation extraction to build Open KBs, where facts are in natural language (and thus have broad
coverage) as opposed to the fixed set of entities and relations in structured KBs. However, Open
KBs are also prone to incompleteness [Clark et al., 2003] — as they are mostly extracted from
natural language resources and the extraction methods are prone to loss of recall. Also some
information may not be explicitly mentioned in text, for example, the sentence ‘India launched
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a meteorological satellite into orbit this Wednesday.’ suggests to a human reader that (among
other things) there was a rocket launch; India probably owns the satellite; the satellite is for
monitoring weather; the orbit is around Earth; etc. Hence we need methods to improve the
coverage of KBs available in various forms.

This dissertation focuses on new techniques for Knowledge Base Completion (KBC). KBC
is the task of automatically inferring missing facts by reasoning about the information already
present in the KB. We study two forms of KBC: micro inference and macro inference. We
discuss these two tasks in the following section.

1.1 KB inference tasks

KBC is done using a variety of inference tasks. We broadly classify these tasks into two cate-
gories. Macro inference involves inferring new facts using all known facts from existing KB (it
can also be seen as predictive inference). Micro inference involves inferring a novel fact from a
single input fact, independent of other facts known in the KB (it can also be seen as deductive
inference). We elaborate on these tasks in the rest of this section.

1.1.1 Macro inference task

The macro inference task involves automatically deriving new facts using all known facts from
existing KB. Suppose we observe a tuple (Barack Obama, was enrolled in, Harvard Law

School). A macro-inference model can use related facts about Barack Obama in the KB, such
as (Barack Obama, alma mater, Harvard Law School), (Neil Gorsuch, classmate of, Barack

Obama), (Neil Gorsuch, was enrolled at, Harvard Law School), (Joe Biden, alma mater, Syra-

cuse University), (Joe Biden, was enrolled at, Syracuse University) to infer that this new fact
is likely to be true and should be accepted. Notice that the facts relevant to the claim are not
only about the entities Barack Obama and Harvard Law School but could also draw informa-
tion from other related entities and relations like (Joe Biden, alma mater, Syracuse University)

and (Joe Biden, was enrolled at, Syracuse University). Such an inference provides us a way to
“grow” a KB automatically.

With the growing size of KBs, it is important to build a scalable model to infer unseen facts
from the facts in KB. Path Ranking Algorithm [Lao and Cohen, 2010] and its variations were
popularly used for macro-inference. The algorithm enumerates paths between entity pairs in a
KB and use those paths as features to train a model for missing fact prediction. However, most
existing PRA based methods suffer from poor scalability (high RAM consumption) [Kyrola,
2013] and feature explosion (trains on an exponentially large number of features) problems.
Lately, deep learning models have shown good scalability on macro inference tasks. These
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methods view KB as a graph (also called Knowledge Graph, KG), where nodes are entities
and edges are relations between entities. The methods compute score of a fact (s, r, o) and are
evaluated on queries like (s, r, ?) or (?, r, o), where s and o are subject entity and object entity
respectively and r is a relation between them. The deep learning methods learn continuous vec-
tor representation known as embeddings, which captures semantics of the input. These methods
can be classified on the basis of features they use for inference — paths over the graph structure,
neighborhood of query entity, and just the atomic triple2/fact. All three methods are discussed
in detail in Section 2.3.1.

Factorization models are popular atomic models. In factorization models, for a given fact
(s, r, o) in which the subject entity s is linked to the object entity o through the relation r, a
score for the fact can be recovered as a multilinear product between the embedding vectors of
s, r and o, or through more sophisticated composition (scoring) functions. Depending on the
way entities are represented, factorization methods can be further subdivided into two broad
categories: Matrix Factorization (MF) and Tensor Factorization (TF). MF models have a vector
defined for each entity-pair, while TF models maintain entity-wise factors. Some popular TF
models are E [Riedel et al., 2013], TransE [Bordes et al., 2013], DistMult [Yang et al., 2015],
ComplEx [Trouillon et al., 2016, Lacroix et al., 2018], Rescal [Nickel et al., 2011], RotatE [Sun
et al., 2019a]. MF method includes F [Riedel et al., 2013] and its extensions [Verga et al., 2016].

As the first contribution of the dissertation, in Chapter 4, we study MF’s effectiveness for
the general task of KBC and compare it against TF models [Jain et al., 2018b]. Note that the
number of entity pairs grows quadratically as the number of entities in a KB. Therefore a large
number of entity pairs are left unseen in training data. We call them Out-of-Vocabulary (OOV)
entity-pairs. We recognize that special care is needed to handle OOV entity-pairs when evalu-
ating MF against TF models, otherwise an MF algorithm may erroneously appear to perform
better than it really does. We describe the first unified KBC evaluation protocol that can mean-
ingfully compare MF and TF approaches for KBC. We found that MF models perform much
worse than TF models on the task of KBC. Our analysis attributes poor performance of MF
models to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used
datasets. In response, we proposed a TF-augmented MF model. This hybrid model is robust and
obtains strong results across various KBC datasets.

In our endeavor to improve the KBC performance, in Chapter 5 of the dissertation, we
further analyze the predictions of recent factorization models to find that they often make entity
predictions that are incompatible with the type required by the relation and hence we enhance
them with type information in an unsupervised manner to improve their performance [Jain et al.,
2018a].

2a KB fact is referred to as a triple
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Type information of entities has shown to be useful for the task of relation extraction [Yaghoobzadeh
et al., 2017], search [Metzler and Croft, 2007] and question answering [Welbl et al., 2018]. Our
preliminary analysis of KBC model (DistMult (DM) and ComplEx (CX)) predictions reveal
that they make frequent errors by giving high rank to entities that are not compatible with entity
types, expected as gold argument for query relation. In 19.5% of predictions made by DM on
FB15K, the top prediction has a type different from what is expected. For a query like ‘(Barack

Obama, is married to, ?)’, if the model does not know the correct answer, it should still not pre-
dict answers of incompatible types like ‘onion’. Such type information is sometimes not readily
available with KBs. If available, it may be noisy or too fine-grained, limiting its usefulness. Rec-
ognizing types of entities is a core NLP problem; in Chapter 5 we explore how to learn types
of entities and type signatures of relations in a KB. These typing gadgets are learnt without
supervision of types of entities and are further used to improve KBC model performance [Jain
et al., 2018a].

Further in Chapter 7, we focus on building models which leverage temporal validity of facts,
to improve KBC performance [Jain et al., 2018b]. These models can also be used to predict the
time-interval at which the fact holds.

Time information: Many relations are transient or impermanent. Temporal KBs annotate each
fact (event) with the time period in which it holds or occurs. A person is born in a city in an
instant, a politician can be a president of a country for several years, and a marriage may last
between years and decades. Temporal KBs represent these by (s, r, o, T ) tuples, where T is a
span of time. In Chapter 7 we propose a method — TIMEPLEX, for the task of Temporal KBC
(TKBC). TIMEPLEX exploits the recurrent nature of some facts/events and temporal interac-
tions between pairs of relations. It is primarily evaluated by link prediction queries (s, r, ?, T )
and (?, r, o, T ). We also propose time span prediction queries (s, r, o, ?). To the best of our
knowledge, this is the first work which predicts the time interval in which a given fact is valid.
Also, this is the first work that proposes a time-aware evaluation strategy for TKBC [Jain et al.,
2020b] dealing with subtle issues that arise from the partial overlap of time intervals in gold in-
stances and system predictions. The model and the evaluation scheme is described in Chapter7.

In the course of this dissertation work, several KBC models claiming state-of-the-art perfor-
mance were proposed by various groups. In Chapter 6 we present a detailed study [Jain et al.,
2020a] to compare various models across different datasets using the same evaluation frame-
work. We implemented all the models in pytorch. Our study highlights how various recently
proposed multiplicative KBC methods (where score of a fact is obtained by taking product of
the constituent embeddings), benefit from using a training regime, which uses signal from all
entities in loss computation. We find that various multiplicative KBC methods become indis-
tinguishable in terms of performance on most datasets, when using these training regime. Our
work calls for a reassessment of the recently proposed models’ individual value.
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1.1.2 Micro inference task

Micro inference involves inferring a novel fact from a single or a very small number of input
facts, independent of other facts seen in the KB. The methods used for this task often rely on
inducing inference rules from a corpus of facts [Schoenmackers et al., 2010, Nakashole et al.,
2012, Berant et al., 2011, Galárraga et al., 2013, Berant, 2012, Pavlick et al., 2015, Hearst,
1992]. Note that usage of inference rule corpus enables complex reasoning for the validity of
a generated fact. For example, given an inference rule corpus which has a rule, (( X, is the

President of, Y )→ ( X, is citizen of, Y )), and a KB which has a fact ( Barack Obama, is the

President of, USA ), then a query like ( Barack Obama, is citizen of, ? ) or even a more general
query like ‘How many people are citizens of USA?’ to an inference engine can be correctly
answered (‘USA’ for query 1 and a number ≥ 1 for query 2). Notice that this differs from
macro inference which may use a larger neighborhood of related facts for inference.

Building an inference rule corpus, and performing inference using it, are challenging tasks,
especially when we have an unbounded number of natural language relations in KBs (like
OpenIE KBs3). Another challenge in developing such methods is overcoming the problem of
language variability: each target meaning can be expressed in natural language in a myriad of
ways, which computer programs must learn to recognize. In chapter 8 of the dissertation, we
focus on improving the coverage of an OpenIE KB using inference. The task of inference on
such KBs relies on (or benefits from) inference rules. These inference rules have a multiplicative
impact, and one poor rule could potentially generate many bad KB facts. The research question
is how to generate a high precision inference rule corpus, which has large number of relations
from KB, while handling the variability of natural language.

To address the question, we propose an algorithm, Knowledge Graph Linguistic Rewrites
(KGLR), which provides independent verification for statistically-generated OpenIE inference
rules, using linguistic insights [Jain and Mausam, 2016]. KGLR obtains significant precision
improvement on inference rule corpus generated using distributional semantics and multilingual
features [Berant, 2012, Pavlick et al., 2015].

Note that the methods discussed in previous sections work well for structured datasets.
However, these methods do not perform well on Open KB due to their sparsity and noisy nature
[Pujara et al., 2017, Broscheit et al., 2020].

3Open Information Extraction (OpenIE) [Mausam et al., 2012] systems generate a schema-free KB where
entities and relations are represented via normalized but not disambiguated textual strings. Such OpenIE KBs
scale to web.
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1.2 Contributions

In summary, we make the following contributions:

MF vs TF We study MF and TF method’s effectiveness for the general task of KBC. We recog-
nize that special care is needed to handle OOV entity-pairs when evaluating MF against
TF. We also propose the first unified KBC evaluation protocol that can meaningfully
compare MF and TF approaches for KBC, in an unbiased manner [Jain et al., 2018b].

Typing Gadget We propose an unsupervised typing gadget, which enhances base models for
KBC (DistMult, ComplEx) with two type-compatibility functions, one between r and s

and another between r and o [Jain et al., 2018a].

Training KBC models We also performed a comprehensive study which highlights how var-
ious multiplicative KBC methods, recently proposed in the literature, benefit from using
a training regime, which uses signals from all entities in loss computation and become
indistinguishable in terms of performance on most datasets. Our work calls for a reassess-
ment of their individual value, in light of these findings [Jain et al., 2020a].

Temporal KBC (TKBC) : We propose TIMEPLEXa top of the line TKBC model, which is
primarily evaluated by link-prediction and time-interval prediction tasks. To the best of
our knowledge, this is the first work which predicts time interval in which the given fact
is valid. Also, this is the first work which proposes a time aware evaluation strategy for
TKBC [Jain et al., 2020b].

Micro Inference in Open KBs We propose Knowledge Graph Linguistic Rewrites (KGLR),
which provides independent verification for statistically-generated OpenIE inference rules,
using linguistic insights. This eventually helps in improving the precision of the rule cor-
pus [Jain and Mausam, 2016].

Work done in Chapter 4 was done in collaboration with Shikhar Murty. Work done in Chap-
ter 5 was done in collaboration with Pankaj Kumar. Work done in Chapter 6 and 7 was done in
collaboration with Sushant Rathi. In each case, the part done by the collaborators appeared in
their respective bachelor’s theses.

1.3 Outline of the dissertation

The dissertation is organized into four parts: Part I sets up the introduction (Chapter 1) and dis-
cusses related work (Chapter 2). Parts II and III of the dissertation contains novel contributions
of this dissertation. In Chapter 3 (Part II), we describe Macro Inference more formally, describe
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the datasets used for experiments and also touch upon evaluation strategy for macro inference
models. In Chapter 4, we compare then popular Matrix Factorization models with Tensor Fac-
torization models; we also propose an evaluation metric for a fair comparison of the two. Then
we propose a joint MF-TF model which performs well or atleast as good as the best model on
KBC datasets. In Chapter 5, we analyse the predictions of recent KBC models and propose an
unsupervised typing gadget, which enhances KBC models (DistMult, ComplEx). In Chapter 7,
we discuss KBC methods for temporal KBs and also propose a time-aware evaluation strategy.
In Chapter 6, we perform an extensive re-examination of recent KBC techniques and find that
multiplicative models significantly benefit from signals from all entities during training, making
the relative performance gaps between different models trained in this manner small. This calls
for reassessment of their individual value. In Part III of the dissertation we formally define the
micro inference task and propose methods for inference in Open KBs. In Part IV we conclude,
summarizing what we have learned and offer suggestions for future work.



Chapter 2

Related Work

This chapter will discuss how our work on Knowledge Base Completion (KBC) relates to other
research efforts in similar directions. It first presents an overview of knowledge bases and then
discusses related work on the Macro Inference task and the Micro Inference Task. Note that
related work of a specific topic appears in the corresponding chapters.

2.1 Knowledge Bases

A Knowledge Base (KB) is a collection of machine-readable facts about the real world. The first
large manually compiled general-purpose KB construction project, aiming to assemble human
knowledge, dates back to the 1990s — The Cyc project [Lenat, 1995] and the WordNet project
[Hirst and St Onge, 1998]. Similar projects started in 2000s are DBpedia [Auer et al., 2007],
Freebase [Bollacker et al., 2008], KnowItAll [Etzioni et al., 2005], WebOf-Concepts [Dalvi
et al., 2009], WikiTaxonomy [Ponzetto and Strube, 2007], YAGO [Suchanek et al., 2007], Ba-
belNet [Navigli and Ponzetto, 2012], ConceptNet [Speer and Havasi, 2012], KnowledgeVault
[Dong et al., 2014], NELL [Carlson et al., 2010], Probase [Wu et al., 2012], Wikidata [Vrande-
cic and Krötzsch, 2014] and many more.

Previous works ([Nickel et al., 2015]) classified KBs on the basis of the methods used to cu-
rate them: (1) In curated approaches, highly accurate KBs are built manually by a closed group
of experts. The Cyc project [Lenat, 1995] and the WordNet project [Hirst and St Onge, 1998]
involved manual curation. (2) In collaborative approaches, triples are created manually by an
open group of volunteers. KBs like Freebase [Bollacker et al., 2008] and Wikipedia built this
way scales well. (3) In automated semi-structured approaches, triples are extracted automat-
ically from semi-structured text (e.g., infoboxes in Wikipedia) via hand-crafted rules, learned
rules, or regular expressions. YAGO [Suchanek et al., 2007] and DBpedia [Auer et al., 2007] are
accurate yet inclomplete KBs built this way. (4) In automated unstructured approaches, triples

11
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(a) (b)

Figure 2.1: Knowledge graph fragments — (a) Regular KG (b) Temporal KG

are extracted automatically from unstructured text via machine learning and natural language
processing techniques. Example the KnowledgeVault project [Dong et al., 2014] and the NELL
[Carlson et al., 2010] project.

KBs vary widely in terms of the complexity and rigidity of their schemata, and the support
they provide to automatic inference mechanisms. At one extreme, support may be provided for
propositional logic with quantifiers, using a powerful theorem prover. At the other extreme, a
‘KB’ may be merely sets of object or entity names collected into types or categories. In some
KBs, a ‘fact’ may be a full-fledged row in a table that is a member of a complete relational
schema. In other KBs, the ‘schema’ may be simplified to just a single central table with three
columns: subject, relation and object (loosely following the RDF standard1). Rows in this 3-
column table are called triples. Such a KB may be regarded as a directed graph with typed edges
(that represent relations) connecting nodes representing entities. In such a context, the KB may
be called a Knowledge Graph or KG. Much of our work here concerns KGs, so we will refer
to KGs and KBs interchangeably throughout. The 3-column ‘schema’ cannot naturally support
relations with arity greater than 3. E.g., a fact may be associated with a period of validity —
(Barack Obama, president of, USA; 2009–2016). One way to represent such a temporal KG is
to associate each edge with not just a relation type but also start and end time epochs. A ‘row’
in such a ‘table’ is called a tuple. Figure 2.1 shows various examples illustrating the above
notions.

KBs, by representing world knowledge in structured forms, have shown to be beneficial
for low-level NLP tasks like prepositional phrase attachment [Nakashole and Mitchell, 2015],
co-reference resolution [Rahman and Ng, 2011], named entity recognition [Ratinov and Roth,
2009], machine reading [Yang and Mitchell, 2017] and many more. As discussed in the intro-
duction (Chapter 1), KBs are useful for an array of practical applications including semantic
search [Bast et al., 2016], question answering systems [Unger et al., 2014], recommendation

1https://www.w3.org/TR/rdf-syntax-grammar/
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systems [Guo et al., 2020], video and text analytics [Suchanek and Preda, 2014, Krishna et al.,
2017], conversational assistants [Adiwardana et al., 2020] like chatbots — Amazon’s Alexa,
Apple’s Siri, Google’s Assistant and Microsoft’s Cortana.

2.2 Open vs. Closed KBs

In ‘open’ KBs, names of entities and relations may be unrestricted text strings. The above ex-
ample looks like an open KB fact. In ‘closed’ KBs, entities and relations are canonicalized to
standardized IDs, and one or more textual aliases are provided. E.g., in Wikidata, the unique ID
Q76 has been assigned to Barack Obama. In case a second Barack Obama is added to Wikidata,
that person will be assigned a different ID. That entity will be connected to entirely different
entities and relations in general. The entity Q76 has many aliases, perhaps over multiple lan-
guages. In English alone, Wikidata has registered aliases “Barack Hussein Obama II”, “Barry
Obama” and “BHO”, among others. As of the time of writing, 235 aliases are listed in multiple
languages. A canonicalized triple involving Obama in Wikidata is (Q76, P103, Q1860). Here
the relation (a.k.a. ‘property’) P103 has English alias “native language” and the object entity
Q1860 is the English language. Wikidata specifies about 7000 relations but lacks many po-
tentially useful ones; e.g., in the context of musicians and songs, performedAt, coveredArtist,
duetWith, songAbout, etc. might be very useful.

It may be useful to visualize the gradual structuring and canonicalization of knowledge
by tracing the progression from free text to open KB records to closed KG tuples. The first
step of distilling open tuples from free text is called Open Information Extraction (OpenIE).
OpenIE methods automatically discover and extract all entities and relations of interest from
input natural language sentences (perhaps from a large Web corpus). REVERB [Fader et al.,
2011], OLLIE [Mausam et al., 2012] and OPENIE4 [Mausam, 2016] are three of many OpenIE
systems that have been developed to generate Web-scale open KBs. The problem with such
KBs is that their entities and relations are not canonicalized, which leads to the storage of
redundant and ambiguous facts. For example, an open KB storing (Barack Obama, was born

in, Honolulu) and (Obama, is a native of, Honolulu) does not record that Barack Obama and
Obama refer to the same entity. Similarly, “was born in” and “is a native of” also refer to the
same relation. Historically, many closed KBs were created before work on OpenIE took off.
Nevertheless, inspection of high-confidence and high-support open tuples may trigger human
curators to assign canonical IDs and create tuples in closed KBs as well.

https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Property:P103
https://www.wikidata.org/wiki/Q1860
https://www.wikidata.org/wiki/Property:P103
https://www.wikidata.org/wiki/Q1860
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2.3 Incompleteness and inference

OpenIE systems have been designed to continually scrape the Web corpus, harvesting new
tuples and modifying or enhancing old ones. Despite such efforts, they continue lagging behind
the production of new relational world knowledge. Canonicalization is an even slower process,
because it need further human involvement, sometimes from experts in ontology management.

Consequently, automatic KB completion (variously called KG completion or KB inference)
— the task of inferring facts missing from an incomplete KB — has witnessed vigorous inves-
tigation in recent years. In the rest of this chapter, we will discuss popular methods for macro
and micro inference.

2.3.1 Macro inference

As discussed in section 1.1, macro inference task automatically deriving new facts using all
known facts from existing KBs. Suppose we want to validate if ‘(Barack Obama, has national-

ity, USA)’ and we are given a KB seen in Figure 2.1. A macro-inference model can use related
facts about Barack Obama in the KB (such as (Barack Obama, born in, Honolulu), (Barack

Obama, president of, USA), (Barack Obama, spouse of, Michelle Obama), (Michelle Obama,

nationality, USA), (Honolulu, city of, USA)) to infer that this new fact is likely to be true and
should be accepted. This provides us a way to “grow” a KB automatically.

We organize macro inference methods for KBC into three categories, based on the features
they use for inference — Path based, Neighborhood based and Atomic Triple/fact based (See
Figure 2.2) inference.

2.3.1.1 Path-based inference

These methods encode the knowledge base as a graph and leverage path (from query entity)
information over the graph structure for inference. Preliminary work on Path-based inference

Figure 2.2: Macro Inference Task classified on the basis of features they use for inference: (a)
Path over the graph structure, (b) Neighborhood of the query entity, (c) Atomic triple/fact. Note
that the node highlighted in blue is query entity.
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widely investigated Page Ranking Algorithm (PRA), which uses random walks to find paths
that connect the source and target nodes of relation instances. These paths are used as features
in a logistic regression classifier that predicts new instances of the given relation. Lao and
Cohen [2010], Lao et al. [2011] uses random walk with restart mechanism on a knowledge
graph to reliably infer new beliefs/facts for the knowledge base. Gardner et al. [2014] revisited
the PRA and used pre-trained vector representations of relations and hence compute feature
similarity in vector space. Neelakantan et al. [2015] use RNNs to obtain a dense representation
of multi-hop paths for knowledge base completion; this also enabled zero-shot learning. Chains-
of-Reasoning [Das et al., 2016] further added a neural attention mechanism to obtain improved
performance. DeepPath [Xiong et al., 2017], MINERVA [Das et al., 2018], DIVA [Chen et al.,
2018], Multi-Hop [Lin et al., 2018], M-Walk [Shen et al., 2018] and CPL [Fu et al., 2019] use
reinforcement learning based approaches to explore paths in knowledge graphs.

2.3.1.2 Neighborhood-based inference

These methods leverage the neighborhood of the query entity (forming a graph) for inference.
Graph Convolution Networks (GCN) are specialized neural networks for graphs [Bruna et al.,
2014]. Therefore, GCNs become a natural building block for KBC models. An end-to-end
model for KBC consist of an encoder (based on GCN) and a decoder (based on atomic mod-
els). Encoder uses a GCN to generate entity embedding by encoding its neighborhood. This
embedding is then fed into a decoder to generate fact score. Atomic models are popularly used
as decoders. Historically, GCNs are a generalization of Convolution Neural Networks (CNNs).
An extension of GCNs for relational graphs is proposed by Marcheggiani and Titov [2017]
but they ignored relations, later R-GCN [Schlichtkrull et al., 2018] extended the model and
proposed relation specific filters (transformation). Intuitively, the R-GCN encoder accumulates
transformed feature vectors of neighboring nodes through a normalized sum. R-GCN decoder
uses the node embeddings to reconstruct a graph edge and hence can make link prediction.
Weighted GCN [Shang et al., 2019] utilizes learnable relational specific scalar weights dur-
ing GCN aggregation. Vashishth et al. [2020], Ye et al. [2019] further demonstrated improved
performance by encoding the nodes and relations of the graph.

2.3.1.3 Atomic Triple based inference

These methods leverage the fact atomically for inference. Atomic model due to their simplicity
are a popular choice for KBC models. Factorization models are used for atomic fact-based in-
ference. Factorization models were initially popularized by the Netflix challenge [Koren et al.,
2009]. In these models, a partially-observed matrix or tensor is decomposed into a product of
embedding matrices with much smaller dimensions. The resultant low dimensional embeddings
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are viewed as vector representations for each entity and relation in the graph. When combined
back, allow completion of the missing entries in the original partially complete matrix and ten-
sor. For a given fact (s, r, o) in which the subject entity s is linked to the object entity o through
the relation r, a score for the fact can be recovered as a multilinear product between the em-
bedding vectors of s, r and o, or through more sophisticated composition (scoring) functions
(denoted by ϕ). Various parametric forms of the function ϕ have been designed. We discuss the
best-known ones, organized into two categories. Some of these scoring functions are summa-
rized in Table 2.1 for ready reference.

Model (M ) Scoring function (ϕM )
TransE [2013] −∥es + r − eo∥1
RotatE [2019a] −∥es • r − eo∥1

E [2013] vvv⊤r .es +www⊤
r .eo

DistMult [2015] ⟨es, r, eo⟩
ComplEx [2016] R⟨es, r, e⋆o⟩
SimplE [2018] 1

2(⟨hs, r, lo⟩+ ⟨lo, r−1,hs⟩)
TuckeR [2019] W × es × r × eo

F [2013] r⊤ · epso

Table 2.1: Scoring functions of several KBC models. First 1-2 rows list translation models, row
3-8 lists bilinear models . Note that row 8 is a matrix factorization model, while row 1-7 are
tensor factorization models. Larger value of ϕM implies more confidence in the validity of the
triple. • denotes rotation . ⋆ denotes the complex conjugate. R refers to the real part of the
complex valued score returned by the ComplEx model.

Translation and rotation In these models, relations are represented as translation or rotation
from the subject entity embedding to the object entity embedding. Each entity e (respectively,
relation r) is represented as a vector es, eo, r. The relation transformed subject entity embed-
ding is combined with the object entity embedding using an additive function. Row 1 and 2
of Table 2.1 represents translation and rotation model respectively. In TransE [Bordes et al.,
2013], if (s, r, o) holds, then eo should be close to es plus r. TransE aims to model inversion
and composition pattern. While RotatE [Sun et al., 2019a] models inversion, composition and
symmetry.

Multiplication In multiplicative models [Riedel et al., 2013, Yang et al., 2015, Trouillon
et al., 2016, Lacroix et al., 2018, Jain et al., 2018a, Balažević et al., 2019, Kazemi and Poole,
2018], the score of a fact (s, r, o) is obtained by taking a product of subject, relation and ob-
ject embeddings. In Model E [Riedel et al., 2013], relation r is represented by two vectors
vvvr,wwwr ∈ RD, and the tuple score ϕE(s, r, o) = es · vvvr + eo ·wwwr. The ComplEx [Trouillon et al.,
2016] model is a popular multiplicative model, in this text we abbreviated it as CX. The model
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embeds s, r, o to vectors in a complex vector space, es, r, eo ∈ CD. CX defines the score ϕ

of a fact (s, r, o) as R(⟨es, r, e
⋆
o⟩) where ⟨es, r, eo⟩ =

∑D
d=1 es[d] r[d] e

⋆
o[d] is a 3-way inner

product, e⋆
o is the complex conjugate of eo, and R(c) is real part of c ∈ C. Such a composition

of complex embeddings can handle a large variety of binary relations, among them symmetric
and antisymmetric relations. In real valued case (i.e. embeddings of s, r, and o are real), CX
model corresponds to DistMult model (see row 4 in Table 2.1). One may feel that the complex
model gains over DistMult due to the use of larger embeddings. However, that is not the case.
The main benefit from ComplEx comes from conjugating the object vector elements, thus al-
lowing the model to capture asymmetry and antisymmetry in relations. DistMult, which uses
real embedding, making the score function symmetric. It will give the same score to the facts –
⟨Joe Biden, fatherOf, Hunter Biden⟩ and ⟨Hunter Biden, fatherOf, Joe Biden⟩, which is clearly
incorrect.

For SimplE [Kazemi and Poole, 2018], hs ∈ H and lo ∈ L, where H and L are separate
entity (E) representation for entities in head and tail position respectively. It also learns seperate
representation for r ∈ R and its reciprocal r−1 ∈ Rinv. Lacroix et al. [2018] proposed a
popular variant of CX model that we call ComplEx-N3 (CX-N3). This model uses a weighted
L3 regularization in a modified training objective to accommodate reciprocal relations. F model
has a vector representation of every entity pair, epso ∈ RD and scores a tuple: ϕF(s, r, o) =

r⊤ · epso.
Path based and neighborhood based inference methods generalize poorly (performance on

KBC is poor) as compared to latest atomic triple based methods, which score a fact by only
using the embeddings of subject, object and relation of the fact. Hence in this dissertation we
will focus on atomic triple based inference methods.

2.3.2 Micro inference

Micro inference involves inferring a novel fact from a single or a very small number of input
facts, independent of other facts seen in the KB [Schoenmackers et al., 2010, Nakashole et al.,
2012, Berant et al., 2011, Galárraga et al., 2013, Berant, 2012, Pavlick et al., 2015, Hearst, 1992,
Carlson et al., 2010]. For example, given an inference rule corpus which has a horn clause rule2

(BornIn(Person, City) ∧ CityOf(City, Country) =⇒ CitizenOf(Person, Country) ),
and a KB which has facts (Barack Obama, BornIn, Honolulu) and (Honolulu, CityOf, USA),
then a query like (Barack Obama, is the citizen of, ?) or even a more general query like ‘How
many people are citizens of USA?’ to an inference engine can be correctly answered (‘USA’ for
query 1 and a number ≥ 1 for query 2). The methods used for this task often rely on inducing
inference rules from a corpus of facts. Note that usage of an inference rule corpus enables

2A Horn clause is a clause (a disjunction of literals) with at most one positive, i.e. unnegated, literal.
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the possibility of complex reasoning for verifying a generated fact. We now discuss various
traditional methods to learn inference rules.

2.3.2.1 Distributional Features

Inference rules are predominantly generated via extended distributional similarity — two re-
lation pair having a high degree of argument overlap are similar, and thus are a candidate for
a unidirectional inference rule or a paraphrase (bidirectional). The rule generation methods
vary on the base representation of relations, e.g., KB relations [Galárraga et al., 2013, Grycner
et al., 2015], Open IE relation phrases [Schoenmackers et al., 2010], syntactic-ontological-
lexical (SOL) patterns [Nakashole et al., 2012], and dependency paths [Lin and Pantel, 2001].
Distributional similarity is modeled by symmetric as well as asymmetric measures.

Symmetric similarity measure: Lin and Pantel [2001] proposed the DIRT algorithm which
is based on Lin similarity measure. For each relation r, the algorithm computes two sets of
features, F r

s and F r
o , the nouns that instantiate the arguments s and o respectively in a large

corpus. Every fs ∈ F t
s is weighted by the Pointwise Mutual Information (PMI) between the

relation and the feature. PMI is computed as: wr
s(f) = log Pr(fs|r)

Pr(fs)
. Given two relations r1 and

r2, Lin is computed for s as follows:

Lins(r1, r2) =

∑
f∈F r1

s ∩F r2
s

[wr1
s (f) + wr2

s (f)]∑
f∈F r1

s

wr1
s (f) +

∑
f∈F r2

s

wr2
s (f)

We can compute Lino(r1, r2) similarly. Finally, DIRT (r1, r2) =
√

Lino(r1, r2)L̇ins(r1, r2).
These methods are more appropriate for detecting paraphrases than for entailment.

Asymmetric similarity measure: Almost all asymmetric (directional) distributional similarity
approaches are based on the intuition that semantically-general relations occur in more contexts
than semantically-specific relations. Thus, if the contexts of a relation r1 is properly included
in the contexts of another relation r2, then r2 → r1. One probabilistic interpretation is: r2
probabilistically entails r1 if: P(r1 is true | r2) > P(r1 is true), where P(r1 is true | r2) can
be interpreted as entailment confidence. While learning Horn clauses, (Body =⇒ Head) : (
(Company, IsBasedIn, City) ∧ (City, IsLocatedIn, Sate) =⇒ (Company, IsHeadquarteredIn,
State)) [Schoenmackers et al., 2010], r2 can be safely replaced by body of the rule and r1 with
the head. Previously, Schoenmackers et al. [2010] use such a statistical significance/statistical
relevance based approach. However Nakashole et al. [2012], Berant [2012], Galárraga et al.
[2014], Pavlick et al. [2015] exploit support statistics. These methods are more suited for en-
tailment as compared to the symmetric methods.

Distributional similarity methods have high coverage and are domain independent, and un-

supervised. However these approaches have some fundamental limitations. First, they miss out
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on important recall because obvious commonsense facts are never stated explicitly in text, e.g.,
(s, married to, o) → (s, knows, o), will likely be missed — text will rarely say that a couple
knows each other. Second, they are consistently affected by statistical noise and end up gen-
erating a wide variety of inaccurate rules. These methods sometimes result in distributionally
similar antonyms (e.g., (Stock, rise in, January) → (Stock, fall in, January)) or terms that are
mutually exclusive (e.g., boys and girls). Thirdly, these methods are blind to context. Hence
techniques based only on distributional semantics do not perform well.

2.3.2.2 Multi-Lingual features

Distributional similarity methods use monolingual corpora statistics to generate paraphrases.
This task is also performed using commonly available bilingual parallel corpora. Alignment
techniques from phrase-based statistical machine translation are used; paraphrases in one lan-
guage are identified using a phrase in another language as a pivot.

Multi-Lingual pivoting: Two relation phrases are considered paraphrases if they share a for-
eign translation [Bannard and Callison-Burch, 2005, Pavlick et al., 2015]. The most likely para-
phrase (r̂) for a given relation phrase (r1) is extracted as r̂= argmax

r1 ̸=r2
p(r2|r1) = argmax

r1 ̸=r2

∑
f

p(f |r1)p(r2|f),

where f and r are different language strings and p(r2|r1) is the confidence that r1 is a paraphrase
of r2. Table 2.2 compiled from [Bannard and Callison-Burch, 2005], lists a set of example para-
phrase extracted from gold standard alignments.

Under control Checked, curb, curbed, in check, limit, slowdown
At work at the workplace, employment, in the work sphere, operate,

held, holding, organized, taken place, took place, working
Sooner or later At some point, eventually
Green light Approval, call, go-ahead, indication, message, sign, signal,

signals, formal go-ahead

Table 2.2: Sample paraphrases extracted from a manually aligned parallel corpus. Itali-
cized words are best paraphrases according to paraphrase probability estimates [Bannard and
Callison-Burch, 2005].

Such methods utilize the abundant bilingual parallel data to generate paraphrases. The
methods are complementary to monolingual distributional methods. Multilingual pivoting ap-
proaches are adversely affected by polysemy in a foreign language. For example, when using an
aligned parallel corpus of Hindi and English, we observe ‘Yesterday’ gets translated to ‘kl ’
which generates ‘Tomorrow’ in turn: Yesterday→ kl → Tomorrow. Moreover, these methods
can group morphological variants of a foreign language into the same paraphrase. For example:
baEFa → sitting→ baEF�a (on using an aligned parallel corpus of Hindi and English).
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2.3.2.3 Textual Patterns

Instead of comparing the typical contexts in which a pair of relations appear in a large corpus,
co-occurrence methods focus on the co-occurrence of the pair of elements in a local scope such
as a sentence. For example, from the sentence ‘He scared and even startled me’ one might
infer that ‘startle’ is semantically stronger than ‘scare’ and thus ‘startle → scare’. Learning
semantic relations using co-occurrence was first articulated in Hearst’s work [Hearst, 1992].
Hearst [1992] discussed methods for automatic acquisition of the hyponym or is-a relation
between nouns from large corpora. The key insight is that the semantic relation is manifested
in template patterns, for example the patterns ‘NPy such as NPx’ or ‘NPx or other NPy’
often imply that NPx is a kind of NPy (NP stands for Noun Phrase). This work was extended
to acquire meronymy, equivalence, antonymy, similarity and hyponymy relations [Girju et al.,
2006, Chklovski and Pantel, 2004]. Table 2.3 specifies sample pattern groups and provides one
example pattern for each group.

Hypernymy ( X→ Y ) Delhi and other cities.
Hyponymy (X← Y) Action-adventure games including GTA; planets such as Mercury
Equivalence (X ≡ Y) Vitamin D known as sunshine vitamin

Enablement to win by fighting the
Strength hurt and even kill

Antonymy either open or close
happens-before to marry and subsequently divorce

Table 2.3: Sample textual patterns/path features (shown in italics), for rule extraction.

Naturally, these methods suffer from low coverage. Also, they are more suited for nouns

than for verbs, since nouns tend to co-occur in sentences more often than verbs. Note that these
rules are hand-built and generally have low recall.

For scalability [Niu et al., 2011, Domingos and Webb, 2012], the inference rule corpus gen-
erated using the above techniques is used along with probabilistic models such as Markov Logic
Networks (MLN) [Schoenmackers et al., 2008] or Bayesian Logic Programs (BLP) [Raghavan
et al., 2012] to produce human-interpretable proof chains. These inference methods are bound
by the coverage and quality of the inference rules [Clark et al., 2014].

More recently, Rocktäschel et al. [2015], Guo et al. [2016], Demeester et al. [2016], Guo
et al. [2018], Minervini et al. [2017b, 2020, 2021] proposed methods that incorporate first-
order logic rules into KB relation and entity embeddings. IterE [Zhang et al., 2019] later jointly
learns embedding as well as a rule learning system to enhance link prediction performance
further. Neural Theorem Provers (NTP) [Rocktäschel and Riedel, 2017] and Neural LP [Yang
et al., 2017] learn logic rules that are trained via end-to-end gradient based learning. Methods
[Qu and Tang, 2019] which jointly learn the embeddings with a Markov Logic Network, also
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have the power to capture the uncertainty of logic rules.
In this chapter, we discussed various popular macro and micro inference methods. Next, we

present the methods we propose for improving macro and micro inference performance.
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Chapter 3

Macro inference preliminaries

In this chapter, we will review macro inference methods to improve the coverage of an in-
complete KB. We formally define the macro inference task and then describe standard datasets
used to design and evaluate macro inference methods. Then we discuss commonly used loss
functions and evaluation protocols.

3.1 Problem formulation

Macro inference task automatically derive new facts using all known facts from existing KBs.
The methods generally rely on complete KB statistics for inferring novel facts. One approach
is to learn a representation of real-world entities and the relations between them in a knowledge
base; this enables inference of new facts from the knowledge base.

A fact tuple represents real-world knowledge in the form (subject, relation, object) or sym-
bolically, (s, r, o). A concrete example is (Narendra Modi, is the PM of, India). We will often
write readable strings in our examples, but the understanding is that s, r, o are canonical IDs.
Macro inference is usually cast as a supervised classification or ranking problem. For this pur-
pose, we will consider facts to come from two classes: valid and invalid, denoted by the vari-
able y ∈ {0, 1} (0 if not valid, 1 if valid). E.g., (Barack Obama, is president of, India) is an
invalid tuple.

We are given an incomplete KB with entities E and relations (relation types) R. Training
data is presented as a set of N labeled training tuples

Ttr =
{(

(sn, rn, on); ln = 1
)
: n ∈ [N ]

}
(3.1)

where s, o ∈ E , r ∈ R and [N ] = {1, 2, . . . , N}. A validation fold Tv with similar labeled
tuples may be provided for system tuning, after which it will be evaluated on a test fold Tts.
Usually, KBs have only valid tuples, i.e., all ln = 1, and algorithms must design various negative

sampling strategies to obtain invalid tuples for effective training. The goal of the inference task
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is to predict the validity of any tuple not present in Ttr. Note that micro-inference methods can
also do the KBC task. But we loosely refer to macro inference methods as KBC models in this
part of the dissertation. This dissertation focus on ‘Atomic’ KBC models, which fit continuous
representations (loosely “embeddings”) to entities and relations so that the belief in the veracity
of (s, r, o) can be estimated as an algebraic expression (called a scoring function ϕ) involving
those embeddings.

3.2 Evaluation protocol

To run the experiments at scale, macro-inference methods generally follow an automatic eval-
uation protocol. In this method the KB is split into train (Ttr), validation (Tv) and test (Tts)
tuples. The system can access only Ttr during training. The validation set Tv is used for tuning
the hyper-parameters of the system. For each test tuple, (s∗, r∗, o∗) ∈ Tts, query (s∗, r∗, ?) and
(?, r∗, o∗) are issued to the trained model M . For query (s∗, r∗, ?), the model ranks all entities
o ∈ E by decreasing ϕM(s∗, r∗, o). A higher rank of o∗ in this list suggests a better performance
of the model. Common metrics used to compare algorithms are mean reciprocal rank (MRR)
and the percentage of o∗s obtained in top k (HITS@k) results.

MRR =
1

|N |

N∑
i=1

1

ranki
(3.2)

These metrics are indicative but can be flawed: some of the os ranked higher than o∗ may
yield correct tuples (s∗, r∗, o). For the test query (IIT Delhi, is alma-mater of, ?) the gold answer
of interest is Padmasree Warrior. But the query has more than one correct answer — Vinod

Khosla, Deepinder Goyal, Kiren Bedi, Raghuram G. Rajan, Mausam and many more — which
may appear above the answer of interest. It is unfair to penalize the model for predicting these.
Some of the possible correct tuples might be seen in training set, validation set or test set.
Hence, the filtered metrics remove the set {o|(s∗, r∗, o) ∈ Ttr ∪ Tv ∪ Tts} from the ranked list
[Bordes et al., 2013], thus creating a better evaluation metric. In the following chapters, we
refer to the original metric as raw, while we refer to the newer as filtered.

3.3 Popular datasets

Many knowledge bases have been constructed, in recent times - WordNet, DBpedia, YAGO, and
Freebase (now Google Knowledge Graph) are a few popular KBs. (a) Freebase1 is a huge KB
of general facts, with around 1.2 billion tuples and more than 80 million entities. (b) WordNet2

1developers.google.com/freebase
2wordnet.princeton.edu/download

developers.google.com/freebase
wordnet.princeton.edu/download
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is a lexical database of semantic relations between words. WordNet links words with semantic
relations like synonyms3, hyponyms4, and meronyms5. WordNet has 1,55,327 words organized
in 1,75,979 synsets for a total of 2,07,016 word-sense pairs. (c) YAGO6 (Yet Another Great
Ontology) is a large open-source knowledge base with general knowledge about people, cities,
countries, movies, and organizations. YAGO3 knows more than 10 million entities and contains
more than 120 million facts about these entities. (d) DBpedia7 KB describes 6.0 million entities,
out of which 5.2 million are classified in a consistent ontology, including 1.5M persons, 810k
places, 135k music albums, 106k films, 20k video games, 275k organizations, 301k species,
and 5k diseases.

Most KBC systems have used one or more of six popular datasets (subset of the KBs dis-
cussed above) for evaluation. This includes two subsets of Freebase. Bordes et al. [2013] built a
subset of Freebase dataset, FB15k. It has entities and relations which are seen atleast 100 times
in the original Freebase corpus and are also present in Wikilinks database. The resultant corpus
is randomly split as shown in Table 3.1. Toutanova et al. [2015] found that FB15k has many
test tuples which can be obtained by simply inverting training tuples. For example, the test set
frequently contains tuples such as (s, hyponym, o) while the training set contains its inverse (o,
hypernym, s). Hence they created a more difficult dataset, FB15k-237, where inverse relations
are removed. Two subsets of Wordnet are also introduced. The WN18 dataset has 18 relations
scraped from WordNet for roughly 41,000 synsets, resulting in 1,41,442 tuplets [Bordes et al.,
2013]. Dettmers et al. [2018] highlighted that a large number of the WN18 test tuples can be
found in the training set with another relation or the inverse relation. Therefore, they introduced
a new version of the dataset, WN18RR where inverse relations are removed. They also proposed
a new dataset YAGO3-10. It is a subset of YAGO3 with entities that have a minimum of 10 re-
lations each. Most of the tuples deal with descriptive attributes of people, such as citizenship,
gender, and profession.

Riedel et al. [2013] proposed a dataset that has textual facts with aligned structured facts
(structured KB facts) — NYT+FB. The textual data is extracted from the NYTimes corpus
[Sandhaus, 2008] and structured facts are obtained from Freebase. The tuples in Freebase are
aligned with the tuples extracted from NYTimes. Simple string-matching heuristic is used to
find the link between text and Freebase entities. A freebase tuple is aligned to the text if the s

and o of freebase tuple aligns with the mentions ms and mo seen in the same sentence from text
corpus. Relations with fewer than 10 tuples with mentions in text are filtered out. The original

3Two words that can be interchanged in a context are said to be synonymous relative to that context.
4A word that is more specific than a given word. For example, spoon is a hyponym of cutlery.
5A word that names a part of a larger whole. Example, ‘brim’ and ‘crown’ are meronyms of ‘hat’.
6mpi-inf.mpg.de/departments/databases-and-information-systems/research/

yago-naga/yago/downloads/
7dbpedia.org

mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
dbpedia.org
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test set has only 80 tuples. Since such a test set is rather small, and in keeping with other KBC
datasets, we create our own train-valid-test splits by randomly sampling about 2% tuples from
T . Only tuples with FB relations are used in the test set similar to previous experiments on this
dataset. The details of the discussed dataset statistics can be seen in Table 3.1.

Dataset |E| |R| Train Valid Test
FB15K 14,951 1,345 483,142 50,000 59,071

FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 1,23,182 37 1,079,040 5,000 5,000
NYT+FB 24,528 4,111 78,041 22,298 11,149

Table 3.1: Number of distinct entities, number of relation types, and size of train/test/valid folds
of popular KBC benchmarks.

3.4 Tuple belief score and loss objectives

Atomic KBC techniques overwhelmingly fit the following template:

• Associate entities with suitable continuous representations (loosely called ‘embeddings’).
These can be real or complex vectors or matrices that represent translations in space,
projections, rotations, etc. Let us say r is the continuous representation of relation r.

• Associate relations with suitable continuous representations (loosely called ‘embeddings’).
These can be real or complex vectors or matrices that represent points in space, vectors
starting at the origin. Let us say e is the continuous representation of entity e.

• Define the score of a tuple (s, r, o) through a designed ‘belief score’ function ϕ(s, r, o; θ)

that returns a real value. Note that θ represents model parameters which in our case are
typically embeddings only. The bulk of KBC research is in better and better design of ϕ.
The scoring function ϕ may use additional parameters inside itself.

• Based on the ‘gold’ training data provided, train all entity and relation embeddings, along
with any parameters inside ϕ, using a loss function L. Negative examples (not seen in
training data) are generated for model training to improve the model’s ability to distin-
guish between valid and invalid tuples.
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3.4.1 Negative sampling

To ease notation, a labeled positive tuple
(
(s, r, o); l = 1

)
may be denoted simply as (s, r, o)

and a perturbed, presumed negative tuple
(
(s, r, o); l = 0

)
denoted as (s′, r′, o′), although only

one of s, r, o may be perturbed. Also T ′
tr represents the set of all negative samples used while

training the model.

In literature the following strategies to construct negative tuples are discussed. Each strategy
constructs two negative examples for each positive example (s, r, o) — one by replacing s, and
another by replacing o.

• Random sampling: We sample a negative set Neg(s, r) for every tuple, computed as
{(s′, r′, o′)|o′ ∈ E , s′ = s, r′ = r} i.e., negative tuples are formed by uniformly sampling
entities. Similarly, the set Neg(r, o) is sampled.

• Unseen fact sampling: We sample a negative set Neg(s, r) for every tuple, computed as
{(s, r, o′)|o′ ∈ E∧(s′, r′, o′) /∈ T , s′ = s, r′ = r}. Similarly, the set Neg(r, o) is sampled.

• Max sampling: We sample a negative set Neg(s, r) for every tuple, computed as
argmax
(s,r,o′)∈X

ϕ(s, r, o′) where X = {(s′, r′, o′)|o′ ∈ E ∧ (s, r, o′) /∈ T , s′ = s, r′ = r}.

Similarly, the set Neg(r, o) is sampled.

• Mix sampling: Mix of above, using random sampling 50% of times and max sampling
50% of times.

• Typed sampling: Negative samples are obtained from entity set within type range of re-
lation [Krompaß et al., 2015]. Basically, the negative set Neg(s, r) for every tuple is
computed as {(s′, r′, o′)|o′ ∈ E ∧ (s, r, o′) /∈ T ∧ type(o′) == type(robj), s

′ = s, r′ = r},
where the function type(e) gives the type of the input entity. type(o′) is the type of entity
o′ and type(robj) is the type of the entity r expects in its object position. Similarly, the set
Neg(r, o) is sampled.

Randomly sampling negative tuples is the most efficient and popularly used technique amongst
others.

3.4.2 Loss Objective

The models are trained such that tuples observed in the KB have higher scores than unobserved
ones. Several loss functions have been proposed; we discuss three common ones in this disser-
tation.
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3.4.2.1 Additive margin loss

A simple way to train embeddings and ϕ is to encourage

ϕ(s, r, o)≫ ϕ(s′, r′, o′) (3.3)

for positive tuple (s, r, o) and negative tuple (s′, r′, o′). A hinge loss with a tuned hyperparam-
eter margin γ > 0 is the most common way to write the corresponding loss function:

L =
∑
(s,r,o)

∑
(s′,r′,o′)

max
{
0, ϕ(s′, r′, o′) + γ − ϕ(s, r, o)

}
(3.4)

This is similar to pairwise ranking loss as in RankSVM [Joachims, 2002].

3.4.2.2 Logistic loss

The second type of commonly used loss function minimizes the negative log-likelihood of
logistic loss or sigmoid cross entropy loss as follows:

L =
∑

(s,r,o)∈A

log
[
1 + e−ysroϕ(s,r,o)

]
(3.5)

Here ysro is 1 if the fact (s, r, o) is true (for l = 1) and −1 otherwise (for l = 0). Also, A is the
set of all positive facts (Ttr) along with the negative samples (T ′

tr).

3.4.2.3 Log-likelihood or cross entropy loss

Another approach is to use ϕ to define probabilities for filling in blanks in incomplete tuples:

Pr(o|s, r) = exp(βϕ(s, r, o))∑
o′ exp(βϕ(s

′ = s, r′ = r, o′))
and Pr(s|o, r) = exp(βϕ(s, r, o))∑

s′ exp(βϕ(s
′, r′ = r, o′ = o))

,

(3.6)
where ϕ is the scoring function of the inference method, β(> 0) is the temperature parameter
(generally β=1) and s, o ∈ E and relation r ∈ R. If summing over all s′ or o′ is not feasible
because E is very large, estimates are built from smaller volumes of negative samples. (If the
sampling is biased, the left hand side may not be a formal probability, but it may suffice for
training.)

The log-likelihood loss or cross-entropy loss is then defined as

L = −
∑

(s,r,o)∈Ttr

(
log Pr(o|s, r; θ) + log Pr(s|o, r; θ)

)
(3.7)

The summation is over Ttr which is the set of all positive facts. Note that typically, KBC models
do not include a third term on Pr(r|s, o; θ) as the evaluation is only on the tasks (s, r, ?) and
(?, r, o).
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3.5 Model Regularization

Regularization of models helps speed up training, improves performance and prevents overfit-
ting. KBC models are also regularized during training. L1 regularization is used in translation
models like TransE and RotatE. TransE also normalized the entity and relation embeddings to
unit norm after every update. L2 regularization is also popularly used for KBC models Yang
et al. [2015]. While Lacroix et al. [2018] proposed L3 regularization. ConvE used dropouts in
hidden layers of the network Dettmers et al. [2018]. In this dissertation, we regularize entity
embeddings and relation embeddings at the end of every epoch. The regularizer is applied only
to the parameters that are involved in the computation of the instantaneous loss L. We use L2

regularizations for most models unless specifically mentioned.
In this dissertation, we regularize entity embeddings and relation embeddings at the end of

every epoch. The regularizer is applied only to the parameters that are involved in the computa-
tion of the instantaneous loss L. We use L2 regularizations for most models unless specifically
mentioned.
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Chapter 4

Matrix Factorization and Tensor
Factorization

In the context of macro-inference, two popular KGC methods are matrix factorization (MF) and
tensor factorization (TF). In this chapter we conduct a detailed analysis of their comparative
strengths and weaknesses. This results in a new joint MF-TF method that performs at least as
well as the better of the two base models. During the development of our joint algorithm, we
also find and fix a significant problem with KGC evaluation in the literature.

4.1 Introduction

As discussed in Section 1.1.1, KBC models can be further subdivided into two broad categories:
matrix factorization and tensor factorization. In both cases the models learn one or more embed-
dings of the relation r, however, they differ in their treatment of entities s and o. TF approaches
(e.g., E [Riedel et al., 2013], TransE [Bordes et al., 2013], DistMult [Yang et al., 2015], Com-
plEx [Trouillon et al., 2016], TypedComplEx [Jain et al., 2018a], Rescal [Nickel et al., 2011]
models) learn separate embeddings for s and o, whereas MF methods (e.g., F [Riedel et al.,
2013] and extensions [Verga et al., 2016]) learn an embedding per entity-pair (s, o).

MF was one of the first neural technique for Relation Extraction (RE). In this chapter we
study MF performance on the task of KBC across various datasets. The main goal of this chapter
is to study MF’s effectiveness for the general task of KBC and answer three key questions.

1. Does MF perform well for KBC? Our extensive evaluation reveals that MF has an unusu-
ally varied performance across various KBC datasets, achieving MRR scores as high as
74% but also as low as zero.

2. What makes MF performance so sensitive? We find that MF’s performance can be ex-

33
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plained by dataset sparsity, in the form of the fraction of entity-pairs that are outside the
training vocabulary (OOV).1

3. Can we improve MF performance to obtain respectable scores in spite of high OOV rates?
The original MF model has a rather ad hoc way of handling OOVs — each OOV entity
pair gets a random embedding. We propose three enhancements.

Our first model learns a single OOV vector. This ignores signals from the constituent entities, as
it uses the same vector for all OOV entity pairs. Our second model generates entity pair vectors
from the constituent entity embeddings, on the fly, using a generator layer that is trained to
output “MF-like” embeddings. While the second model has better performance on OOV test
examples, it degrades2 on test facts where the gold entity pair is seen — rendering it far inferior
to basic TF models like ComplEx. In response, we propose a hybrid TF-MF model (inspired by
Singh et al. [2015]). This model is robust and obtains strong results across all datasets. Verga
et al. [2016] also proposed methods to generate embedding of a new entity-pair on the fly for the
F model. However, their work is different from ours since, at test time, they expect knowledge
of several tuples between the same entity pair.

Additionally, we recognize that special care is needed to handle OOV entity-pairs when
evaluating MF against TF. Otherwise an MF algorithm may erroneously appear to perform bet-
ter than it really does, as in the case of F’s (MF model) performance on FB15K-237 [Toutanova
et al., 2015]. We describe the first unified KBC evaluation protocol that can meaningfully com-
pare MF and TF approaches for KBC.

We contribute open-source implementations3 of all models and testing protocols for further
research.

4.2 Standard Evaluation Protocol

Common metrics used to compare algorithms are mean reciprocal rank (MRR) and the per-
centage of o∗s obtained in top 1 (HITS@1) and 10 (HITS@10) results (See section 3.2 for
details).

1We refer to such entity-pairs as OOV entity-pairs. A more robust definition of OOV entity pairs (based on
their train set frequency, say) could have been used. We used the definition of OOV based on zero- vs. non-zero
count because it was able to explain most of the difference between model performances. Future work could study
the impact of a more general definition of OOV entity-pairs.

2Here we refer to a model which, instead of learning separate entity-pair embeddings (initialized by pre-
trained embeddings of MF model), generates them from constituent entity embeddings (initialized by pre-trained
embeddings of DM model). In principle, a network with sufficient capacity, trained with sufficient data, should
be able to reconstruct an entity-pair embedding from single-entity embeddings. In practice, in case of non-OOV
entity-pairs, direct training of an entity pair embedding can be superior if the entity pair appears reasonably often.

3https://github.com/dair-iitd/KBI

https://github.com/dair-iitd/KBI
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The testing procedure is typically run with two modifications. First, we use filtered evalua-
tion metric, already discussed in section 3.2.

The second modification applies primarily to MF models. In MF, an embedding is learned
only for entity pairs that appear in Ttr. Therefore, it is futile to score every (s∗, r∗, o) over a
large range of os, for most of which, entity-pair embedding epso is not even known. Instead,
only those os in a smaller set

o = {o|∃r : (s∗, r, o) ∈ Ttr ∪ Tv ∪ Tts} (4.1)

are considered as candidates for ranking [Toutanova et al., 2015, Verga et al., 2016]. If entity
pair (s∗, o) is not trained then a random vector is assumed for eps∗o (making evaluation non-
deterministic, hence a problem).

4.3 Comparison Under Standard and Sanitized KBC Evalu-
ation Protocol

In this section, we first present a detailed study of previous approaches under standard evalua-
tion protocols, which exposes the limitations of existing evaluation protocols. We then propose
a sanitized protocol which evaluates KBC models more accurately. We further add a few base-
lines overlooked in prior work, and present results adjusted for KBC evaluation.

Dataset and Models: To better understand the strengths and weaknesses of each model, we
compare various KBC models (see Table 2.1) on a variety of datasets - WN18, FB15K, FB15K-
237, NYT+FB (refer to Section 3.3 for dataset details). Note that our literature search reveals
that no model has been tested on all datasets, prior to this work. To the best of our knowledge, no
work reports results of E & F models on WN18 or FB15K, TransE on FB15K-237 or NYT+FB,
and DM & ComplEx on NYT+FB (prior to this work).

Implementation details: We implement all algorithms in a common framework written using
Keras/Theano [Chollet, 2015]. We use embeddings in Rd, where d=100, throughout, trained
using Adagrad. Negative samples are extracted through random sampling technique discussed
in section 3.4.1. Note that since MF models operate over entity pairs, they do not need two Neg

sets. They use one set where new entity pairs are sampled only from the entity pairs found in
T , since embeddings for only those pairs get learned. 200 random negative samples are drawn
per positive tuple. Margin γ is 1 for max margin methods. Entity and entity-pair vectors are
re-normalized to unit norm after each batch update [Yang et al., 2015]. Batch size is 20,000.
Models are trained up to 200 epochs, but with early stopping on a validation set to prevent from
overfitting. We train each model on each dataset using log-likelihood (LL), max-margin (MM)
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and logistic (L) loss functions and pick the best loss function (according to dev performance)
for every setting. In particular, we find that TransE performs much better with MM loss. LL
loss works better or at par in all other models except that MM outperforms LL for DistMult on
WN18 dataset. L works best for ComplEx.

We follow the train-dev-test splits used in previous experiments for FB15K, WN18, and
FB15K-237. The test sets Tts are generally 3–10% random samples from T . For NYT+FB,
previous works had experimented on a test fold with only 80 correct tuples [Riedel et al., 2013].
Since such a test set is rather small, and in keeping with our other data sets, we create our own
train-test splits by randomly sampling about 2% tuples from T . Only tuples with FB relations
are used in the test set similar to previous experiments on this dataset.

Model
FB15K FB15K-237 WN18 NYT+FB

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
1 ComplEx 66.97 55.21 85.60 37.46 27.97 55.95 93.84 93.32 94.54 69.43 64.84 76.55
2 DistMult 60.82 46.51 84.78 37.21 27.43 56.12 80.42 68.5 94.2 62.48 56.40 72.17
3 E 22.86 16.4 35.04 30.87 23.63 45.38 2.74 1.48 5.38 8.83 3.67 19.74
4 TransE 43.11 24.99 71.97 3.57 0.4 1.48 37.15 4.22 84.96 13.57 8.79 39.63
5 F (Old eval) 33.62 22.27 60.20 28.01 13.21 64.76 82.95 71.76 98.84 89.28 83.48 97.84
6 F (KBC eval) 13.35 9.45 17.03 0.0 0.0 0.0 0.14 0.04 0.20 74.34 68.96 80.01
7 MFreq(o|r∗) 24.91 18.84 36.03 33.05 25.45 47.60 3.10 1.92 5.28 11.42 6.23 20.39
8 MFreq(o|s∗) 8.22 15.61 15.61 0.01 0.0 0.0 0.17 0.38 0.38 79.34 94.93 94.93

Table 4.1: The first five rows compare 5 models on 4 datasets using the standard evaluation
protocol - MRR, HITS@k (H@k) on test queries (s∗, r∗, ?). The 6th row shows F’s performance
using our proposed KBC evaluation protocol. The last 2 rows report results of 2 most-frequent
sanity-check baselines.

Model performance with the Standard protocol: The first five rows of Table 4.1 report
standard protocol performance of all the models across the datasets. E has good performance
on FB15K-237, whereas TransE gets good scores on FB15K, however ComplEx emerges the
most robust. For TF models on three datasets (FB15K, FB15K-237, WN18) our experiments
are able to replicate (or improve upon) most reported results [Yang et al., 2015, Bordes et al.,
2013, Toutanova et al., 2015].4 Since NYT+FB uses a new test fold, and F hasn’t been tested
on other datasets, those results cannot be directly compared against previous work.

We find that F outperforms ComplEx on NYT-FB dataset by wide margins and does not
perform as well as ComplEx on the rest. It appears that a qualitative analysis of ComplEx vs F
will shed light on their relative strengths and weaknesses. Our analysis reveals a limitation in
the standard evaluation protocol that can inflate F’s performance scores for OOV entity pairs.

4Since we use 100 dimensional embeddings throughout, we obtain slightly lower scores than Trouillon et al.
[2016] for ComplEx, which uses 200 dimensional embeddings.
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The problem with the Standard protocol: Recall the second modification from standard
protocol. When ranking possible entities o using the score ϕ(s∗, r∗, o) from MF models, the
standard protocol considers a subset o, instead of all entities in E . This is because many entity
pair embeddings (s∗, o) are not even trained in the model, and hence their scores will be mean-
ingless. We call these OOV entity pairs. O contains all entities for which the entity pair (s∗, o)
is trained. Additionally, all such o∗s that are gold entities for some test query (s∗, r∗, ?) are also
added to O. If these are not trained, a random vector is assumed for them.

a.

( Bill Gates, lives in, ?) F (old) F (new)
(Bill Gates, lives in, Seattle) 5.34 5.34
(Bill Gates, lives in, Medina) 0.04 -1.4
(Bill Gates, lives in, New York) ? -1.4

...
...

... ? -1.4
Reciprocal rank 0.5 ∼0.0

b.

( Tina Fey, lives in, ?) F (old) F (new)
(Tina Fey, lives in, New York) 2.30 2.30
(Tina Fey, lives in, Seattle) 1.1 1.1
(Tina Fey, lives in, Medina) ? -2.12

...
...

... ? -2.12
Reciprocal rank 1 1

Table 4.2: Original F with old evaluation protocol vs. F (trained OOV vector) with KBC evalua-
tion protocol. Gold tuple in bold, and italics means that entity-pair was not seen during training.
(a) Bill Gates is seen with one o in training — not the gold answer; (b) Tina Fey is seen with
two os including the gold answer.

Table 4.2(a) illustrates an extreme case where the gold entity pair (Bill Gates, Medina) is
not seen in training, and only one o (Seattle) is seen with s∗. Here, MRR for F model will be
computed as 0.5 — a gross overestimation. Implicitly, (s∗, o∗) is getting ranked higher than all
other OOV (s∗, o)s, whereas they should all be equal. In other words, the mere presence of Tts
in Equation (4.1) leaks information.

Proposed Sanitized protocol: A correct KBC evaluation protocol must assume all OOV en-
tities at the same rank, and output the average value over all possible rankings for them. In our
sanitized protocol, we assume one random OOV entity pair (s∗, eoov), identify all o ∈ E that
are OOV, assign them all the same score from the model and compute aggregate scores based
on all possible rankings of OOV candidates. In Table 4.2(a), the MRR should be computed as
the average of 1

2
, 1
3
,. . . , which is very small.

We note that most existing MF models have used test folds in which none of the gold entity
pairs are OOV (except FB15k-237). Hence, the results reported in most previous papers are not
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affected by our proposed fix. Also, if variants of MF models are being compared among them-
selves, while they may overestimate performance somewhat, the relative ordering of various
models may not be affected. On the other hand, OOVs become a central issue when MF models
are compared against or combined with TF models, since realistic levels of sparsity are very
different in the two models.

Model performance with Sanitized protocol: When the sanitized protocol is used (Table
4.1 line 6), F’s performance on all datasets drops drastically, to the extent that its performance
is practically zero on two datasets, and extremely weak on the third. Also, its performance
is worse that a simple baseline of MFreq(o|r∗) (discussed in next paragraph) in all datasets.
However, it continues to have the best numbers (among all trained models) for NYT+FB.

Dataset |E| |R| ep OOV (%)
FB15K 14,951 1,345 68.70
FB15K-237 14,541 237 100.00
WN18 40,943 18 99.52
NYT+FB 24,528 4,111 0.75

Table 4.3: No. of distinct entities, no. of relations and entity pair OOV rate, i.e., percentage of
tuples in test set, whose entity pairs (ep) weren’t seen while training.

Why such a significant drop? The answer lies in entity pair OOV rates, i.e., the percentage
of tuples in the test fold whose entity pairs were not seen while training. Table 4.3 reports
some statistics about the datasets as well as their test sets. We notice that FB15K, FB15K-237
and WN18 all have a very high OOV rate, which is strongly correlated with poor performance
of F. Dataset NYT+FB has a tiny OOV rate and F performs well on it. Because single entity

OOVs are infrequent compared to entity pair OOVs, we expect TF methods to shine in large
pair OOV regimes. Singh et al. [2015] highlight that while matrix factorization performs well
for RE, it is not robust to sparse data and does not capture latent entity types that can be crucial
for accurate relation extraction. On the other hand, although tensor factorization models are
able to compactly represent entity types using unary embeddings, they are unable to adequately
represent the pair-specific information that is necessary for modeling relations. Our data-driven
analysis adds to Singh et al. [2015] understanding. We believe that OOVs, and more generally,
data sparsity, offer a more practical insight into differences between two model classes.

Most-frequent baselines: To improve our understanding of the difficulty of each dataset and
the quality of each model beyond trivial choices, we introduce two baselines for our task. Given
a query, (s∗, r∗, ?) our first baseline ranks all entities based on the frequency of their occurrence
with relation r∗, i.e., it orders each entity o based on the cardinality of the set {t|∃s : t =
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(s, r∗, o)∧ t ∈ Ttr}. A similar baseline orders each entity o based on its frequency of occurence
with s∗, i.e., based on cardinality of the set {t|∃r : t = (s∗, r, o) ∧ t ∈ Ttr, }. We name these
baselines MFreq(o|r∗) and MFreq(o|s∗) respectively.

The last two rows of Table 4.1 report the performance of these baselines. It is satisfying
to see that for FB15K and WN18 datasets, ComplEx outperforms the baselines by large mar-
gins. However, for FB15K-237, ComplEx is only marginally better than MFreq(o|r∗). A closer
analysis reveals that this dataset is constructed so that there is minimal entity-pair overlap be-
tween relations. How would any model, then, predict the best o for a query (s∗, r∗, ?)? If entity
pairs have not been repeated much, a natural approach may just find the most frequent entities
seen with the relation and order based on frequency. We checked some high MRR predictions
made by ComplEx and found that often questions, like, what is the language of a specific web-
site, were answered correctly as English. This is likely not because ComplEx figured out the
language of each website, but because English was the most frequent one in the dataset.

We also observe that E’s performance remains broadly similar to the performance of the
baseline MFreq(o|r∗). We attribute this to E’s scoring function, since given s∗ and r∗, the only
term relevant for ranking os iswww⊤

r ·eo, i.e., the model looks for compatibility with r∗ and ignores
s∗ completely.

Finally, for NYT+FB, under the sanitized protocol, MFreq(o|s∗) beats F model significantly
suggesting that while F is the best model on that dataset, it is not good enough. We explore this
further in the next section.

4.4 Toward a Robust MF Model

The previous section highlights the importance of OOV entity-pairs in the performance of MF
models. We now present a series of models to gracefully handle entity pair OOVs within MF.

4.4.1 MF with a Trained OOV Vector (FvecOOV )

A natural extension to F is to explicitly model an OOV entity-pair vector. In particular, we
represent a vector epoov for F and eoov for TF5. This modification means that all facts with an
OOV entity-pair will have the same score.

OOV vectors can be trained in many ways. We develop two baselines that don’t train the
vectors explicitly. The first baseline (Table 4.4, line 1) assigns a random value to epoov. The

5The choice of parameterizing a single OOV vector is empirically motivated. We experimented with backoff-
based parameterization, which learn a distinct OOV vector corresponding to each entity, but we did not observe
any improvement likely due to overfitting.
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Model
FB15K WN18 NYT+FB

MRR HITS@10 MRR HITS@10 MRR HITS@10
F (random) 13.35 17.03 0.14 0.20 74.34 80.01
F (average) 18.27 24.62 0.13 0.16 71.65 76.80
F (trained) 20.21 27.42 0.27 0.38 81.51 93.67
F (generated) 13.51 22.67 0.80 1.22 0.20 0.10

Table 4.4: Results on F model after explicitly modeling OOV vectors. OOV training outper-
forms other baselines, especially for NYT+FB. Results on FB15k-237 not reported, due to
100% OOV rate.

second one called the average baseline computes epoov as the average of all (s, o) pairs that
occur only once in training (Table 4.4, line 2).

We also propose a procedure to train epoov (Table 4.4, line 3). The broad motivation is to
score a known tuple higher than a tuple with an OOV. To ensure this, we add epoov in the Neg

set for each train tuple. This encourages the model to learn embeddings such that ϕF (r, epso) >

ϕF (r, epoov). Thus, we ensure that the performance of F is maintained when a gold test entity
pair is seen during training. Table 4.2(b) illustrates an example where the correct answer (New
York) is seen with Tina Fey and OOV training doesn’t displace its position.

Model
OOV Non-OOV

MRR HITS MRR HITS
FvecOOV 0.01 0 57.33 75.98
FgenEP 11.19 21.58 18.59 25.04

DM 55.34 80.13 72.87 94.99
ComplEx 61.22 80.76 79.58 96.22
F+ComplEx (AS) 1.12 1.23 51.37 81.74
F+ComplEx (RAL) 61.37 80.95 80.82 96.45

Table 4.5: Performance segregated by OOV and non-OOV test queries on FB15k. F+C (RAL)
performs best on both OOV and non-OOV.

To assess the effectiveness of the FvecOOV model, we breakdown its performance on subset
of test queries that have OOVs and non-OOV gold entity pairs. This analysis is meaningful only
for FB15k, since other datasets have extreme entity-pair OOV rate (see Table 4.3). Clearly, as
Table 4.5 shows, while FvecOOV has extremely poor performance on OOVs (and thus weak
performance overall), it performs decently on non-OOVs. We attribute this to the fact that the
FvecOOV is designed with the inductive bias that facts with OOV embeddings are worse than
facts with seen entity-pair embeddings. Another shortcoming of this model is that it ignores all
information present in constituent entities of an OOV entity pair.
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4.4.2 Generate OOV Entity Pair Vectors (FgenEP )

To fix the above shortcomings, we propose an enhancement to aid F in performing well on facts
with OOV entity pairs. The main insight is to generate an informed OOV entity pair embedding
by leveraging the information in the constituent entities (Table 4.4, line 4). We would like
these generated entity pair embeddings to be similar to what MF would have produced had
these entity pairs been observed. To this end, we train a generator layer that is applied on the
concatenation of an entity pair’s constituent entities’ vectors to produce entity pair embeddings.

We obtain such a generator layer as a by product of training a model with loss function
L(epso, r, es, eo) = LF (epso, r) + LC(epso, es, eo)). Here LF is the loss of the vanilla F
model and LC = ∥epso − epg

so∥2, is regression loss, which we use to guide the generator layer
to generate F like embeddings. We define epg

so = f (P [ es
eo ]) (es, eo are column vectors), the

generator layer P ∈ R2d×d and f can be any activation function. At test time, we concatenate
the trained embeddings of constituent entities and use the learnt generator layer to obtain an
embedding for an entity pair. Note that the new model is no longer a pure MF model, as it also
uses entity embeddings. However, entity pair embeddings are only generated for OOV entity-
pairs; the trained embeddings of seen entity pairs from the MF model are used for other entity
pairs.

At train time, we initialize the model with pre-trained embeddings — MF entity pair embed-
dings, MF relation embeddings and DistMult entity embeddings. We do not use any activation
function (f ) as it led to a slight decrease in performance. Table 4.5 shows that FgenOOV in-
deed has improved performance on OOV test facts. However, the performance on seen test
facts drops significantly, leading to a weak overall performance. We attribute poor performance
of this model on seen test facts to the joint optimization and potential change in the relation
embeddings, especially when dealing with OOV entity pairs.

4.4.3 Using TF to Guide MF

We now extend MF (from Section 4.4.1) based on the following two observations: (1) TF
models like ComplEx perform robustly on both OOV and non-OOV test facts (see Table 4.5).
(2) Singh et al. [2015] show that MF and TF models have complimentary strengths. Could we
use a TF model (such as ComplEx) to guide MF to perform better on OOV test facts?
Background on TF augmented MF models: Recall that Singh et al. [2015] find that the two
models have complimentary strengths (see section 4.3). In response, they developed a TF aug-
mented MF model which outperforms all other models on artificial datasets and NYT+FB.
Their best model (F+E) uses the scoring function ϕE+F = σ(ϕE + ϕF ), where σ is the sig-
moid function. We call this model an additive score (AS) model, since the scores (ϕ) of two
models are added. Early works of Riedel et al. [2013] also experiment with a similar model for
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NYT+FB. Later, Toutanova et al. [2015] implement an AS model F+E+DM and tested it on
FB15K-237.

We are motivated to develop an extension to MF that leverages TF to perform gracefully
on both OOV and non-OOV test facts. For brevity, we refer to these MF extensions as joint
MF-TF models, since they involve a TF model to guide the training of MF. Does an additive
score model meet this requirement?

Dataset ∆ MRR ∆ HITS@10
FB15K-237 -4.09 -5.32
FB15K -62.18 -75.67
NYT+FB -69.03 -76.0
WN18 -4.62 -14.36

Table 4.6: Change in performance of ComplEx initialized with corresponding embeddings ex-
tracted from ComplEx+F (AS).

Additive loss (AL) joint model: Preliminary investigations (Table 4.5) reveal that additive
score models can suffer substantial loss in performance for both OOV and non-OOV test facts.
Table 4.6 shows drop in performance in the ComplEx component when trained jointly in addi-
tive score F+ComplEx model. It clearly shows that ComplEx’s performance can reduce dras-
tically due to joint training. A primary reason is that F scores overshadow ComplEx scores,
since the scoring function in F involves a product of 2 small numbers and ComplEx involves a
product of 3 small numbers.6 Moreover, the number of parameters in MF models (vectors for
entity pairs) significantly outnumber those in TF models (vectors for entities). This can lead to
significant overfitting.

In response, we develop a different class of joint models in which instead of adding the
scores (ϕs), we add their loss functions: LMF+TF = LMF +LTF . We name these additive loss

joint models (AL). We expect this to be more resilient to overshadowing, since the joint loss
expects each model’s individual loss to decrease as much as possible. One may note that AL
style of training is equivalent to training the models separately. However, joint training makes
other extensions possible, such as regularization.

Regularized additive loss (RAL): We extend the vanilla AL joint model to a regularized
joint model in which the parameters of MF model are L2-regularized. We expect this regular-
ization to encourage a reduction in overfitting caused by the larger number of MF parameters

6To calibrate them, we tried standardizing scores obtained from pre-trained models. We also tried to learn
a linear function to push ComplEx and F model scores to the same range simultaneously. We also tried sharing
of relation parameters to allow information to flow from ComplEx to MF. Unfortunately, none of the approaches
were robust across datasets.
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(as compared to TF model parameters)7. Overall, our final joint model has the loss function:

LMF+TF (θMF , θTF ) = LMF (θMF ) + LTF (θTF ) + λ
∥∥θMF

∥∥
2

At test time, for a query (s∗, r∗, ?) an AL model cannot simply add the scores, since some
entity-pairs may be OOVs. We develop various backoff cases, reminiscent of traditional backoff
in language models [Manning and Schütze, 2001]. For every o:

• Case 1: (s∗, o) ∈ Ttr. Score of tuple is ϕTF (s∗, r∗, o) + ϕMF (s∗, r∗, o).

• Case 2: (s∗, o) /∈ Ttr, but o is seen in training.
Score of tuple is ϕTF (s∗, r∗, o) + ϕMF (eoov, r

∗, eoov).

• Case 3: o is not seen in training. Score of tuple is ϕTF (s∗, r∗, eoov) + ϕMF (eoov, r
∗, eoov).

Note that the additive loss models train an eoov by adding it to the Neg set for each train
tuple, as also done in FvecOOV (trained) model in section 4.4.1.
Results: Table 4.5 shows that RAL F+ComplEx performs well on OOV and non-OOV test
queries. Regularization penalty λ is tuned over a small devset from within the training set.

Model
FB15K FB15K-237 WN18 NYT+FB

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
1 F 20.21 16.26 27.42 0.01 0.0 0.0 0.27 0.2 0.38 81.51 74.74 95.67
2 DM 60.82 46.51 84.78 37.21 27.43 56.12 80.42 68.58 94.20 62.48 56.40 72.17
2 ComplEx 66.97 55.21 85.60 37.46 27.97 55.95 93.84 93.32 94.54 69.43 64.84 76.55
3 F+E (AS) 26.24 20.59 37.35 29.71 22.15 44.39 1.60 0.07 4.04 82.46 75.99 92.21
4 F+ComplEx (AS) 16.84 11.48 26.42 32.90 24.18 50.25 90.02 88.94 91.54 79.41 72.78 89.70
5 F+E+DM (AS) 29.89 23.42 42.00 33.65 24.04 49.26 22.92 14.54 39.26 81.41 74.37 91.41
6 F+ComplEx (AL) 59.61 49.39 78.77 11.21 4.16 25.96 79.90 68.7 93.82 25.92 20.94 35.56
7 F+ComplEx (RAL) 67.46 56.00 85.80 37.93 28.03 57.46 93.99 93.64 94.48 84.21 77.25 95.63
8 F+ComplEx (Oracle) 69.02 58.80 84.99 37.46 27.97 55.95 98.71 98.39 99.15 89.79 81.97 96.69

Table 4.7: Performance (MRR, HITS@k/H@k) of joint models. AL = additive loss. AS = ad-
ditive score. F+ComplEx combined with regularized additive loss (RAL) is the highest scorer
as well as most robust across all datasets.

Robustness: RAL F+ComplEx performs well for OOV & Non-OOV test cases, hence is ro-
bust to all testing conditions. To validate the hypothesis we evaluate the model on a variety of
datasets — WN18, FB15K, FB15K-237, NYT+FB. Table 4.7 compares its performance with
individual models as well as other joint models.

We find that different additive score models (rows 3–5) perform well on some datasets,
but are not robust across them. For example, in FB15K none of these are able to match up to
ComplEx’s performance. We attribute this to overfitting by F, which makes the model believe
that ϕF is predicting the tuple very well. This lets F override TF and reduces the joint model’s

7Hence regularizing MF parameters is more critical than TF parameters.
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Dataset Singleton Rate Doubleton Rate
FB15K 83.83% 12.19%
FB15K-237 90.52% 8.64%
WN18 99.80% 0.20%
NYT+FB 8.06% 59.04%

Table 4.8: The fraction of entity-pairs occurring exactly once and exactly twice. NYT+FB has
an unusual distribution.

need to learn the best TF model(s). Note that row 3 and row 5 are the models reported in Singh
et al. [2015]) and Toutanova et al. [2015], respectively.

Rows 6 and 7 report the results of additive loss F+ComplEx models, both without and
with regularization. As anticipated, adding the losses improves performance since both models
get trained well. Moreover, regularization also helps considerably since now the model is not
overwhelmed by too many F parameters. The RAL version of F+ComplEx achieves the best
scores in all datasets. The reported numbers were state-of-the-art when we did this research in
2017. Note that a basic MF (F model) added to TF (ComplEx model) isn’t robust — only an
“OOV trained” MF, when integrated with TF, attains good performance.

Row 8 of Table 7 also shows the accuracy of an oracle model that, for every test query,
post-facto selects the model with the more accurate score (between ComplEx and F). This
upper bounds the performance expected from a perfect joint ComplEx+F model, fixing the
constituents. We find that the oracle is only 4-5 MRR percentage points better than our best
model for two datasets, and the differences are much less for the other two. Overall, it suggests
that our proposed joint model obtains a strong robust performance.

4.5 Discussion and Future Work

We now list two observations that suggest important directions for future research in KB infer-
ence.

Dataset Characteristics: Our work subjects datasets to natural sanity checks. First, we in-
troduce two most frequent baselines (Table 4.1) to understand the nature of the KBs. Second,
we compute entity-pair OOV rates (Table 4.3) as a rough predictor of the relative success of the
TF and MF families. Finally, in Table 4.8, we report the singleton and doubleton percentages
(for entity pairs). A singleton is an entity-pair occurring only once in the data (Ttr ∪ Tv ∪ Tts)
and a doubleton is an entity pair that occurs exactly twice. Doubletons have a strong effect in
the scenario painted in Table 4.2.

We find that most datasets have an idiosyncrasy, which raises the question whether they are
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good representatives for naturally occurring KBs. In particular, WN18 and FB15K-237 have
near 100% entity-pair OOV rates, unlikely to be the case in real KBs. In FB15K-237 the best
models are not much better than MFreq(o|r∗) baseline. This is because the dataset is artificially
constructed to avoid relations with entity-pair overlap. But, this reduces its ability to make many
interesting inferences. For NYT+FB, MFreq(o|s∗) performance has a strong performance with
95% score on HITS@10. Moreover, learned models are able to improve its MRR by only about
four percentage points. Statistics in Table 4.8 reveal that this could be because the dataset has
an unusually high number of entity-pair doubletons: it is the only data set where doubletons by
far outnumber singletons. It is unlikely that such a distribution occurs in a naturally occurring
dataset. FB15K appears to pass our sanity tests. We believe that focus on better datasets will
likely help us in better progress on KB inference.

Note that many improved datasets like WN18RR came after this work. We leave explo-
rations on those datasets as future work.

Experiments on Synthetic Data: KBs comprise of various inference patterns - synonymy
e.g. (Narendra Modi, was born in, India) implies (Narendra Modi, took birth in, India); tran-
sitivity e.g. (Michael Jordan, teaches at, Berkeley) and (Berkeley, is located in, California)
implies (Michael Jordan, teaches in, California). To assess the ability of MF and TF models to
capture various inference patterns, we build a synthetic dataset. Following Singh et al. [2015],
we construct a synthetic dataset containing 4 different kinds of relations: Black, Red, Green
and Purple (see Figure 4.1).

Figure 4.1: Synthetic dataset where, entities are represented as circles, color of the circle is its
type. Relations are color coded links between entities.

• A Black relation exists between 2 entities with a probability 0.5

• A Red relation exists between 2 entities if a black relation exists between them (red and
black relations are synonymous).

• A Green relation exists between 2 entities if the two have different latent types. A binary
type is randomly assigned to each of the entity variables (half the entities are randomly
sampled and assigned type zero).
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• A Purple relation exists between 2 entities if there is a two-hop path between them.
For example (s1, purple, o2) holds iff both (s1, red, o3) and (o3, red, o2) holds true. This
relation can be used to check the effectiveness of TF and MF models at performing multi-
hop inference.

We add a new purple relation not discussed by Singh et al. [2015]. Also, we ensure a Zipf
distribution in both entity and entity pair frequencies while Singh et al. [2015] do not. This is
done to make the synthetic dataset as real as possible. Interestingly the FB15k-237 dataset has
no red relation since all relations with a high entity overlap are filtered.

MF/TF model performance on Synthetic Data:In Table 4.9 we report the performance of
TF model (ComplEx - CX) and MF model (F) on synthetic dataset. F model’s ability to capture
synonymy is demonstrated by its superior performance on red relations while CX’s ability to
capture latent types is demonstrated by its superior performance on green relations. The two
models capture complementary aspects of KB inference and hence our final model combin-
ing the two: F+ComplEx (RAL) does well on both. We find none of the models show good
performance on purple relation highlighting their inability to capture multi-hop inference. A
study similar to ours comparing the models that train over relation paths [Guu et al., 2015,
Garcı́a-Durán et al., 2015, Toutanova et al., 2016] will benefit our understanding of multi-hop
inference.

Green Purple Red
Model MRR HITS@10 MRR HITS@10 MRR HITS@10
ComplEx 100 100 6.21 15.43 10.26 23.31
F 55.17 60.32 2.04 5.21 100 100
F+ComplEx (RAL) 100 100 6.30 15.50 100 100

Table 4.9: Performance of TF model (CX) and MF model (F) and F+ComplEx (RAL) across
various relations in Synthetic dataset.

Recent Progress on Evaluation Protocol: Any evaluation measure should know how to han-
dle situations of score ties. Very recently, Sun et al. [2019b] highlighted that inability of an eval-
uation protocol to handle score ties is the key reason behind the unusual behavior of some recent
NN-based methods. They further discuss three strategies to handle ties - rank of the correct en-
tity is minimum amidst other same score entities (over-estimate model performance), rank of
the correct entity is maximum amidst other same score entities (under-estimate model perfor-
mance), or randomly assign one of many possible rankings of same scored candidate entities.
Before their work, our sanitized evaluation protocol also highlighted that the same score can-
didates should be handled appropriately. In our context, all OOV entities have the same score.
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These entities must be given the same score, and the average value over all possible rankings
should be used for each of them (see Table 4.2).

4.6 Conclusion

We present the first study on the effectiveness of MF for KBC. After replacing the standard
evaluation protocol with our sanitized proposal, we find that MF’s performance is highly varied
— it obtains MRR scores from 0 to 74% on different datasets. We also propose two simple
frequency baselines and are surprised to find that MF’s performance is worse than the better
baseline in all domains! Further analysis reveals that MF performs poorly at high-OOV rates.
We develop a series of extensions aimed at mitigating the effect of OOVs in MF. MF’s per-
formance improves by training OOV embeddings. Our most successful model uses ComplEx
to augment our improved version of MF via a regularized additive loss. This hybrid model is
highly robust and has the best performance on all datasets. Note that a basic MF added to TF
isn’t robust — only an “OOV trained” MF, when integrated with TF, attains good performance.

Relevant Publication

• [Jain et al., 2018b]: “Mitigating the Effect of Out-of-Vocabulary Entity Pairs in Matrix
Factorization for KB Inference”. Prachi Jain, Shikhar Murty, Mausam, Soumen Chakrabarti.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJ-
CAI). Stockholm, Sweden. July 2018.
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Chapter 5

Enhanced Knowledge Base Inference
using unsupervised Type Induction

In previous chapter, we have reviewed a number of KG inference techniques. Even the best
among them make mistakes. Inspection of these mistakes suggests that they fail to build a sat-
isfactory internal representation of entity types. In this chapter, we set about to rectify this limi-
tation. We propose a method for enhanced KBC, which learns the representation of the types of
entities. We experimentally demonstrate that these models predict entities of compatible types
more frequently than corresponding type-agnostic models.

5.1 Introduction

In the previous chapter (section 4.5), we found NYT+FB has an unusually high number of
entity-pair doubletons, making it a bit too unreal. In the rest of the datasets, TF models out-
performed MF models. Hence from now onwards we focus on TF models. Our preliminary
analysis of popular TF models — DistMult (DM) and ComplEx (CX), reveals that they make
frequent errors by ranking high incorrect entities that are not even compatible with types ex-
pected as arguments of r∗. In 19.5% of predictions made by DM on FB15K, the top prediction
has a type different from what is expected (see Table 5.1 for illustrative examples).

In response, we propose a modification to TF models (DM, ComplEx) by explicitly mod-
eling type compatibility. Our modified function ϕM

type(s, r, o) is the product of three terms: a
function of the original tuple score ϕM

base(s, r, o), subject type-compatibility between r and s,
and object type-compatibility between r and o. Our type-sensitive models, TypeDM and Type-
ComplEx, do not expect any additional type-specific supervision — they induce all embed-
dings using only the original KB. An ideal way to train type embeddings would be to provide
canonical type signatures for each relation and entity [Minervini et al., 2016]. Unfortunately,
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these aspects of realistic KBs are themselves incomplete [Neelakantan and Chang, 2015, Murty
et al., 2018]. Our models train all embeddings using only the training tiples in the KG without
any designated types and do not rely on any explicit type supervision.

Experiments over three datasets show that all typed models outperform base models by sig-
nificant margins, obtaining then state-of-the-art results in several cases. We perform additional
analyses to assess if the learned embeddings indeed capture the type information well. We find
that embeddings from typed models can predict symbolic types (known to us but concealed
from the system) better than base models.

We note that an older model called E [Riedel et al., 2013] can be seen as modeling type
compatibilities. Observe that, in the DistMult score ⟨eees, rrr, eeeo⟩ for fact triple (s, r, o), r mediates
a direct compatibility between s and o for relation r, whereas, in E model, vvvTr · eees +wwwT

r · eeeo, we
are separately scoring how well s can serve as subject and o as object of the relation r. Thus,
in the second case, eeee may be expected to encode the type(s) of entity e, where, by ‘type’, we
loosely mean “information that helps decide if e can participate in a relation r, as subject or
object”. Model E may be regarded as a relation prediction model that depends purely on type
compatibility checking. Heuristic filtering of the entities that do not match the desired type at
test time has been known to improve accuracy [Toutanova et al., 2015, Krompaß et al., 2015].
Our typed models formalize this within the framework of embeddings and allow for discovery
of latent types without additional data. Krompaß et al. [2015] also use heuristic typing of entities
for generating negative samples while training the model (see Section 3.4.2). Our experiment
finds that this approach is not very competitive against our typed models.

Previous work has also explored additive combinations of DM and E [Garcia-Duran et al.,
2015, Toutanova et al., 2015]. We directly compare against these models and find that, our
proposal outperforms both E, DM and their linear combinations.

We contribute open-source implementations1 of all models and experiments discussed in
this paper for further research.

Subject s∗ Relation r∗ Gold Object o∗ Prediction 1 Prediction 2
Howard Leslie Shore follows-religion Jewism (religion) Walk Hard (film) 21 Jump Street (film)
Spyglass Entertainment headquarter-located-in El lay (location) The Real World (tv) Contraband (film)
Les Fradkin born-in-location New York (location) Federico Fellini (person) Louie De palma (person)
Eugene Alden Hackman studied Rural Journalism (education) Loudon Snowden Wainwright III (person) The Bourne Legacy (film)
Chief Phillips (film) released-in-region Yankee land (location) Akira Isida (person) Presidential Medal of Freedom (award)

Table 5.1: Samples of top two DM predictions (having inconsistent types) on FB15K. TypeDM
predicts entities of the correct type in top positions in the corresponding examples.

1https://github.com/dair-iitd/KBI

https://github.com/dair-iitd/KBI
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5.2 TypeDM and TypeComplEx

Representation: We start with M as the base model; where M can be DM or ComplEx or any
TF model. The first key modification (see Figure 5.1) is that each entity e is now represented
by two vectors: uuue ∈ RK to encode type information, and eeee ∈ RD′ to encode residual informa-
tion. Typically, K ≪ D′. The second, concomitant modification is that each relation r is now
associated with three vectors: rrr ∈ RD′ as before, and also vvvr,wwwr ∈ RK . The vectors vvvr and wwwr

encode the expected types for subject and object entities.

vvvr

rrr

wwwr

uuus eees

uuuo eeeo

Cvvv

Cwww

ϕM
base ϕM

type

Figure 5.1: TypeDM and TypeComplEx.

Prediction: A nonlinearity function (sigmoid) is applied to the base model’s prediction score:

ϕM
base(s, r, o) = σ(ϕM(s, r, o)), (5.1)

and then combine with two additional terms that measure type compatibility between the sub-
ject and the relation, and the object and the relation:

ϕM
type(s, r, o) = ϕM

base(s, r, o)Cvvv(s, r)Cwww(o, r), (5.2)

where Cxxx(e, r) is a function that measures the compatibility between the type embedding of e
for a given argument slot of r:

Cxxx(e, r) = σ(xxxr · uuue) (5.3)

If each of the three terms in Equation 5.2 is interpreted as a probability, ϕM
type(s, r, o) corre-

sponds to a simple logical AND of the three conditions.

We want ϕM
type(s, r, o) to be almost 1 for positive instances (tuples known to be in the KG)

and close to 0 for negative instances (tuples not in the KG). For a negative instance, one or more
of the three terms may be near zero. There is no guidance to the learner on which term to drive
down.
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5.3 Reflexivity aware model

A binary relation r on a set of entities E is reflexive if it relates every element of E to itself (i.e.
⟨e, r, e⟩ ).

Error analysis of TypeComplEx (best model – see Table 5.3) revealed that the model is un-
able to distinguish between reflexive and non-reflexive relations. It predicts gold subject entity
(s∗) for query (s∗, r∗, ?) even for non-reflexive relation (r∗) like parentOf and hasColor.
Restricting all the top predictions of the test queries (s∗, r∗, ?) not to be same as query sub-
ject entity s∗, such a hard constraint will disrupt model performance on reflexive relations like
educational_institution_campus and location_us_county_place. We pro-
pose a reflexivity aware KBC model, whose scoring function is discussed below:

ϕref (s, r, o) = ϵr ∗
(

Js = oK ∗ ϕtype(s, r, o)

)
+

(
Js ̸= oK ∗ ϕtype(s, r, o)

)
(5.4)

The parameter ϵr captures the reflexivity property of each relation r. If relation r is fully re-
flexive, ϵr = 1 and if relation r is never reflexive, ϵr = 0. Relations with ϵr values between
0 and 1 have some reflexive and some non-reflexive facts. Value of ϕref = 0 only when the
query relation is not reflexive and the query subject entity is same as predicted object entity.
The proposed reflexivity aware model improved the performance of TypeComplEx by 1-2 point
MRR on various datasets (see Table 5.3 for performance details of the TypeComplEx (reflexive)
model). TypeDM (reflexive) also show improved performance on most datasets.

Similarly, [Minervini et al., 2017a] incorporated equivalence (relation between the rela-
tion pairs: partOf – componentOf) and inversion (relation between the relation pairs: partOf -
hasPart) axioms in KBC models by using an auxiliary loss term. Note that these axioms are dif-
ferent from relation reflexivity, where a reflexive relation maps the same entity to itself (⟨e, r, e⟩:
⟨ColumbiaUniversity, /education/educational institution campus/educational institution,

ColumbiaUniversity⟩).

5.4 Experiments

Model Size: DM uses (E + R)D model weights for a KB with R relations and E entities,
whereas TypeDM uses E(D′ + K) + R(D′ + 2K). ComplEx case is analogous. To make
comparisons fair, we set D′ and K so that the total number of model weights (real or complex)
are about the same for base and typed models.

Hyperparameters: We run AdaGrad for up to 1000 epochs for both logistic loss and log
likelihood loss (described in Section 3.4), with a learning rate of 0.5 and with early stopping
on the dev fold to prevent overfitting. All the models generally converge after 300-400 epochs,
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except TypeDM that exhausts 1000 epochs. E, DM, DM+E and ComplEx use 200 dimensional
vectors. All except E perform best with logistic loss and 20 negative samples (obtained by
randomly corrupting s and r) per positive fact. This is determined by doing a hyperparameter
search on the values {10, 20, 50, 100, 200, 400}. With logistic loss, model weights θ are L2-
regularized and gradient norm is clipped at 1.

Model Embedding Number of
dimensions parameters

E 200 3,528,200
DM+E 100+100 3,393,700

DM 200 3,259,200
TypeDM 180+19 3,268,459
ComplEx 200 6,518,400

TypeComplEx 180+19 6,201,739

Table 5.2: Sizes were approximately balanced between base and typed models (FB15K).

For typed models we first perform hyperparameter search for size of type embeddings
(K) such that total entity embedding size remains 200. We get the best results at K = 20,
from among values in {10, 20, 30, 50, 80, 100, 120}. This hyperparameter search is done for the
TypeDM model (which is faster to train than TypeComplEx) on FB15k dataset, and the se-
lected split is used for all the typed models. To balance total model sizes (Table 5.2), we choose
K = 19 dimensions for uuue, vvvr,wwwr and 180 dimensions for eee, rrr. Notice that a typed model has
a slightly higher number of parameters for relation embeddings, because it needs to maintain
two type embeddings of size K, over and above rrr. Using K = 19 reduced and brought the total
number of parameters closer to that of the base model, for a fair direct comparison. The model
performance did not differ by much when using either of the options (i.e., K = 19 or 20)

Typed models and E perform best with 400 negative samples per positive tuple while using
log-likelihood loss (robust to a larger number of negative facts as opposed to logistic loss, which
falls for class imbalance). FB15K and YAGO3-10 use L2 regularization coefficient of 2.0, and
it is 5.0 for FB15K-237. Note that the L2 regularization penalty is applied to only those entities
and relations that are a part of that batch update, as proposed by Trouillon et al. [2016]. β is
set to 20.0 for the typed models, and 1.0 for other models if they use the log-likelihood loss.
Note that, ϕM

type ∈ [0, 1] for typed models, we scale the log-likelihood-loss term with a hyper-
parameter β > 0 (a form of inverse temperature) to allow Pr(o|s, r) to take values over the full
range [0, 1] in loss minimization. Entity embeddings are unit normalized at the end of every
epoch, for the type models. Also, we find that in TypeDM scaling the embeddings of the base
model to unit norm performs better than using L2 regularization.
Results: Table 5.32 shows that TypeDM and TypeComplEx dominate across all datasets. E by

2Note that the models (written in keras/theano) discussed in Table 4.1 are 100 dimensional and trained using



54 Enhanced Knowledge Base Inference using unsupervised Type Induction

M
od

el
FB

15
K

FB
15

K
23

7
YA

G
O

3-
10

M
R

R
H

IT
S@

1
H

IT
S@

10
M

R
R

H
IT

S@
1

H
IT

S@
10

M
R

R
H

IT
S@

1
H

IT
S@

10

E
M

ea
n

20
.5

1
14

.4
5

33
.2

4
16

.3
8

10
.3

2
29

.2
2

4.
45

3.
6

5.
66

?,
r,e

2
17

.7
11

.7
5

30
.2

6.
39

2.
44

14
.2

6
0.

22
0.

04
0.

36
e1

,r,
?

23
.3

3
17

.1
5

36
.2

9
26

.4
7

18
.2

44
.1

8
8.

67
7.

16
10

.9
6

D
M

+E
M

ea
n

48
.7

6
35

.6
2

73
.6

2
25

.2
1

18
.4

39
.5

6
47

.8
7

37
.4

4
67

.5
1

?,
r,e

2
46

.4
7

71
.0

7
33

.3
5

15
.4

1
9.

78
26

.8
9

37
.4

1
27

.3
58

.1
e1

,r,
?

51
.0

5
76

.1
7

37
.8

9
35

.0
2

27
.0

2
52

.2
3

58
.3

3
47

.5
8

76
.9

2

D
M

M
ea

n
68

.0
9

57
.6

6
84

.8
2

24
.7

4
15

.4
2

45
.3

7
41

.8
7

31
.7

2
62

.8
5

?,
r,e

2
66

.7
9

56
.3

5
83

.2
4

18
.5

2
10

.5
4

36
.4

6
24

.5
6

13
.7

4
50

.0
2

e1
,r,

?
69

.3
9

58
.9

7
86

.3
9

30
.9

6
20

.3
54

.2
8

59
.1

9
49

.7
75

.6
8

Ty
pe

D
M

M
ea

n
72

.4
3

62
.9

6
86

.6
3

30
.1

1
22

.1
2

47
.3

8
44

.3
35

.3
5

61
.9

Ty
pe

D
M

?,
r,e

2
70

.1
2

60
.7

1
84

.2
3

20
.1

4
13

.1
3

35
.6

5
29

.8
5

19
.5

6
51

.7
6

e1
,r,

?
74

.7
3

65
.2

1
89

.0
3

40
.0

8
31

.1
1

59
.1

58
.7

6
51

.1
4

72
.0

4

Ty
pe

D
M

(r
efl

ex
iv

e)
M

ea
n

75
.7

3
69

.5
1

86
.8

7
29

.6
1

21
.4

9
46

.7
6

47
.0

4
38

.2
6

63
.7

3
Ty

pe
D

M
(r

efl
ex

iv
e)

?,
r,e

2
73

.3
2

67
.1

1
84

.3
2

20
.1

1
12

.7
4

36
.0

2
33

.1
3

22
.3

6
54

.9
4

e1
,r,

?
78

.1
5

71
.9

2
89

.4
2

39
.1

1
30

.2
5

57
.5

1
60

.9
5

54
.1

6
72

.5
2

C
om

pl
E

x
M

ea
n

70
.1

8
60

.3
6

86
.0

2
24

.2
5

15
.0

4
44

.4
7

44
.6

1
34

.2
6

64
.7

4
?,

r,e
2

68
.7

4
59

.1
84

.1
4

18
10

.1
35

.0
5

31
.7

9
21

.1
4

54
.4

6
e1

,r,
?

71
.6

3
61

.6
3

87
.9

30
.5

1
19

.9
7

53
.8

8
57

.4
3

47
.3

8
75

.0
2

Ty
pe

C
om

pl
E

x
M

ea
n

75
.7

2
68

.1
86

.5
7

30
.4

1
22

.1
6

47
.7

4
47

.5
5

39
.5

2
63

.1
2

Ty
pe

C
om

pl
E

x
?,

r,e
2

73
.2

1
65

.6
5

83
.8

8
20

.3
9

12
.9

9
36

.3
5

34
.5

6
24

.8
4

54
.6

2
e1

,r,
?

78
.2

2
70

.5
4

89
.2

5
40

.4
3

31
.3

3
59

.1
3

60
.5

4
54

.2
71

.6
2

Ty
pe

C
om

pl
E

x
(r

efl
ex

iv
e)

M
ea

n
76

.8
9

71
.6

5
86

.3
31

.0
9

22
.7

49
.1

3
49

.2
8

40
.1

6
66

.1
5

Ty
pe

C
om

pl
E

x
(r

efl
ex

iv
e)

?,
r,e

2
74

.5
69

.3
4

83
.8

5
20

.8
5

13
.2

2
37

.5
5

37
.2

2
26

.8
8

57
.2

8
e1

,r,
?

79
.2

8
73

.9
5

88
.7

4
41

.3
3

32
.1

9
60

.7
2

61
.3

5
53

.4
4

75
.0

2

Ta
bl

e
5.

3:
K

B
C

pe
rf

or
m

an
ce

fo
r

ba
se

,t
yp

ed
,a

nd
re

la
te

d
fo

rm
ul

at
io

ns
.T

yp
ed

m
od

el
s

ou
tp

er
fo

rm
th

ei
r

ba
se

m
od

el
s

ac
ro

ss
al

ld
at

as
et

s.
R

efl
ex

iv
e

ve
rs

io
n

of
ty

pe
d

m
od

el
fu

rt
he

ri
m

pr
ov

es
th

e
pe

rf
or

m
an

ce
on

m
os

td
at

as
et

s.
N

ot
e

th
at

th
e

m
ea

n
pe

rf
or

m
an

ce
re

po
rt

ed
in

th
e

ta
bl

e
is

co
m

pa
ra

bl
e

to
th

e
m

od
el

sc
or

es
re

po
rt

ed
in

la
te

rc
ha

pt
er

s.



Enhanced Knowledge Base Inference using unsupervised Type Induction 55

itself is understandably weak, and DM+E does not lift it much. Each typed model improves
upon the corresponding base model on all measures, underscoring the value of type compati-
bility scores. For direct comparisons with published work, we choose 200 and 400 parameters
per entity for DM and ComplEx respectively (ComplEx model has two 200 dimensional em-
beddings per entity). DM and TypeDM, on increasing the dimensionality to 400, yield MRR
scores of 69.79 and 78.91, respectively, for FB15K.

The proposed reflexivity aware model further improve the performance of TypeComplEx by
1-2 point MRR on various datasets (see Table 5.3 for performance details of the TypeComplEx
(reflexive) model). TypeDM (reflexive) also show improved performance on most datasets.

Note that the performance of the query (s, r, ?) shows larger gains as compared to the per-
formance of (?, r, o).

In 2017 when this research was done, the results of the typed models were competitive with
various reported results for models of similar sizes that do not use any additional information,
e.g., soft rules [Guo et al., 2018], or textual corpora [Toutanova et al., 2015]. Note that TypeDM
and TypeComplEx are also competitive on the WN18 dataset [Bordes et al., 2013], but we
omit those results, as WN18 has 18 very generic relations (e.g., hyponym, hypernym, antonym,
meronym), which do not give enough evidence for inducing types.

We also compare against the heuristic generation of type-sensitive negative samples [Krompaß
et al., 2015]. For this experiment, we train a ComplEx model using this heuristically generated
negative set, and use standard evaluation, as in all other models. On FB15k the model per-
formed poorly with 10 MRR. We find that all the models reported in Table 5.3 outperform this
approach.

5.5 Analysis of Typed Embeddings

We perform two further analyses to assess whether the embeddings produced by typed models
indeed capture type information better. For these experiments, we try to correlate (and predict)
known symbolic types of an entity using the unsupervised embeddings produced by the models.
We take a fine catalog of most frequent 90 freebase types over the 14,951 entities in the FB15k
dataset [Xie et al., 2016]. We exclude /common/topic as it occurs with most entities. On an
average each entity has 12 associated types.

1. Clustering Entity/Type Embeddings: For this experiment we subselect entities in FB15k
that belong to one of the 5 types (people, location, organization, film, and sports) from the
freebase dataset. These cover 84.88% of FB15K entities. We plot the FB15K entities e

using the PCA projection of uuue and eeee in Figure 5.2, color-coding their types. We observe

200 negative samples for 200 epochs only. Hence the difference in performance.
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that uuue separates the type clusters better than eeee, suggesting that uuue vectors indeed collect
type information. We also perform k-means clustering (k=5) of uuue and eeee embeddings of
these entities, as available from different models. We report cluster homogeneity (a clus-
tering result satisfies homogeneity if all of its clusters contain only data points which are
members of a single class) and completeness (a clustering result satisfies completeness if
all the data points that are members of a given class are elements of the same cluster. This
score is complementary to the previous one. Its purpose is to provide a piece of informa-
tion about the assignment of samples belonging to the same class. More precisely, a good
clustering algorithm should assign all samples with the same true label to the same clus-
ter) scores [Rosenberg and Hirschberg, 2007] in Table 5.4. Typed models yield superior
clusters.

(a) (b)

(c) (d)

Figure 5.2: Projection of vectors representing entities belonging to frequent KB types- {people,
location, organisation, film, sports}: a: TypeDM,uuue; b: TypeDM,eeee; c: TypeComplEx,uuue;
d: DM,eeee.

2. Prediction of Symbolic Types: FB15k has 14,951 entities labeled with 232 types. We
train a single-layer network that inputs pre-trained embeddings from various models and
predicts a set of symbolic types (232 types) from the KB. The model layer’s output is
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passed through a softmax layer to make the final predictions. We use cross-entropy loss
to train the network (Sx232) for 20 epochs; S is the size of input embedding. Ten percent
of the FB15k entities are selected randomly for testing, and the rest are used for training.
We train separate networks for different models. Note that S can be 19, 180, or 200
depending on the type of model from where the input embeddings are obtained. This
experiment tells us the extent to which the embeddings capture KB type information (that
was not provided explicitly during training). Table 5.4 reports average macro F1 score (5-
fold cross validation). Embeddings from TypeDM and TypeComplEx are generally better
predictors than embeddings learned by ComplEx, DM and E. uuue ∈ R19 is often better
than eeee ∈ R180 or more, for typed models. DM+E with 199 model weights narrowly
beats TypeDM with 19 weights, but recall that it has poorer KBC scores.

Method Embed Size H C Type
-ding F1

TypeDM uuue 19 66.72 66.29 81.77
TypeDM eeee 180 57.89 59.67 75.96
TypeDM Both 199 66.75 66.29 82.57
DM eeee 200 51.40 48.12 81.34
TypeComplEx uuue 19 65.90 62.97 82.70
TypeComplEx eeee 180x2 50.76 48.57 74.75
TypeComplEx Both 379 66.03 63.09 84.14
ComplEx eeee 200x2 51.56 47.20 81.58
DM+E uuue 19 0.48 2.05 74.66
DM+E eeee 180 49.62 47.24 82.72
DM+E Both 199 49.66 47.26 82.68
E eeee 200 39.83 37.62 74.23

Table 5.4: Interpretation of embeddings w.r.t. supervised types: cluster homogeneity H, com-
pleteness C, and type prediction F1 score.

Note that the objective of experiments in this section is to check the quality of the typed
embeddings learned i.e. if the model indeed learned the types better. Hence we use the pure
type version of the base model and avoided polluting the experiment results from other models
like the reflexive variants.

5.6 Conclusion and Future Work

We propose an unsupervised typing gadget, which enhances popular models for KBC (DistMult
and ComplEx) with two type-compatibility functions, one between r and s and another between
r and o. Without explicit supervision from any type catalog, our typed variants (with a similar
number of parameters as the base models) substantially outperform base models, obtaining up
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to 7% MRR improvements and over 10% improvements in the correctness of the top result. To
confirm that our models capture type information better, we correlate the embeddings learned
without type supervision with existing type catalogs. We find that our embeddings indeed sepa-
rate and predict types better. In future work, combining type-sensitive embeddings with a focus
on less frequent relations [Xie et al., 2017], more frequent entities [Dettmers et al., 2018], or
side information such as inference rules [Guo et al., 2018, Jain and Mausam, 2016] or textual
corpora [Toutanova et al., 2015] may further increase KBC accuracy. It may also be of interest
to integrate the typing approach here with the combinations of tensor and matrix factorization
models for KBC [Jain et al., 2018b]. Also note that the current entity/relation representation,
being only a point in space, is not equipped to handle type hierarchy. However, there has been
recent work that uses box-embedding representation [Subramanian and Chakrabarti, 2018, Vil-
nis et al., 2018, Li et al., 2019], which can theoretically handle such a type hierarchy. But these
models are harder to train.

Relevant Publication

• [Jain et al., 2018a]: “Type-Sensitive Knowledge Base Inference Without Explicit Type
Supervision”. Prachi Jain, Pankaj Kumar, Mausam, Soumen Chakrabarti. In Proceedings
of the 2018 Annual Meeting of the Association for Computational Linguistics (ACL).
Melbourne, Australia. July 2018.



Chapter 6

Knowledge Base Completion:
Engineering Issues For Training

KBC datasets have a large number of (positive) training instances and an even larger num-
ber of negative training instances via negative sampling. Various KBC methods define diverse
loss functions. These have different computational costs and memory footprints. Given the re-
source constraints of a computational environment (e.g. GPU size and practical training time
available), these resource requirements dictate the extent of negative sampling that is feasible.
Sometimes, apparently minor changes in the design of the loss function can change system ac-
curacy to a surprising extent, and also open up paths to computational optimizations. To our
knowledge, these trade-offs have not been studied adequately. One consequence is that base-
lines have remained unnecessarily weak [Kadlec et al., 2017, Ruffinelli et al., 2020]. During the
development of various models described in this dissertation, we found that careful attention to
these details can considerably improve old baselines, sometimes surpassing models and meth-
ods proposed since. Specifically, if large numbers of negative triples can be accommodated,
the basic ComplEx model is extremely competitive. Our subsequent work uses this competitive
baseline as a starting point.

6.1 Review of KBC score and loss functions

6.1.1 TransE

We recall that TransE [Bordes et al., 2013] embeds each entity e (variously, subject s or object
o) to vectors es, eo ∈ RD and relations r to vectors r ∈ RD as well. The score function is
defined as

ϕTransE(s, r, o) = −∥es + r − eo∥1. (6.1)
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As we shall see, the use of L1 norm above is significant; if it is replaced by the L2 norm, there
are significant implications for memory footprint. To design the loss function, we observe that
if (s, r, o) ∈ KB, we want ϕTransE(s, r, o) to be large; otherwise, if (s, r, o) ̸∈ KB, we want it to
be small. These considerations are combined into the loss function using a margin ∆ > 0 for
the negative triples:

LTransE = −
∑

(s,r,o)∈KB

ϕTransE(s, r, o) +
∑

(s′,r′,o′ )̸∈KB

[
∆+ ϕTransE(s

′, r′, o′)
]
+
, (6.2)

where [a] = max{0, a} is the ReLU or hinge function. For each (s, r, o) ∈ KB, the number of
perturbations (s′, r′, o′) that are (assumed to be) not in the KB is astronomically large, possibly
approaching E2R, where the KB has E distinct entities and r distinct relation types. Usually,
negative sampling is limited to perturbing only s or only o, resulting in O(E) negative triples
per positive triple, at most. But even this is considered computationally too burdensome, and a
random sample is drawn.

6.1.2 RotatE

Computationally, RotatE [Sun et al., 2019a] is similar to TransE. It places es, r, eo ∈ CD in the
complex space, enforces unit complex modulus |rd| = 1 for each element of r, and defines

ϕRotatE = −
∑
d∈[D]

|ed
sr

d − ed
o|. (6.3)

Here |c| is the modulus of complex number c ∈ C and ed
sr

d is the product of two complex
numbers. Note that the sum is similar to an L1 distance. RotatE can learn symmetry vs. an-
tisymmetry, inversion and composition, and generally performs better than TransE. Because
of the difference to be computed for each dimension d, we will regard TransE and RotatE as
members of the additive family of KBC methods.

6.1.3 DistMult and ComplEx

In contrast to additive KBC methods, DistMult and ComplEx [Yang et al., 2015, Trouillon
et al., 2016, Lacroix et al., 2018, Jain et al., 2018a, Balažević et al., 2019, Kazemi and Poole,
2018] can be regarded as multiplicative methods, for reasons clarified below. For DistMult,
es, r, eo ∈ RD and

ϕDM(s, r, o) =
∑
d∈[D]

ed
sr

ded
o. (6.4)

For ComplEx, es, r, eo ∈ CD and

ϕCX(s, r, o) = ℜ

∑
d∈[D]

ed
sr

ded⋆
o

 , (6.5)
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where c⋆ is the conjugate of complex number c and R(c) is its real part. In both cases, observe
that inside the sum over dimensions d there is no addition or subtraction operation between
entity and relation embeddings. This has important implications (see Section 6.2).

For either DistMult or ComplEx, the loss is commonly defined as

L = −
∑

(s,r,o)∈Ttr

(
log Pr(o|s, r; θ) + log Pr(s|o, r; θ)

)
(6.6)

where

Pr(o|s, r) = exp(ϕ(s, r, o))∑
o′ exp(ϕ(s, r, o

′))
and Pr(s|o, r) = exp(ϕ(s, r, o))∑

s′ exp(ϕ(s
′, r, o))

, (6.7)

Here, again, observe the potential performance bottleneck of the sums in the denominator rang-
ing over E entities. Indeed, early implementations approximated the full sum in the denom-
inator with a partial sum over a random subset of terms, suitably scaled, plus the numerator
itself (to maintain consistency). As we shall see, this sampling approximation may not be nec-
essary; the specific inner-product form Equation (6.5) lets us evaluate the full denominator sum
efficiently.

6.2 Additive vs. multiplicative loss with all negative triples

Here we first describe how Equation (6.7) can be fully evaluated without sampling approxi-
mation, supported by highly efficient tensorized computation libraries. Then we describe why
this appears more difficult for additive formulations (TransE and RotatE). Finally, we describe
how tweaking the distance norm from L1 to L2 might open up TransE to the same efficiency.
In experiments, however, we see that L1 norm generally gives more accurate KBC models.

6.2.1 Inner product

Dettmers et al. [2018] suggested taking one (s, r) pair and scoring it against all E entities o in a
batch method they called “1-N scoring”, instead of computing the score of one fact (s, r, o) at a
time, that they called “1-1 scoring”. For any multiplicative method in general, the score for all
entities can be computed in parallel via a simple matrix multiplication, which is both memory
and time-efficient, thanks to the optimized implementations provided in BLAS libraries.

To get into more detail, let us ask how the computation in Equation (6.7) can be efficiently
vectorized in case of DistMult. ϕDM is often written in the form (es ⊙ r) · eo, where ⊙ is
elementwise product, and · is an inner product. Here (es⊙ r) ∈ RD, as is eo ∈ RD. If we want
to evaluate ϕDM(s, r, o) over all o ∈ E , we can write it as a matrix-vector product between a
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E×D entity embedding matrix E and a D×1 row vector es⊙r followed by a sum aggregation:∑
o∈[E]

exp
(
EE×D (es ⊙ r)D×1

)
E×1

. (6.8)

(In reality we would use log-sum-exp for numerical stability, but the computation structure
will remain the same.) The total intermediate space needed to compute the above expression is
O(DE). If we want to further batch up subject entities s in batches of size B, the space required
is O(BD +DE).

6.2.2 L1 distance

Let us now shift focus to ϕTransE. As with es⊙ r in DistMult, pre-computation of es+ r creates
no trouble, giving a D-dimensional vector. If we have a batch of B (s, r) pairs, this gives us a
B ×D matrix; call this B. The other matrix of interest is E ∈ RE×D as before. Effectively, we
have a set of B points in D dimensions, another set of E points in D dimensions, and we wish
to compile a B × E matrix A of pairwise L1 distances.

In non-vectorized code, this is easily possible to compute within O(BD+DE) input space,
O(BE) output space, and no (or O(1)) working space, using the following approach.

1: for b ∈ [B] do
2: for e ∈ [E] do
3: A[b, e]← 0

4: for d ∈ [D] do
5: A[b, e]← A[b, e] +

∣∣∣B[b, d]− E[e, d]
∣∣∣︸ ︷︷ ︸

Structurally, this is identical to the non-vectorized code for matrix multiplication.

1: for b ∈ [B] do
2: for e ∈ [E] do
3: A[b, e]← 0

4: for d ∈ [D] do
5: A[b, e]← A[b, e] +B[b, d] E[e, d]︸ ︷︷ ︸

SciPy defines a general library function scipy.spatial.distance.cdist1, which
allows the compilation of B ×E distances using any Lp norm. L1 corresponds to input param-
eter metric=’cityblock’, but the default is L2, or metric=’euclidean’.

To our astonishment, despite the similarity in the above pseudocodes, the memory com-

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.
distance.cdist.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
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plexity of a vectorized version of L1 distance is O(BDE), instead of O(BD +DE + BE) =

O(BD + DE) achievable for matrix multiplication. It appears the structure of computation
changes to the following.

1: allocate a B × E ×D tensor X
2: for d ∈ [D] do
3: X[:, :, d]← B[:, d]⊗ E[:, d] ∈ RB×E×1 ▷ Each layer d gets a B × E outer product.

4: A← sum-reduced(X) ∈ RB×E ▷ Aggregate across layers d.

Needless to say, this wastes a lot of space, making it difficult to deal with all negative subject
or object entities, even for small batches.

6.2.3 The special case of L2 distance

SciPy’s default choice of L2 distances in their cdist routine affords a space-efficient solution.
Suppose we have a matrix B ∈ RB×D and a matrix Y ∈ RE×D. If we want a B ×E matrix A

with dot products, i.e., A[b, e] = B[b, :] · Y [e, :], we can efficiently compute A = BY ⊤. What
if we want A[b, e] = ∥B[b, :]−E[e, :]∥22? We can write this as

A[b, e] = ∥B[b, :]−E[e, :]∥22 = (B[b, :]−E[e, :]) · (B[b, :]−E[e, :])

= ∥B[b, :]∥22 + ∥E[e, :]∥22 − 2B[b, :] ·E[e, :]

We can compute the first two terms without any asymptotic increase in storage, and the third
term is the same as in case of dot product. If we need

A[b, e] = ∥B[b, :]−E[e, :]∥2 (i.e., L2, not L2-squared)

we can write this as

A[b, e] =
√
∥B[b, :]∥22 + ∥E[e, :]∥22 − 2B[b, :] ·E[e, :].

I.e., there is a final elementwise square-root on the B × E matrix. The gradient changes, but
not the basic space and time performance structure.

This trick can be used if we change the formulation of TransE and RotatE to use L2 distances
instead of L1 distances:

ϕTransE(s, r, o) = −∥es + r − eo∥2 and (6.9)

ϕRotatE(s, r, o) = −∥es ⊙ r − eo∥2 . (6.10)

Without experimental evaluation, we do not know the impact of the change of norm on the
predictive accuracy of these models. We end this chapter with such an evaluation, which shows
that switching from L1 to L2 is unfortunately detrimental to predictive accuracy. However,
ComplEx with a much larger negative sample set gives a very competitive baseline.
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FB15k WN18 YAGO3-10
Method MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10

SimplE [2018] 0.73 0.65 0.86 0.95 0.94 0.95 —- —- —-
SIMPLE-V2 0.85 0.82 0.91 0.95 0.96 0.95 0.56 0.49 0.69

ComplEx [2016] 0.81 0.75 0.91 0.94 0.93 0.95 0.51 0.40 0.63
COMPLEX-V2 0.86 0.83 0.91 0.95 0.95 0.96 0.58 0.50 0.71

ComplEx-N3 [2018] 0.86 0.83 0.91 0.95 0.94 0.96 0.58 0.50 0.71
(a)

FB15k-237 WN18RR
Method MRR HITS@1 HITS@10 MRR HITS@1 HITS@10

SimplE [2018] 0.23 0.15 0.40 0.42 0.40 0.46
SIMPLE-V2 0.34 0.25 0.53 0.46 0.43 0.52

ComplEx [2016] 0.31 0.22 0.51 0.42 0.40 0.47
COMPLEX-V2 0.35 0.26 0.54 0.47 0.46 0.53

ComplEx-N3 [2018] 0.37 0.27 0.56 0.49 0.44 0.58
(b)

Table 6.1: Table (a) and (b) reports performance of popular KBC models along with their
counterparts trained such that all entities contrast a positive fact while computing the loss:
COMPLEX-V2 and SIMPLE-V2. Models are evaluated on five commonly used benchmark
datasets for KBC. ComplEx-N3 is same as ComplEx except it adds new facts with inverse
predicates in train set, use L3 regularization and 1-N training. All model parameters are of
same range. COMPLEX-V2 shows near SOTA performance on all datasets. V2 models are in-
distinguishable or slightly worse.

6.3 Experimental study

Implementation details: We reuse the original implementations and the best hyper-parameters
released for RotatE and TransE [Sun et al., 2019a]. We re-implement CX [Trouillon et al.,
2016], CX-N3 [Lacroix et al., 2018], SimplE [Kazemi and Poole, 2018] in PyTorch 2. AdaGrad
is used for fitting model weights. Model is trained for up to 1000 epochs, with early stopping
on the validation set to prevent overfitting. In our experiments, we calibrate all models to have
a similar number of parameters across all datasets — CX, CX-N3, COMPLEX-V2, SIMPLE-
V2 use 2000-dimension vectors, except on Yago3-10, we train 1000-dimensional models. All
models except CX-N3 use L2 regularization, CX-N3 uses L3 regularization. The range of the
hyperparameters for the grid search is as follows: regularization coefficient from {1, 0.1, 0.01,
0.001, 0.0001, 0.00001}, learning rate from {0.5, 0.1, 0.01, 0.001, 0.0001}, batch size from
{100, 200, 500, 1000, 2000}.
Link prediction performance: This subsection demonstrates how KBC model performance
improves when trained using all possible entities as negative samples.
Multiplicative models: Table 6.1 shows that when trained with all entities as the negative sam-
ples, multiplicative models (COMPLEX-V2, SIMPLE-V2) significantly improve over the same
model trained with a small set of negative samples. COMPLEX-V2 trained with all entities as
the negative sample shows near SOTA performance, making it a strong baseline.

2https://github.com/dair-iitd/kbc-baseline

https://github.com/dair-iitd/kbc-baseline
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FB15k WN18 YAGO3-10 FB15k-237 WN18RR
RotatE [2019a] 0.61 0.94 0.37 0.29 0.45

RotatE-V2 0.64 0.95 0.40 0.32 0.45

Table 6.2: Performance (MRR) improvement for RotatE (100-dim) by scoring against all enti-
ties while training (instead of negative sampling)
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Figure 6.1: Influence on test MRR of number of negative samples used per positive training
example. The peak is very mild and could be due to statistical variation.

Translation models: As pointed out in subsection 6.2, 1-N scoring is difficult to scale for
translation models such as RotatE. To demonstrate the benefit of training all models such that
all entities contrast a positive fact while computing the loss, we train RotatE for a reduced
dimension (100). To overcome the memory challenges of training it on a single 12GB GPU, we
train it by accumulating gradients over multiple batches, at the cost of increased training time.
The results are reported in Table 6.2. Here, RotatE refers to the model trained with 256 negative
samples, whereas RotatE-V2 refers to the model trained with all entities as the negative samples.
We find that RotatE-V2 shows a significant improvement (up to 3 pt MRR) for FB15k, FB15k-
237, and YAGO3-10, whereas for WN18 and WN18RR the model gives a slightly improved or
similar performance.

Influence of Negative Samples: This experiment investigates the effect on model performance
with the increasing number of negative samples per positive example. We report the perfor-
mance of ComplEx model on FB15k dataset. We vary the number of negative samples in {100,
200, 400, 600, 800, 1k, 2k, 4k, 6k, 8k, 10k, 12k, 14k}. The 1-N scoring enables the com-
putation of the score of all possible entities for query (s, r, ?) and (?, r, o) efficiently. For this
experiment, we randomly subsample a smaller set of entities (negative examples) for each batch
and compute approximate softmax scores. Figure 6.1 shows that the performance of ComplEx
sharply improves with the increasing number of negative samples (in the beginning) and stabi-
lizes around 2000 negative samples, with a slight dip at around 6000 negative samples (due to
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statistical variation).
We may also get benefit from generating negative samples of varying hardness but we leave

that exploration to future work.

6.4 Discussion

The lessons we have learnt from our observations above may be summarized as:

• As long as memory footprint is manageable, all KBC models should use large (perhaps
even exhaustive) negative samples and vectorized evaluation of contrastive loss — this
most often leads to superior predictive accuracy.

• For models where vectorized evaluation of contrastive loss cannot be easily implemented
for large negative samples (such as RotatE), gradient accumulation over multiple batches
can be used at the cost of increased training time. This may still lead to better accuracy.

• Switching L1 to L2 norms is a tempting possibility to enable fast vectorized evaluation of
contrastive loss while keeping memory footprint minimal. Unfortunately, training TransE
and RotatE using L2 norm resulted in visible drop in accuracy. The MRR score of TransE
dropped by 7.8 points and RotatE by 6.5 points on FB15k. This takes away the possibility
of optimizing these models for vectorized contrastive loss evaluation with low memory
footprint.

• On the positive side, COMPLEX-V2 — plain old ComplEx with very large negative sam-
ples — is efficiently trainable and turns out to be an extremely competitive baseline. In
fact, it largely wipes out the benefit from several models proposed since.

We are not alone in pointing out the last item above. Kadlec et al. [2017] and Ruffinelli et al.
[2020] undertook an extensive exercise in tuning hyperparameters such as embedding dimen-
sions, learning rate, batch size, regularization penalty, etc., and came to the same conclusion: the
apparent accuracy gains from a new model architecture must be carefully assessed against rel-
atively minor-looking but still significant modifications to hyperparameters in well-established
models. Our experiments with negative sample size adds another weapon in the arsenal of old
baselines that age well.

Relevant Publication

• [Jain et al., 2020a]: “Knowledge Base Completion: Baseline strikes back (Again)”. Prachi
Jain, Sushant Rathi, Mausam, Soumen Chakrabarti. arxiv 2020.



Chapter 7

Temporal Knowledge Base Completion

In chapter 5, we investigated the benefits of modeling types in KBs. In this chapter, we explore
another important aspect of structured knowledge: time. We propose a new way to score tem-
poral facts and capture statistical regularities between times associated with KB facts, resulting
in more accurate KG inference.

7.1 Introduction

Many relations in KBs are transient or impermanent. Temporal KBs annotate each fact (or
event) with the time instant or period in which it holds (or occurs). A person is born in a city
in an instant, a politician can be a country’s president for several years, and a marriage may
last between years and decades. Temporal KBs may represent these by (s, r, o, t) tuples, where
t is a time instant. The time instant t of the facts can be further generalized to discrete finite
time sets T . Temporal KBC (TKBC) performs completion of temporal KBs. It is also primarily
evaluated by link prediction queries (s, r, ?, T ) and (?, r, o, T ). Time prediction (s, r, o, ?) has
also been considered for predicting time instants, but not time sets or time intervals [Lacroix
et al., 2020].

While KBC has been intensely researched, TKBC is only beginning to be explored. In this
work we focus on a time-sets of size 1, i.e. time sets with only one time-interval. TKBC presents
novel challenges in task definition and modeling. For instance, little is known about how best
to predict time-intervals for (s, r, o, ?) queries, or how to evaluate a system response interval.
Moreover, we show that even for link prediction queries, evaluation faces subtle complications
owing to the inclusion of time sets T in (s, r, ?, T ) and (?, r, o, T ) queries and requires careful
rethinking of evaluation protocols. In this chapter, we propose improved evaluation protocols
for both link and time prediction tasks in a TKBC.

TKBC also brings unique modeling opportunities. A TKBC system can learn typical du-
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rations of relation validity or distributions over time gaps between events from training data.
E.g., a person must be born before becoming president, which must precede death. A nation
rarely has two presidents at the same time. Such constraints can better inform both link and
time predictions.

We present TIMEPLEX, a novel TKBC model, which beats all competitive baseline model
performance on benchmark datasets for both link and time prediction . At a high level, TIME-
PLEX performs tensor factorization of a temporal KB, using complex-valued embeddings for
relations, entities and time points. It enables these embeddings to capture implicit temporal
relationships across facts and relations, by providing temporal differences as explicit features.
Our contributions are summarized below.

• We propose evaluation protocols for link and time interval prediction in TKBC. For link
prediction, we highlight that existing evaluations seriously over/under-estimate system
performance, and offer a time-aware filtering method for more reliable evaluation. For
time interval prediction, we propose an evaluation metric that rewards a model for pre-
dicting an interval with partial overlap with gold interval, as well as for nearness to gold
in case of no overlap.

• We present TIMEPLEX, a TKBC model that factorizes a temporal KB using entity, re-
lation and time embeddings. It can learn and exploit soft ordering and span constraints
between potentially all relation pairs (including that of a relation with itself). It beats
competitive baseline models on several standard TKBC data sets.

We released an open-source implementation1 of all models and experiments discussed here.

7.2 Preliminaries and Prior Work

7.2.1 Time-Agnostic KBC

TIMEPLEX builds upon ComplEx [Trouillon et al., 2016], which we abbreviate to CX here. As
discussed earlier in Section 2.3.1, it embeds s, r, o to vectors of complex space es, r, eo ∈ CD.
CX defines the score ϕ(s, r, o) of a fact (s, r, o) as R(⟨es, r, e

⋆
o⟩) where

ϕCX(s, r, o) = R(⟨es, r, e
⋆
o⟩) = R(

∑D
d=1 s[d] r[d] o

⋆[d]) (7.1)

is a 3-way inner product, e⋆
o is the complex conjugate of eo, and R(c) is real part of c ∈ C. We

choose CX as our base model, because its performance is comparable to the best KBC models
[Ruffinelli et al., 2020], at the time of writing this dissertation.

1github.com/dair-iitd/tkbi

github.com/dair-iitd/tkbi
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7.2.2 Temporal KBC Problem Setup

A temporal KB associates the validity of a triple (s, r, o) with one or more time intervals T ⊆ T,
where T is the domain of “all time”. Each interval T is represented as [tb, te], with begin and
end time instants. Some event-style facts (e.g., born in) may have tb = te. For simplicity, we
assume that T is discretized to a suitable granularity and is represented by a set of integers.
Temporal KB facts have the form (s, r, o, T ), and are partitioned into train, validation and test
folds, abbreviated as tr, v, ts. System predictions are abbreviated as pr.

Given the train and validation folds, our goal is to learn a model that scores any unseen fact.
A system is evaluated via link prediction queries (?, r, o, T ) and (s, r, ?, T ), and time interval
prediction queries (s, r, o, ?). In our setting, KB incompleteness exists at all times — the test
fold may include instances from any interval in time, arbitrarily overlapping train and validation
fold instances.2

7.2.3 TKBC Systems

Work on TKBC models adopts a common style for extending ϕ(s, r, o) in equation 7.1, to tem-
poral score ϕ(s, r, o, t). Lacroix et al. [2020] embed each time instant t to vector t and use
the form ⟨es, r, e

⋆
o, t⟩ (called TNT-ComplEx). This can be interpreted as any one of es, r, e

⋆
o

becoming t-dependent. Goel et al. [2020] make both subject and object embeddings time-
dependent; the ‘diachronic’ embedding e ∈ RD of entity e is characterized by et[d] = ae[d] sin(we[d] t+

be[d]), where d ∈ D and the sinusoidal nonlinearity affords the capacity to switch “entity fea-
tures” on and off with time t. HyTE [Dasgupta et al., 2018] model t ∈ RD, ∥t∥2 = 1 and project
all of es, r, eo on to t: x ↓ t = x−(x ·t)t, where x ∈ {es, r, eo}. In all cases, time-dependent
entity embeddings are plugged into standard scoring functions like DistMult, CX, or SimplE
[Kazemi and Poole, 2018]. A very different approach [Garcı́a-Durán et al., 2018] encodes the
string representation of relation and time with an LSTM, which is used in TransE (TA-TransE)
or DistMult (TA-DM).

These formulations do not directly model recurrences of a relation or interactions (e.g.,
mutual exclusion) between relations. There is some prior work on explicitly providing order-
ing constraints between relations (e.g., born, married, died) [Jiang et al., 2016]. In contrast,
TIMEPLEX assumes no such additional engineered inputs; it has explicit components to enable
learning of temporal (soft) constraints, as model weights, jointly with embeddings of entities,
relations, and time instants.

2A different TKBC task studies only future fact predictions [Trivedi et al., 2017, Jin et al., 2019].
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7.2.4 Standard Evaluation Schemes

Before designing TIMEPLEX, we discuss evaluation issues for TKBC.
Link Prediction: Link prediction queries in KBC are of the form (s, r, ?) with a gold re-
sponse o∗. Similarly, for TKBC they are of the form (s, r, ?, T ). The cases of (?, r, o) and
(?, r, o, T ) are symmetric and receive analogous treatment. “Unfiltered” link prediction perfor-
mance is evaluated by finding the rank of o∗ in the list of all entities ordered by decreasing score
ϕ assigned by the model, and computing MRR. Other measures include the fraction of queries
where o∗ is recalled within the top 1 or top 10 ranked predictions (HITS@1 and HITS@10).

A query may have multiple correct answers. A model must not be penalized for ranking a
different correct entity over o∗. In KBC this is achieved by filtering out all correct entities above
o∗ in ranked list before computing the metrics. In TKBC, filtering requires additional care, as
depicted in Table 7.1. We develop time-aware filtering in Section 7.3.2.
Time Prediction: Time prediction queries of the form (s, r, o, ?) will require comparing a gold
time interval T ∗ = [t∗b , t

∗
e] with a predicted interval T pr = [tpr

b , t
pr
e ]. Since this task is relatively

less studied, evaluation metrics have not yet been standardized. One might adapt the TAC met-
ric popular in Temporal Slot Filling [Ji et al., 2011, Surdeanu, 2013]. Adapted to TKBC, TAC3

will compute a score as 1
2

[
1

1+|t∗b−t
pr
b |
+ 1

1+|t∗e−t
pr
e |

]
. Unfortunately, TAC score is not entirely sat-

isfactory for this task. For instance, TAC will assign the same merit score when gold interval
[10,20] is compared with predicted interval [5,15], versus when gold [100,200] is compared
with prediction [95,195]. However, a human would judge the latter more favorably, because a
5-minute delay in a 10-minute trip would usually be considered more serious than in a 100-
minute journey. In response, we investigate alternative evaluation metrics inspired by bounding
box evaluation protocols from Computer Vision, in Section 7.3.1.

7.3 Evaluation Metrics and Filtering

The preceding discussion motivates why we need clearly-thought-out filtering and evaluation
schemes, not only for time interval prediction queries, but also because time affects link pre-
diction evaluation in subtle but fundamental ways. This section addresses both issues.

7.3.1 Time Interval Prediction

One possible way to evaluate time prediction is to adapt measures to compare bounding boxes
in computer vision, e.g., Intersection Over Union (IOU): IOU(T ∗, T pr) = vol(T ∗∩T pr)

vol(T ∗∪T pr)
∈ [0, 1],

3TAC’s original score compares gold and predicted bounds on begin and end of an interval. This formula is its
adaptation, where begin and end are each a specific time point.
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where vol for our case simply refers to the size of the interval. Unfortunately, IOU loses dis-
crimination once T ∗ ∩ T pr = ∅; e.g., IOU([1, 2], [3, 4]) = IOU([1, 2], [30, 40]) = 0. This has
been noticed in computer vision as well, and a metric called gIOU been introduced [Rezatofighi
et al., 2019]:

gIOU(T ∗, T pr) = IOU(T ∗, T pr)− vol((T ∗ ⋓ T pr) \ (T ∗ ∪ T pr))

vol(T ∗ ⋓ T pr)
∈ (−1, 1]. (7.2)

T ∗ ⋓ T pr is the smallest single contiguous interval (hull) containing all of T ∗ and T pr. E.g.,
[1, 2] ⋓ [30, 40] = [1, 40].

gIOU can be negative, which is not ideal for a performance metric that is aggregated over
instances. A simple fix (gIOU′) is to scale it to [0,1] via (gIOU + 1)/2, but we notice that the
tiniest overlap between T ∗ and T pr yields gIOU′ to be at least half, regardless of vol(T ∗) or
vol(T pr). Based on all these considerations, we propose a novel affinity enhanced IOU:

aeIOU(T ∗, T pr)=
max{1, vol(T ∗ ∩ T pr)}

vol(T ∗ ⋓ T pr)
(7.3)

When T ∗ ∩ T pr = ∅, the denominator includes “wasted time”, reducing aeIOU. The ‘1’ in the
numerator represents the smallest granularity of time in the data (see Section 7.2.2).

Comparison of Evaluation Metrics: A good time interval prediction metric (M ) must satisfy
the property (P ) that: if two predicted intervals have intersections of the same size (possibly
zero) with the gold interval, then the prediction that has a smaller hull with the gold interval
should be scored higher by M . Formally, let T pr1 and T pr2 be two predictions made for T ∗.

Property P : Let vol(T ∗ ∩ T pr1) = vol(T ∗ ∩ T pr2). Then, M(T ∗, T pr1) > M(T ∗, T pr2) if and
only if vol(T ∗ ⋓ T pr1) < vol(T ∗ ⋓ T pr2).

Theorem: IOU and gIOU′ do not satisfy property P , whereas aeIOU satisfies it.

Proof that aeIOU satisifies P : For a fixed vol(T ∗∩T pr), we have aeIOU(T ∗, T pr) ∝ 1/vol(T ∗ ⋓ T pr)

(see Eqn 7.3). Hence, aeIOU satisfies property P .

Proof that IoU and gIOU do not satisfy P :
IoU: This metric gives a score of 0, if the predicted interval does not intersect with the gold,
irrespective of the hull. Hence IoU do not satisfy property P . Suppose the gold interval T ∗

[2002,2005], and consider two predictions, [1999,2001] and [1997,1999]. For both predictions,
vol(T ∗ ∩ T pr) = 0, resulting in same scores for both predictions irrespective of the hull and
hole.

gIoU: Let us look at the following example. Suppose the gold interval T ∗ [2002,2005], and
consider two predictions, [1999,2001] and [1900,2001]. For both predictions, vol((T ∗ ⋓ T pr) \
(T ∗ ∪ T pr)) = 0, so the hull for the two predictions will be ignored (see Eqn 7.2), resulting in
same scores for both predictions. Hence gIoU does not satisfy property P .

This suggests that aeIOU is a more defensible metric for our task, compared to other alter-
natives.
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7.3.2 Link Prediction

Test query: (s = French National Assembly, r = has member, o =?, T ∗ = [2000, 2003])

Candidates Known Method 1 Method 2 Method 3
o, system duration of Unfiltered Time- Time-sensitive
ordered o (any fold) insensitive 2000 2001 2002 2003
Pierre [2002, 2003] 1 0 1 1 0 0
Paul [2003, 2008] 1 0 1 1 1 0
Alain [2008, 2009] 1 0 1 1 1 1

Claude [2000, 2003] 1 0 0 0 0 0
Jean - - - - - - -

Time-sensitive rank of Jean 1+4=5 1+0=1 1+3=4 1+3=4 1+2=3 1+1=2

Table 7.1: Jean is the gold answer (o∗) to the query (s, r, ?, T ) shown above. Rows are ranked
system predictions, which may be seen with same s and r for different intervals (Column 2).
Columns 3–4 show the filtering of existing methods (1:unfiltered, 0:filtered). Columns 5–8
(Method 3, our proposal) show the filtering for each time instant. The bottom row shows
ranks of Jean as computed by different methods. Existing methods over- or under-estimate
performance. Method 3 assigns Jean a rank of 3.25, which is the average of the filtered ranks
{4, 4, 3, 2} for each time instant in [2000, 2003].

We first illustrate the unique challenges offered by TKBC link prediction queries through
an example in Table 7.1. The query asks for the name of a person who was a member of the
French National Assembly in the time interval [2000, 2003]. Let the gold answer (object) o∗

be Jean, which is ranked at the fifth position by the system that is being evaluated. All four
entities above Jean are seen with the same subject and relation in the data, but for different
time intervals. E.g., Pierre is also a member of the assembly, but during [2002, 2003]. The key
question is: how should the four entities above Jean be filtered to compute its final rank?

We argue (Table 7.1) that existing filtering approaches are unsatisfactory. Dasgupta et al.
[2018] underrate model performance by not performing any filtering (Method 1). In this exam-
ple, the model is penalized for Claude, even though the time-interval for Claude exactly matches
the query. On the other hand, Garcı́a-Durán et al. [2018] and Jin et al. [2019] ignore time in-
formation altogether and filter out all entities seen with gold (s, r). This can greatly reduce the
filtered rank of the system prediction, and thus overestimate system quality (Method 2). For
instance, the model is not penalized for predicting Alain, even though its membership interval
has no overlap with the query interval.

Ideally, filtering must account for the overlap between the query time interval and the
time intervals associated with system-proposed entities. We propose such a filtering strategy
(Method 3). We split the query interval into time instants, and compute a filtered rank for each
time point independently. Entities that have full time overlap (or no overlap) will always (re-
spectively, never) get filtered for a time instant. Partially overlapping entities will get filtered in
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only overlapping instants (e.g., 2 out of 4 for Pierre). After computing filtered ranks for each
time instant, we output the final rank as an average of all such filtered ranks. In this example,
this approach will compute the average of {4, 4, 3, 2}, which is 3.25. This average rank is used
when computing standard metrics like MRR and HITS@10.

7.4 The Proposed TIMEPLEX Framework

Similar to TNT-ComplEx, TIMEPLEX learns complex-valued entity, relation and time instant
embedding vectors. However, it differs from TNT-ComplEx in several ways. (1) Its base scoring
function ϕTX(s, r, o, t) adds several products of three embeddings, instead of a single four-way
product (Section 7.4.1). (2) It has a fully automatic mechanism to introduce additional features
to capture potentially recurrent nature of a relation, as well as temporal interactions between
pairs of relations (Section 7.4.2). (3) It uses a two-phase training (Section 7.4.3) curriculum that
estimates first the embeddings and then novel additional parameters. (4) Its testing protocol can
output a missing time-interval T for time-interval prediction queries (Section 7.4.4).

7.4.1 TIMEPLEX Base Model

We replace ϕCX(s, r, o) with:

ϕTX(s, r, o, t) = ⟨es, r
SO, e⋆

o⟩+ α ⟨es, r
ST, t⋆⟩+ β ⟨eo, r

OT, t⋆⟩+ γ ⟨es, eo, t
⋆⟩. (7.4)

Here, es, eo, t ∈ CD, whereas each r is embedded as a concatenation of three such vectors
(rSO, rST, rOT), and hence requires three times the parameters. rST represents a relation which
is true for entity s at time t (similarly for rSO and rOT). And α, β and γ are hyperparameters.

Jiang et al. [2016] observed that several relations attach to a subject or object only at specific
time points. E.g., subject Barack Obama was president in 2009, regardless of the object United
States. In such cases, the formulation above is fully expressive.

To extend from single time instants t to an interval T , we propose

ϕTX(s, r, o, T ) =
∑

t∈T ϕTX(s, r, o, t). (7.5)

7.4.2 Relation Recurrence and Pair Scores

We extend TIMEPLEX’s base model via additional (soft) temporal constraints that can help in
better assessing the validity of a tuple. We aim to capture three types of temporal constraints:

Relation Recurrence: Many relations do not recur for a given entity (e.g., a person is born
only once). Some relations recur with fixed periodicity (e.g., Olympic games recur ev-
ery four years, with rare exceptions). Recurrences of other relations may be distributed
around a mean time period.
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Ordering Between Relations: A relation precedes another, for a given entity. E.g., person-

BornYear must precede personDiedYear for a given subject entity (person), if the latter
exists for the given entity.

Time Gaps Between Relations: The difference in time instants of two relations (wrt to an
entity) may be distributed around a mean, e.g., personDiedYear minus personBornYear

has a mean of about 70 with some observed variance.

The first constraint concerns single relations, whereas the latter two concern pairs of relations.
Jiang et al. [2016] attempted to capture relation ordering constraints as model regularization,
but their approach does not take into account time differences. Nor does it model relation re-
currence.

Basic TIMEPLEX may not be able to learn these constraints from data either, since each time
instant is modeled as a separate embedding with independent parameters — it has no explicit
understanding of the difference between two time instants. In response, we augment TIMEPLEX

with additional features that capture how soon an event recurs, or how soon after the occurrence
of one relation, another relation is likely to follow. We define two scoring functions ϕRec and
ϕPair for these two cases, to be aggregated with ϕTX (eqn. 7.4).

Inspired by Garcı́a-Durán and Niepert [2018], we model time gaps as drawn from Gaussian
distributions. We use N (x|µ, σ) to denote the probability density of a Gaussian distribution
with mean µ and std deviation σ at the time (difference) value x. We denote as Ttr all tuples in
the train fold. While computing recurrence features, all training tuples of the form (s, r, o, T )

are reduced to (s, r, o, t), i.e., with a singleton time interval, where t = tb, the start time of T .

Recurrence Score: We say that (s, r, o) recurs if there are at least two distinct intervals T such
that (s, r, o, T ) ∈ Ttr. If there are at least KRec distinct pairs (s, o) such that (s, r, o) recurs, then
r is considered recurrent. KRec is a hyperparameter.

TIMEPLEX estimates a fact recurrence score, ϕRec(s, r, o, T ), as follows:

1. If (s, r, o, ⋆) /∈ Ttr, set ϕRec = 0.

2. Else, if r is not recurrent, set ϕRec = br. This allows the model to learn to penalize
repetition of relations that do not recur.

3. Find time gap (δ) to its closest recurrence:

δ = min
{(s,r,o,t′)∈Ttr: t′ ̸=t}

|t− t′|. (7.6)

Then, set

ϕRec(s, r, o, T = [tb, te]) = ϕRec(s, r, o, tb) = wrN
(
δ|µr, σr

)
+ br. (7.7)
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Figure 7.1: This module attempts to capture fact recurrence. For tuple - ‘Presidential Election,
heldIn, USA, 2016’, we first check if “heldIn” is a recurrent relation. If yes, we look for other
facts of ‘Presidential Election, heldIn, USA’ occurring at different time points. We identify the
min time-difference and compute its validity w.r.t. typical relation recurrence time. For non-
recurrent relations only a bias term is learnt.

For each recurrent relation r, our model learns three new parameters: µr, σr, and br. Intuitively,
N (·|µr, σr) represents a distribution of typical durations between two recurring instances of a
relation (with a specific subject and object entity) and br is the bias term. For non-recurrent
relations, only the bias br is learnt.

Intuitively, ϕRec should penalize the proposed (s, r, o, T ) if δ is not close to the mean gap µr.
For example, (Presidential election, held in, USA, 2017) should be penalized, if (Presidential
election, held in, USA, 2016) is known, and the event reoccurs every 4 years (µr = 4, σr ≈ 0).
See Figure 7.1 for an illustrative summary of score computation steps.

Relation Pairs Score: In an analogous manner, TIMEPLEX also learns soft time constraints
between pairs of relations. We describe this mechanism for subjects; objects are handled anal-
ogously. For each relation pair (r, r′), we maintain four parameters, µrr′ , σrr′ , brr′ and wrr′ ,
whose purpose we will describe presently. As with recurrence scores, all training tuples (s, r, o, T )
are reduced to (s, r, o, t), where t = tb, the start time of T . Given the candidate tuple (s, r, o, t)

to score, we collect fact tuples {fi = (s, ri, oi, ti) ∈ Ttr, ri ̸= r} having the same subject
but a different relation, into the set called KBPair(s). The ith tuple in KBPair(s) is scored as
sc(fi) = N (t − ti|µrri , σrri) + brri . This represents the contribution of fi in the validity of
candidate tuple, based on their (signed) time difference, and typical time differences observed
between these two relations. ϕPair

sub needs to aggregate these over fi. The (trained) parameter wrr′

measures how much the times associated with r′ influence our belief in (s, r, o, t). Using these,
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Figure 7.2: The data statistics are pre-computed for model training. We model time gaps as
drawn from gaussian distributions. The image shows pre-training data statistics collection strat-
egy for a specific relation pair ‘bornIn, graduatedFrom’. ‘Joe Biden’ was born in ‘1942’, while
he graduated in 1965. While, ‘Michelle Obama’ was born in ‘1964’, while she graduated in
1985. Similar facts can be used to compute the average age of a person when he graduates
(here it is 22). Such statistics are computed for all relation pairs.

Figure 7.3: TIMEPLEX learns soft time constraints between pairs of relations. All training tuple
with time intervals are reduced to facts with start time. For a dummy fact: ‘Barack Obama,
bornIn, USA, 1961’. We first look at other facts related to the subject ‘Barak Obama’ in dummy
KB, like he graduated in ‘1983’ and became president in year ‘2009’. We compute contribution
of each relation-pair score in the validity of candidate tuple ‘Barack Obama, bornIn, USA,
1961’, based on their signed time difference and typical time differences observed between
two relations. Here Barack graduated at the age of 22, which is very close to the mean age of
graduation we computed from dummy data (see Figure 7.2). So, this is a positive signal. Here,
we describe this mechanism for subjects, objects are handled analogously.
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we define the weighted average

ϕPair
sub (s, r, o, t) =

∑
fi∈KBPair(s)

sc(fi)
exp(wrri)∑
fj
exp(wrrj)

.

A similar ϕPair
obj score is computed for the object entity, and overall ϕPair = ϕPair

sub + ϕPair
obj . See

Figure 7.2 and Figure 7.3 for an illustrative summary of score computation steps.

The final scoring function of TIMEPLEX is

ϕ(s, r, o, T ) = ϕTX(s, r, o, T ) + κϕPair(s, r, o, T ) + λϕRec(s, r, o, T ), (7.8)

where κ and λ are hyperparameters.

7.4.3 Training

We train TIMEPLEX in a curriculum of two phases. In the first phase, we optimize embeddings
for all entities, relations and time-instants by minimizing the log-likelihood loss using only the
base model TX. We compute the probability of predicting a response o for a query (s, r, ?, T )

as:

Pr(o|s, r, T ) = exp(ϕTX(s, r, o, T ))∑
o′ exp(ϕ

TX(s, r, o′, T ))
(7.9)

We can similarly compute the probability of predicting a response s for a query (?, r, o, T ) as:

Pr(s|r, o, T ) = exp(ϕTX(s, r, o, T ))∑
s′ exp(ϕ

TX(s′, r, o, T ))
(7.10)

We convert every (s, r, o, T = [tb, te]) ∈ Ttr in time-instant format by enumerating all (s, r, o, t),
for t ∈ [tb, te]. We compute the probability of predicting a response t for a query (s, r, o, ?) as:

Pr(t|s, r, o) = exp(ϕTX(s, r, o, t))∑
t′ exp(ϕ

TX(s, r, o, t′))
(7.11)

Training of embeddings minimizes the log-likelihood loss:

−
∑

⟨s,r,o,t⟩∈KBtr

(
log Pr(o|s, r, t; θ) + log Pr(s|o, r, t; θ) + log Pr(t|s, r, o; θ)

)
(7.12)

In the second phase, we freeze all embeddings and train the parameters of the recurrence
and pairs models. Here, too, we use the log-likelihood loss, except that ϕTX is replaced by
the overall ϕ function. Parameters µrr′ and σrr′ of the relation-pairs model component are not
trained via backpropagation. Instead, they are fitted separately, using the difference distributions
for the pair of relations in the training KB. This improves the overall stability of training.

7.4.4 Inference

At test time, for a link prediction query (s, r, ?, T ) or (?, r, o, T ), TIMEPLEX ranks all entities
in decreasing order of Pr(o|s, r, T ) or Pr(s|r, o, T ) scores. For time prediction, its goal is to
output a predicted time duration T pr. We first compute a probability distribution over time
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instants Pr(t|s, r, o) = exp(ϕ(s,r,o,t))∑
t′∈T exp(ϕ(s,r,o,t′))

. We then greedily coalesce time instants to output the
best duration. For greedy coalescing, we tune a threshold parameter θr for each relation r using
the validation fold. We then initialize the predicted interval T pr as argmaxt Pr(t|s, r, o). Then,
as long as total probability of the interval, i.e.,

∑
t∈T pr Pr(t|s, r, o) is less than θr, we extend T pr

with the instant to its left or right, whichever has a higher probability.

7.5 Experiments

We investigate the following research questions. (1) Does TIMEPLEX convincingly outperform
the best time-agnostic and time-aware KBC systems on link prediction and time interval pre-
diction tasks? (2) Are recurrent and pairwise features helpful in the final performance? (3) Are
TIMEPLEX’s time embeddings meaningful, i.e., do they capture the passage of time in an inter-
pretable manner? (4) Do TIMEPLEX predictions honor temporal constraints between relations?

7.5.1 Datasets & Experimental Setup

Datasets: We report on experiments with four standard TKBC datasets. WIKIDATA12k and
YAGO11k [Dasgupta et al., 2018] are two knowledge graphs with a time interval associated
with each triple. These contain relational facts like (David Beckham, plays for, Manchester
United; [1992, 2003]). ICEWS14 and ICEWS05-15 [Garcı́a-Durán et al., 2018] are two event-
based temporal knowledge graphs, with facts from Integrated Crisis Early Warning System
repository. These primarily include political events with timestamps (no nontrivial intervals).
We consider the time granularity for interval datasets as 1 year, and for ICEWS datasets as 1
day.

See Table 7.2 for some salient statistics of the datasets we used for experiments. As already
mentioned, Yago11k and Wikidata12k are interval based datasets. ICEWS14 and ICEWS05-15
are instant based datasets.

YAGO11k WIKIDATA12k ICEWS14 ICEWS05-15
Entities 10622 12554 7128 10488

Relations 10 24 230 251
#Instants 251 237 365 4017
#Intervals 6651 2564 0 0

Train 16408 32497 72826 368962
Valid 2051 4062 8941 46275
Test 2050 4062 8943 46092

Table 7.2: Details of datasets used.

By experimenting across the spectrum, from ‘point’ events to facts with duration, we wish
to ensure the robustness of our observations.
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Methods compared: We compare against our reimplementations of CX, HyTE, TA-family,
and TNT-ComplEx. In all cases we verify that our implementations give performance compa-
rable to or better than what is reported in the literature. We combine HyTE and TA (see Section
7.2.3 for details on HyTE and TA), with scoring functions from TransE, DistMult and CX and
present the best results. We compare against reported results in DE-SimplE (see Section 7.2.3
for details on DE-SimplIE).

Experimental Details: For all models, we optimize parameters with AdaGrad running for 500
epochs for all losses, with early stopping on validation fold. We control for an approximately
comparable number of parameters and set dimensionality of 200 for all complex embeddings
and 400 for all real embeddings. We follow other best practices in the literature, such as L2
regularization only on embeddings used in the current batch [Trouillon et al., 2016], adding
inverted facts (o, r−1, s, T ) , using 1vsAll negative sampling [Dettmers et al., 2018] whenever
applicable, and using temporal smoothing for ICEWS datasets [Lacroix et al., 2020].

Some instances in interval datasets have tb or te missing. Following Dasgupta et al. [2018],
we replace missing values by−∞ or +∞, respectively. For time prediction queries, we remove
such instances from test sets. For ICEWS datasets we set tb = te. For time interval prediction,
all models use our greedy coalescing inference from Section 7.4.4.

For TIMEPLEX, we perform a grid search for all hyperparameters, and pick the best values
based on MRR scores on valiations set.

Models Number of parameters
HytE d(|E|+ |T |+ |R|)

DE-SimplE 2d((3δ + (1− δ))|E|+ |R|)
TNTComplEx 2d(|E|+ |T |+ 4|R|)

TIMEPLEX(base) 2d(|E|+ |T |+ 6|R|)
TIMEPLEX 2d(|E|+ |T |+ 6|R|) + 2(|R|2 + |R|)

Table 7.3: Number of parameters for each model. For HyTE we assume bucket size = 1 here. δ
is the fraction of dimension to represent time in DA-SimplE model.

More details of hyperparameters and model training: The models discussed in this chapter train
scalably on the datasets used for experiments (see Table 7.3 for all model parameter size) and
can be easily fit into a single 12 GB NVIDIA Tesla K40 GPU. Our final model TIMEPLEX

consist of a base model and two time-based gadgets. TIMEPLEX(base) takes less than 10 min-
utes to train on all datasets except for ICEWS05-15, where it takes 80 minutes. Table 7.4 lists
best hyperparameters of TIMEPLEX(base) on various datasets. Both gadgets are trained inde-
pendently in less than 10 minutes. The parameter λ=5.0 gave best results for interval datasets,
while λ=1.0 gave best results on event datasets. On Yago11k κ=3.0, while for rest κ=0.0. The
gadget weights are L2 regularized, with a regularization penalty of 0.002. In phase 2 training
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of the model we use 100 negative samples per correct fact (in this phase we train our time
gadgets).

↓Datasets Learning Rate Reg wt Batch size Temporal smoothing α β γ
YAGO11k 0.1 0.03 1500 0.0 5.0 5.0 0.0

WIKIDATA12k 0.1 0.005 1500 0.0 5.0 5.0 5.0
ICEWS05-15 0.1 0.005 1000 5.0 5.0 5.0 5.0

ICEWS14 0.1 0.005 1000 1.0 5.0 5.0 5.0

Table 7.4: Hyperparameters for training TIMEPLEX(base) model embeddings on various
datasets, tuned on MRR for validation set. Temporal smoothing was found to help on ICEWS
datasets, however it gave no improvement for interval datasets. We tuned the parameters in a
staged manner - first we tune learning rate (lr), regularization weight (r), batch size(b), and
temporal smoothing weight (ts). We performed a random search in the following ranges: lr ∈
[0.0001, 1.0], r ∈ [0.0001, 1.0], b ∈ [100, 5000], and ts ∈ [0.0001, 10.0]. The models were most
sensitive to regularization weight and learning rate. After finding best values for these param-
eters, we tuned α, β and γ weights for each dataset, doing a grid search over the set {0.0, 2.0,
5.0, 7.0, 10.0}

.

Time modelling details of TIMEPLEX, HyTE: Each dataset spans along a time range, with a
certain time granularity, which can be year, month or day. TIMEPLEX learns a time embedding
for every point in this time range, discretized on the basis of the dataset’s granularity (years
for the interval datasets WIKIDATA12k and YAGO11k, and days for ICEWS datasets). At
training time, TIMEPLEX looks at a single time point at a time - for this, we sample a time point
uniformly at random from the query interval [tb, te] associated with the fact. In contrast, HyTE
maps each time point to bin (heuristically determined), making the data granularity coarser,
and learns representation of these bins. HyTE looks at time points in an interval as well, but
enumerates each interval fact to produce a separate fact for each time point beforehand.

Our method of sampling is efficient as the data size is unchanged. It also ensures each fact is
sampled uniformly, not hurting link prediction performance by oversampling of long duration
facts.

HyTE time prediction: HyTE can only predict a bin for the test fact. To convert predicted
bins to years (or days), we take a mean of all years seen with the predicted bin and then do
greedy coalescing to output time interval in years.

7.5.2 Results and Observations

Link prediction: Table 7.5 compares all algorithms for link prediction. We find that the best
performing baseline among existing TKBC systems is TNT-ComplEx model. TIMEPLEX out-
performs TNT-ComplEx by over 3 MRR points in ICEWS datasets. Its gains (3.25 and 5.6 pts)
are even more pronounced in interval datasets. All differences are statistically significant using
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Dataset→ WIKIDATA12k YAGO11k ICEWS05-15 ICEWS14
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CX 24.82 14.30 48.90 18.14 11.46 31.11 48.68 37.00 72.63 45.50 33.87 69.73
TA (CX) 22.78 12.69 46.00 15.24 9.36 26.26 49.23 37.6 72.69 40.97 29.58 63.87
HyTE (TransE) 25.28 14.70 48.26 13.55 3.32 29.81 23.73 3.11 62.76 24.91 2.98 65.30
DE-SimplE 25.29 14.68 49.05 15.12 8.75 26.74 51.30 39.20 74.80 52.60 41.80 72.50
TNT-ComplEx 30.10 19.73 50.69 18.01 11.02 31.28 60.58 51.14 78.50 56.72 47.04 75.40
TIMEPLEX (base) 32.38 22.03 52.79 18.35 10.99 31.86 63.91 54.62 81.42 60.25 51.29 77.05
TIMEPLEX 33.35 22.78 53.20 23.64 16.92 36.71 63.99 54.51 81.81 60.40 51.50 77.11

Table 7.5: Link prediction performance across four datasets. The last row reports results for
TIMEPLEX(base) augmented with pair/recurrent features.

paired t-test with p < 0.01. These scores establish a new state of the art for link prediction on
time-interval datasets, at the time of writing this dissertation.

Table 7.5 reports link prediction performance using the filtering strategy discussed in Sec-
tion 7.3.2. We also report the performance of most competitive baseline and TIMEPLEX, using
a filtering strategy that does not enumerate time points in an interval and filters out entities
on exact matching time-interval (See Table 7.6). Note that our model consistently outperforms
TNT-ComplEx, even with a stricter filtering.
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TNT-ComplEx 27.35 17.59 48.51 15.78 10.21 28.64
TIMEPLEX 30.61 20.79 51.78 22.77 16.33 36.3

Table 7.6: Link prediction performance of the best models using a filtering strategy that does not
enumerate time points in an interval, and filters on an exact match instead. We find that while
TIMEPLEX convincingly outperforms the previous SOTA TNT-ComplEx using this filtering
strategy as well.

Time prediction: We are the first to look at the task of predicting time intervals, and we report
scores of the same on our novel aeIOU metric along with previously proposed evaluation met-
rics (Table 7.7). We see that TIMEPLEX outperforms TNT-ComplEx on both datasets, with a
huge 11+ pt aeIOU jump on the Yago11K dataset. It is also noteworthy that even the base model
of TIMEPLEX is consistently better than TNT-ComplEx across all experiments. Similar trends
are observed in other metrics too.

On Pair/recurrent features: We find that recurrent features are very helpful in both interval
datasets, and significantly improve link prediction performance. Relation pair features particu-
larly help in YAGO11k – an over 5 pt aeIOU boost in time prediction, but on WIKIDATA12k
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Datasets→ YAGO11k WIKIDATA12k
↓Methods TAC gIOU IOU aeIOU TAC gIOU IOU aeIOU
HyTE 5.59 15.96 1.91 5.41 6.13 14.55 1.40 5.41
TNT-Complex 9.90 20.78 3.99 8.40 26.98 36.63 11.68 23.25
TIMEPLEX (base) 16.57 26.22 5.48 14.21 30.36 39.2 13.20 26.20
TIMEPLEX 22.66 32.64 8.24 20.03 30.71 39.34 13.15 26.36

Table 7.7: Time prediction performance using - TAC, gIOU, IOU and aeIOU

they make only a marginal difference. On inspecting the datasets, we find that 78% of entities
in WIKIDATA12k are seen with a single, recurring relation only (such as award received, or
member of sports team) – hence relation pair features cannot help.

ICEWS datasets are scraped from news events. On inspecting the datasets, we find that the
events do not follow any temporal ordering and are fairly non-regular in event recurrence as
well. Hence, TIMEPLEX’s improvements over the base model are limited. We further investi-
gate the differing performance on datasets and the value of pair features in the next section.

7.5.3 Diagnostics

Time gap vs. embedding distances: Longevity of relations, or gaps between events, are often
determined by physical phenomena that are smooth and continuous in nature. Therefore, we
expect the embedding of the year 1904 to be closer to that of 1905 compared to the embedding
of 1950.

To validate this hypothesis, we compute mean L2 distance between embeddings of time
instants which are apart by a given time gap. To filter noise, we drop instant pairs with extreme
gaps that have low support (less than 30). For WIKIDATA12k we used embeddings of years
[1984, 2020] and for YAGO11k we use embeddings of years [1958, 2017].

Figure 7.4 shows that L2 distance between pairs of time embeddings increases with the ac-
tual year gap between them. This strongly suggests that the time embeddings learnt by TIME-
PLEX naturally represents physical time.

Temporal ordering of relation pairs: Both YAGO11k and WIKIDATA12k contain relations
with temporal dependencies, e.g., bornInPlace should always precede diedInPlace for the same
person. We now study whether TIMEPLEX models are able to learn these natural constraints
from data.

We first exhaustively extract all relation pairs (r1, r2), where the existence of both (s, r1, ⋆, t1)

and (s, r2, ⋆, t2) is accompanied by t1 < t2 at least 99% of the time, with a minimum support
of 100 entities s. Table 7.8 and 7.9 lists automatically extracted high confidence relation order-
ings seen in Yago11k and Wikidata12k datasets respectively. These orderings are used to guide
TIMEPLEX at the time of training.
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Figure 7.4: L2 distances (y-axis) between TIMEPLEX time embeddings increase with time gap
(x-axis).

graduatedFrom −→ diedIn
graduatedFrom −→ hasWonPrize
wasBornIn −→ graduatedFrom

wasBornIn −→ diedIn
wasBornIn −→ isAffiliatedTo
wasBornIn −→ hasWonPrize

wasBornIn −→ playsFor
wasBornIn −→ worksAt

wasBornIn −→ isMarriedTo
isAffiliatedTo −→ diedIn

worksAt −→ diedIn
isMarriedTo −→ diedIn

Table 7.8: High confidence (99%) relation orderings extracted from YAGO11k.

educated at −→ position held
educated at −→ employer

educated at −→ member of
educated at −→ award received

educated at −→ academic degree
educated at −→ nominated for

instance of −→ head of government
residence −→ award received

academic degree −→ nominated for
spouse −→ position held

located in the administrative
territorial entity −→ award received

Table 7.9: High confidence (99%) relation orderings extracted from WIKIDATA12k

We now verify whether TIMEPLEX honors r1 before r2 when making predictions. For each
query (?, r, o, t) in the test set, we check whether the top model prediction violates any known
temporal ordering constraint in this list. For example, for a query (?, hasWonPrize, Nobel Prize,

1925), if the model predicted Barack Obama and the KB already had Barack Obama born
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YAGO11k WIKIDATA12k
CX 10.04 0.7

HyTE 7.2 0.4
TNT-ComplEx 8.82 0.3

TIMEPLEX (Base) 6.6 0.3
TIMEPLEX 1.9 0.2

Table 7.10: Ordering constraint violations among top predictions of various models (% of facts
in test set).

in Hawaii in 1961, then this will be considered as an ordering violation. Table 7.10 reports
the number such violations as fraction of test set size. TIMEPLEX significantly reduces such
errors for YAGO11k; this is also reflected in its superior time prediction performance. For
WIKIDATA12k, the errors for TIMEPLEX (base) are already low, hence pair features are not
found to be particularly helpful.

As an illustrative example, we consider the time prediction query (Shinae-ra, wasBornIn,

South Korea, ?), with the gold answer 1969. The only other fact seen for Shinae-ra in the train
KB is (Shinae-ra, isMarriedTo, ChaIn-Pyo, (1995, -)). TIMEPLEX predicts 1967 for this query
(earning an aeIOU credit of 33.33). However, TNTComplEx predicts 2013 (earning almost no
credit) – this also highlights that it does not capture commonsense that a person can marry only
after they are born.

Digging deeper, we plot the normalized scores for this query in time range [1850, 2010] in
Figure Table 7.11(a). The peak around 1967 for the TIMEPLEX plot can be attributed to the
fact that mean difference for isMarriedTo and wasBornIn relations is around 30 in the dataset.
Standard tensor factorization models like TNT-ComplEx are unable to exploit this, but our Pair
features provide a way to the model to make very reasonable predictions.

In another time prediction query (see Table 7.11 (b)) (Peter Nowell, wasBornIn, Philadel-

phia, ?), with gold answer 1928, we show how, with limited background knowledge on the
subject in question, TIMEPLEX can predict the gold time interval.
Ablation Study: To further explore the second research question – are recurrent and pairwise
features helpful in the final performance? (discussed in Section 7.5), we perform an ablation
study. In this study, we remove each component of TIMEPLEX (see equation 7.8) by mak-
ing either κ=0 or λ=0, to understand the importance of each component. We report results on
Yago11k dataset in Table 7.12. The study demonstrates that our recurrence feature significantly
help in link prediction while out relation pair feature helps time-interval prediction.
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Info about query e1 in train set:
<Shin Ae-ra, isMarriedTo, Cha In-pyo>(1995, 3000)

Gold answer 1969
Timeplex prediction 1967

Timeplex (base) prediction 1967
TNTComplEx prediction 2013

(a) TIMEPLEX, TIMEPLEX(base) both predict the correct answer but TNTComplEx
cannot model that one cannot marry before birth.

Info about query e1 in train set:
<Peter Nowell, graduatedFrom, Wesleyan University>(1948, 3000)

<Peter Nowell, graduatedFrom, University of Pennsylvania>(1952, 3000)
Gold answer 1928

Timeplex prediction 1928
Timeplex (base) prediction 1938
TNTComplEx prediction 1918

(b) TIMEPLEX(base) cannot model that one is unlikely to graduate at the age of 10.
TIMEPLEX (base) and TNTComplEx do not have a clear vote like Timeplex.

Table 7.11: Comparing time prediction performance of TIMEPLEX, TIMEPLEX(base) and
TNTComplEx.
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TIMEPLEX 23.64 16.92 36.71 20.03
TIMEPLEX-Pair 23.15 16.63 36.27 14.21
TIMEPLEX- Rec 18.93 11.46 32.74 20.03
TIMEPLEX- Pair - Rec 18.35 10.99 31.86 14.21

Table 7.12: Ablation study on Yago11k. Recurrence feature significantly help in link prediction
while relation pair feature helps time-interval prediction.

7.6 Discussion

TIMEPLEX cannot exploit the influence that an entity can have on time difference distribu-
tions. For example, the life expectancy of a person (mean difference between diedIn and bornIn

events) would be around 85 in Japan, but 54 in Lesotho. Extending our model to learn separate
parameters for each ⟨rel, entity⟩ pair may be difficult due to sparsity. Also, recurrent facts may
admit exceptions: Winter Olympics are held every 4 years except for 1992 and 1994. However,
we do not expect even humans to do well in such cases. Exceptions like these are sparse and
difficult to learn, except by rote.

7.7 Conclusion

We presented TIMEPLEX, a new TKBC framework, which combines representations of time
with representations of entities and relations. It also learns soft temporal consistency con-
straints, which allow knowledge of one temporal fact to influence belief in another fact. TIME-
PLEX exceeds the performance of existing TKBC systems. Diagnostics suggest that time em-
beddings are temporally meaningful, and TIMEPLEX makes fewer temporal consistency and
ordering mistakes. We also argue that current evaluation schemes for both link and time predic-
tion have limitations, and propose more meaningful schemes.

Relevant Publication

• [Jain et al., 2020b]: “Temporal Knowledge Base Completion: New Algorithms and Eval-
uation Protocols”. Prachi Jain, Sushant Rathi, Mausam, Soumen Chakrabarti. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). November 2020.
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Chapter 8

Improving the quality of inference
rule-base for micro-inference

Thus far in this thesis, we have studied various methods to infer missing facts in structured
canonical KBs; in particular macro inference methods. However, as discussed in Chapter 1,
some facts are hard to express using structured KB predicates, but can be easily represented
using natural language. Open KBs consist of fact tuples where one or more elements are free-
form strings, eg. (‘penicillin’, ‘kills’, ‘bacteria’). Open KBs are a viable alternative in situations
where canonical KBs are difficult to curate and maintain. However, adding missing facts to
Open KBs is challenging, due to their noisy nature. Also, macro-inference methods are hard to
scale with the large number of predicates and entities in open KBs. Google’s Knowledge Graph
had grown to 500 billion facts on 5 billion entities by May 2020 1. Very large sized GPUs are
required to just load the entity embeddings of any macro inference model. In this chapter, we
discuss methods to improve the precision of such a rule base and eventually improve inference
in open KBs.

8.1 Problem formulation

Micro inference involves inferring a novel fact from a single or a very small number of input
facts, independent of other facts seen in the KB. The methods used for this task often rely on
inducing inference rules from a corpus of facts [Schoenmackers et al., 2010, Nakashole et al.,
2012, Berant et al., 2011, Galárraga et al., 2013, Berant, 2012, Pavlick et al., 2015, Hearst,
1992]. For example, given an inference rule base which has a rule, [( X, has passport of, Y )⇒
( X, is citizen of, Y )], and a KB which has a fact (Barack Obama, has passport of, USA), then
a query like (Barack Obama, is citizen of, ?) to an inference engine can be correctly answered

1https://en.wikipedia.org/wiki/Google_Knowledge_Graph
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(‘USA’ for query 1). Notice that this differs from macro inference which may use a larger
neighborhood of related facts for inference.

In Table 8.1 we present a formal setup of the problem. In the problem formulation, a fact
represents real-world knowledge in a triple format (s, r, o), example (Narendra Modi, is the PM
of, India). Given a large amount of training data pairs (x(m),y(m)) for m=1,2,3,...M, where x(m)

is an instance of related facts [(si, ri, oi), R, (sj, rj, oj)]
(m); R ∈ {≡,⇒,⇏} (micro inference

setting) and y ∈ [0,1] indicates the validity of x (note that the setup allows associating the
likelihood of y taking a specific value). The goal is to learn a mapping function f:x → y to
predict correctly on a new input x, using traditional machine learning or deep learning models
by optimizing parameters on training data. Models to generate this form of input (inference
rules) can also be built.

Training Data (x(m),y(m))m=1,2,3,...M

Input x(m) is a pair of related fact (si, ri, oi, R, sj, rj, oj)(m); R ∈ {≡,⇒,⇏}
Input example (Narendra Modi, is PM of, India)⇒ (Narendra Modi, is citizen of, India)

Output y ∈ {0,1} 1 indicates x is valid and 0 indicated x is invalid.
Goal f:x→ y

Table 8.1: Micro inference task problem formulation.

8.2 Micro inference

A set of inference rules are used along with probabilistic models such as MLNs [Schoenmackers
et al., 2008] or BLP [Raghavan et al., 2012] to produce proof chains and infer new facts. While
scalable [Niu et al., 2011, Domingos and Webb, 2012], this is bound by the coverage and quality
of the background knowledge – the set of inference rules [Clark et al., 2014].

This chapter will focus on generating a high precision subset of inference rules built over
OpenIE KB [Etzioni et al., 2011]. Most existing large-scale corpora of inference rules are gen-
erated using distributional similarity, like argument-pair overlap [Schoenmackers et al., 2010,
Berant et al., 2012]. Methods vary on the base representation, e.g., KB relations [Galárraga
et al., 2013, Grycner et al., 2015], OpenIE relation phrases [Schoenmackers et al., 2010], SOL
patterns [Nakashole et al., 2012], and dependency paths [Lin and Pantel, 2001]. Global tran-
sitivity (TNCF algorithm) in KBs is also exploited for improving recall [Berant et al., 2012].
The highest precision setting of TNCF (λ = 0.1) was released as a corpus (informally called
CLEAN) of OpenIE inference rules.2

2http://u.cs.biu.ac.il/˜nlp/resources/downloads/predicative- entailment-rules-learned-using-local-and-global-
algorithms
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Antecedent Consequent Y/N?
1 (es, make a note of, eo) (es, write down, eo) Y
2 (es, offer wide range of, eo) (es, offer variety of, eo) Y
3 (es, make full use of, eo) (eo, be used by, es) Y
4 (es, be wounded in, eo) (es, be killed in, eo) N
5 (es, be director of, eo) (es, be vice president of, eo) N
6 (es, be a student at, eo) (es, be enrolled at, eo) N

Figure 8.1: Sample rules verified (Y) and filtered (N) by our method. Rules 4, 5 were correctly
and 6 wrongly filtered.

Distributional similarity approaches have two fundamental limitations. First, they miss ob-
vious commonsense facts, e.g., ‘(es, married, eo)⇒ (es, knows, eo)’ — text will rarely say that
a couple know each other. Second, they are affected by statistical noise and end up generat-
ing a variety of inaccurate rules (see rule 4 and 5 in Figure 8.1). Our early experiments with
CLEAN revealed its precision to be about 0.49, not enough to be useful in practice. Precision is
paramount for human-facing applications (such as IE-based demos). Also, inference rules have
a multiplicative impact since one poor rule could generate many wrong KB facts.
Contributions: We investigate the hypothesis that “knowledge-guided linguistic rewrites can

provide independent verification for statistically-generated OpenIE inference rules”. Our sys-
tem KGLR’s rewrites exploit the compositional structure of OpenIE relation phrases alongside
knowledge in additional resources like Wordnet [Hirst and St Onge, 1998] and thesauri. KGLR

independently verifies rules from inference rule corpora [Berant et al., 2012, Pavlick et al.,
2015] and can be seen as an additional annotation on existing inference rules. The verified rules
are 27 to 33 points more accurate than the original corpora and still retain a substantial recall.
The inferred knowledge also has a precision boost of over 29 points. We release our KGLR

implementation and its annotations on two popular rule bases — CLEAN and entailment/para-
phrase subset of PPDB 2.0 (PPDBe), for further use.3

8.3 Knowledge-based Linguistic Rewrites

Given a rule “(es, r1, eo) ⇒ (es, r2, eo)” or “(es, r1, eo) ⇒ (eo, r2, es)” we present KGLR, a
series of rewrites of the relation phrase r1 to prove r2 (example in Fig 8.1). The algorithm is
enabled by knowledge sources like Wordnet and Thesaurus.

Similar to this work, some past works used additional sources of knowledge. Weisman
et al. [2012] studied inference between verbs (e.g., ‘startle⇒ surprise’), but they get low (0.4)
precision. Wordnet is used to generate inference rules for natural logic, improving noun-based

3https://github.com/dair-iitd/kglr

https://github.com/dair-iitd/kglr
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inference [Angeli and Manning, 2014]. They recognize relation entailments as a key missing
piece. Natural logic semantics have also been added to a paraphrase corpus (PPDB 2.0).4 Many
of their features, e.g., lexical/orthographic, multilingual translation based, are complimentary.

KGLR performs the following rewrites to perform rule verification. Note that the last two
rewrites deal with reversal of argument entity order in r2; other rewrites use the original argu-
ment entity order.
Thesaurus Synonyms: Thesauri5 typically provide a set of potential synonyms(‘produce’ –
‘make’), encompassing near-synonyms (‘produce’ – ‘accomplish’) and contextually synony-
mous words. Thesaurus synonyms are not that helpful for generating inference rules (or else
we will end up with rules like ‘produce ⇒ percolate’6). However, they are excellent in rule
verification as they provide evidence independent from statistical overlap metrics.

We allow any word/phrase w1 in r1 to be replaced by any phrase w2 from its thesaurus
synsets as long as w2 is in r2 and its POS and location in r2 corresponds to r1. To define
a thesaurus synset, we tag w1 with its POS and look for all thesaurus synsets of that POS
containing w1. We allow this rewrite if PMI(w1, w2) > λ (=-2.5 based on a devset). We calcu-
late PMI as log (#w1 occurs in synsets of w2+#w2 occurs in synsets of w1)

(# of synsets of w1×# of synsets of w2)
. Some words can be both synonyms

and antonyms in different situations. For example, thesaurus lists ‘bad’ as a synonym and an
antonym of ‘good’, likewise for ‘cool’ and ‘hot’. We do not allow antonyms in these rewrites.

Thesaurus synonyms can verify ‘offer a vast range of ⇒ provide a wide range of’, since
offer-provide, and vast-wide are thesaurus synonyms. We use Roget’s 21st Century Thesaurus
in KGLR implementation.
Negating rules: We reject rules where r2 explicitly negates r1 or vice versa. We reject a rule if
r2 is same as r1 if we drop ‘not’ from one of them. For example, the rule ⟨be the president of
⇒ be not the president of⟩, will be rejected.
Wordnet Hypernyms: We replace word/phrase w in r1 by its Wordnet hypernym if it is in r2.
We prove ‘be highlight of⇒ be component of’, as Wordnet lists ‘component’ as a hypernym
of ‘highlight’.
Dropping Adjectives/Adverbs/Superlatives: We drop any adjective, adverb, superlatives or
comparatives (e.g., ‘more’, ‘most’) from r1. This lets us verify ‘be most important part of⇒ be
part of’.
Gerund-Infinitive Equivalence: We convert infinitive constructions into gerunds and vice versa.
For example, ‘starts to drink ≡ starts drinking’.
Deverbal Nouns: We use Wordnet’s derivationally related forms to compute a verb-noun pair
list. We allow back and forth conversions from “be noun of” to a related verb. So, we verify ‘be

4http://paraphrase.org/#/download
5https://www.thesaurus.com
6https://www.thesaurus.com/browse/produce/12

http://paraphrase.org/#/download
https://www.thesaurus.com
https://www.thesaurus.com/browse/produce/12
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cause of⇒ cause’.

Light Verbs and Serial Verbs: If a light verb precedes a word with derivationally related noun
sense, we delete it. Similarly, if a serial verb precede a word with derivationally related verb
sense, we delete it. We identify light verbs via the verbs that frequently precede a ‘(a|an)(verb|deverbal
noun)’ pair in Wikipedia. Serial verbs are identified as the verbs that frequently precede another
verb in Wikipedia. Thus we can convert ‘take a look at⇒ look at’.

Preposition Synonyms: We manually create a list of preposition near-synonyms such as in-
to, in-at, at-near, in-by, as-to be. We replace a preposition by its near-synonym. This proves
⟨translated into⇒ translated to⟩.
Be-Words & Determiners: We drop be-words (‘is’, ‘was’, ‘be’, etc.) and determiners from r1

and r2.

Active-Passive: We allow active form like (es, verb, eo) to be rewritten as its passive form
(eo, be verb by, es).

Redundant Prepositions: We find that often prepositions other than ‘by’ often can be alterna-
tively used with passive forms of some verbs. Moreover, some prepositions can be redundantly
used in active forms too. For example, ‘(es, absorb, eo)↔ (eo, be absorbed in, es)’, or similarly,
‘(es, attack, eo)↔ (es, attack on, eo)’ To create such a list of verb-preposition pairs, we simply
trust the argument-overlap statistics. Statistics here do not make many errors since the base verb
on both relations is the same.

Implementation: KGLR allows repeated application of these rewrites to modify r1 and r2. If it
achieves r1 = r2 it verifies the inference rule. For tractable implementation KGLR uses a depth
first search approach where a search node maintains both r1 and r2. Search does not allow
rewrites that introduce any lexical (lemmatized) entries not in original words(r1) ∪ words(r2).
If it ca not apply any rewrite to get a new node, it returns failure.

Many implications are proved by a sequence of rewrites. E.g., to prove ‘(es, be a major
cause of, eo)⇒ (eo, be caused by, es)’, the proof proceeds as: (es, be a major cause of, eo)⇒
(es, be major cause of, eo) ⇒ (es, be cause of, eo) ⇒ (es, cause, eo) ⇒ (es, be caused by, eo)
by dropping determiner, dropping adjective, deverbal noun, and active-passive transformation
respectively. Similarly, ‘(es, helps to protect, eo) ⇒ (es, look after, eo)’ follows from gerund-
infinitive conversion (helps protect), dropping support from serial verbs (protect), and thesaurus
synonym (look after).

8.4 Experiments

KGLR verifies a subset of rules from CLEAN and PPDBe to produce, VCLEAN and VPPDBe.

Through our experiments we seek answers to the following research questions: (1) What
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is the precision and size of the verified subsets compared to original corpora? (2) How does
additional knowledge generated after performing inference using these rules compare with each
other? and (3) Which rewrites are critical to KGLR performance?
Comparison of CLEAN and VCLEAN: The original CLEAN corpus has about 102K rules.
KGLR verifies about 36K rules and filters 66K rules out. To estimate the precisions of CLEAN

and VCLEAN we independently sampled a random subset of 200 inference rules from each.
We asked two annotators (graduate-level NLP students) to label the rules as correct or incorrect.
Rules were mixed, and the annotators were blind to the system that generated the rule. Our
initial annotation guideline was similar to that of textual entailment — label a rule as correct
if the consequent can usually be inferred given the antecedent, for most naturally occurring
argument-pairs for the antecedent.

Our annotators faced one issue with the guideline: some inference rules were valid if (es,eo)
were bound to specific types and not valid for others. For example, ‘(es, be born in, eo) ⇒
(es, be birthplace of, eo)’ is valid if eo is a location, and not a year. Even seemingly-correct
inference rules, e.g., ‘(es, is the father of, eo)⇒ (eo, is the child of, es)’, make unusual incorrect
inferences: (Gandhi, is the father of, India) does not imply (India, is the child of, Gandhi).
Unfortunately, these corpora do not associate argument-type information with their inference
rules.

To mitigate this, we refined the annotation guidelines to accept inference rules as long as
they are valid for some type-pair. The inter-annotator agreement with this modification was 94%
(κ = 0.88). On the subset of the tags where the two annotators agreed, we find the precision
of CLEAN to be 48.9%, whereas VCLEAN was 82.5% precise – much more useful for real-
world applications. Multiplying the precision with their sizes, we find the effective yield7 of
CLEAN to be 50K compared to 30K for VCLEAN. Overall, we find that VCLEAN obtains a
34 point precision improvement with an effective fact yield of about 60%. We summarize all
performance details in Table 8.2.

Error Analysis: Most of VCLEAN errors are due to erroneous (or unusual) thesaurus syn-
onyms, example (‘cast’, ‘drop’), (‘talk’, ‘sing’) are synonymous in thesaurus. For missed recall,
we analyzed the rules in CLEAN but missed by VCLEAN. We find that only about 13% of those
are world knowledge rules (e.g., rule 6 in Figure 8.1). Other missed recall is because of some
missing rewrites, missing thesaurus synonyms (‘let go of’, ‘free’ are not synonymous in the-
saurus) and spelling mistakes (the rule ‘dont know about’ =⇒ ‘don know’ can’t be verified),
which can potentially be captured by using other resources and adding rewrite rules.
Comparison of PPDBe and VPPDBe: Unlike CLEAN, the PPDB2.0 dataset associates a con-
fidence value for each rule, which can be adjusted to obtain different levels of precision and

7Yield is proportional to recall
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System CLEAN VCLEAN
Size 102,565 36,229
Rule Precision 48.9% 82.5%
Rule Yield 50,154 29,889
Fact Precision 49.1% 81.6%
Fact Yield 7 million 4.5 million
System PPDBe(0.342) VPPDBe

Size 85,272 85,261
Rule Precision 44.2% 71.4%
Fact Precision 22.16% 51.30%
Fact Yield 41 million 35 million

Figure 8.2: The precision and yield of inference rules after KGLR validation, and that of KB
generated by inference using these rule-sets. Comparison with PPDBe is yield-controlled.

yield. We control for yield so that we can compare precisions directly.
We operate on the PPDBe subset that has OpenIE-like relation phrase on both sides; this

was identified by matching to ReVerb syntactic patterns [Etzioni et al., 2011]. This subset is
of size 402K. KGLR on this produces 85K verified rules (VPPDBe). We find the threshold for
confidence values in PPDBe that achieves the same yield (confidence > 0.342).

We perform annotation on PPDBe(0.342) and VPPDBe using the same annotation guide-
lines as before. The inter-annotator agreement was 91% (κ = 0.82). On the subset of the tags
where the two annotators agreed, we find the precision of PPDBe to be low: 44.2%, whereas
VPPDBe was evaluated to be 71.4% precise. We notice that about 80% PPDB relation phrases
(example, ‘assist in’, ‘permit’ and ‘produce’) are of length 1 or 2 (whereas 50% of CLEAN rela-
tion phrases are of length ≥ 3). This contributes to slightly lower precision of VPPDBe, as most
rules are proved by thesaurus synonymy and the power of KGLR to handle compositionality of
longer relation phrases does not get exploited.
Comparison of Inferred Facts: New facts can be inferred by applying inference rules to a
KB. We independently apply VCLEAN’s and CLEAN’s inference rules on a public corpus of
4.2 million ReVerb triples.8 Since ReVerb itself has significant extraction errors (our estimate
is 20%) and our goal is to evaluate the quality of inference, we restrict this evaluation to only
the subset of accurate (high confidence) ReVerb extractions.

VCLEAN and CLEAN facts: We sampled about 200 facts inferred by VCLEAN rules and
CLEAN rules (applied over accurate ReVerb extractions). We gave the original sentence and the
inferred facts to the two annotators. We obtained a high inter-annotator agreement of 96.3%
(κ = 0.92), and we discarded disagreements from the final analysis. Overall, facts inferred
by CLEAN achieved a precision of about 49.1%, and those inferred by VCLEAN obtained an

8http://reverb.cs.washington.edu

http://reverb.cs.washington.edu
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System Precision Recall
KGLR (all rules) 85.4% 62.0%
w/o Negating Rules 85.4% 62.0%
w/o Antonyms 84.2% 62.0%
w/o Wordnet Hypernyms 86.1% 59.3%
w/o Dropping Modifiers 84.9% 59.6%
w/o Gerund-Infinitive Equivalence 85.2% 61.0%
w/o Light and Serial Verbs 85.0% 59.9%
w/o Deverbal Nouns 85.4% 62.0%
w/o Preposition Synonyms 86.9% 56.9%
w/o Active-Passive 85.0% 54.5%
w/o Redundant Prepositions 86.1% 61.6%

Figure 8.3: Ablation study of rule verification using KGLR rewrites on our devset of 600
CLEAN rules

81.6% precision. The estimated yields of fact corpora (precision×size) are 7 and 4.5 million for
CLEAN and VCLEAN respectively. This yield estimate does not include the initial 4.2 million
facts.

PPDBe and VPPDBe facts: As done previously, we sampled 200 facts inferred by PPDBe

and VPPDBe rules, which two annotators annotated. We obtained a good inter-annotator agree-
ment of 90.0%(κ = 0.8), and we discarded disagreements from the final analysis. Overall, facts
inferred by PPDBe achieved an inferior precision 22.2% and those inferred by VPPDBe ob-
tained an improvement of about 29% (51.3% precision). Short relation phrases (mostly of length
1 or 2, which forms 80% of PPDBe) contribute to low precision of VPPDBe. Example low pre-
cision VPPDBe rules include ⟨ (X, be, Y)⇒ (X, obtain, Y)⟩, ⟨ (X, include, Y)⇒ (X, come, Y)⟩,
which were inaccurately verified due to thesaurus errors. The estimated yields of fact corpora
are 41 million and 35 million for PPDBe and VPPDBe respectively.

Ablation Study of KGLR rewrites: We evaluate the efficacy of different rewrites in KGLR by
performing an ablation study (see Table 8.3). We ran KGLR by turning off one rewrite rule on
a sample of 600 CLEAN rules (our development set) and calculating its precision and recall.
The ablation study highlights that most rewrites add some value to the performance of KGLR,
however antonyms and dropping modifiers are particularly important for precision, and active-

passive and redundant preposition add a substantial recall.

The ablation study highlights that most rewrites add some value to the performance of
KGLR, however antonyms and dropping modifiers are particularly important for precision and
active-passive and redundant preposition add substantial recall.

Discussion: KGLR’s value is in precision-sensitive tasks such as a human-facing demo or
downstream NLP application (like question answering) where error propagation is highly un-
desirable. Along with high precision, KGLR still obtains acceptably good yield.
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Our annotators observe the importance of type-restriction of arguments for inference rules
(similar to rules in Schoenmackers et al. [2010]). Type annotation of existing inference rule
corpora is important for obtaining high precision fact predictions. We also made a similar ob-
servation in the macro inference setting. In Chapter 5, a type-aware inference model shows
improved KBC performance. Hence, building typed inference rule corpora is a promising fu-
ture direction.

Generally, inference rules are of two types — linguistic/synonym rewrites (discussed in this
work) and world knowledge rules (see rule 6 in Fig 8.1), which are not discussed here. We
were surprised to estimate that about 87% of CLEAN rule base (statistically-generated) is just
linguistic rewrites! Obtaining world knowledge or common-sense rules at high precision and
scale, continues to be the key NLP challenge in this area.

8.5 Conclusions

We present KGLR, a linguistic rewrite system for inference rule verification, it exploits the com-
positionality of relation phrases, guided by existing knowledge sources (Thesaurus and Word-
net), to identify a high precision subset of existing inference rule base – CLEAN and PPDBe.
The validated CLEAN has a high precision of 82% (vs. 49%) at a yield of 59%. Validated
PPDBe has a precision of 71% (vs. 44%) at the same yield. The precision of inferred facts also
has a 32 % precision gain. We expect KGLR to be effective for precision-sensitive applications
of inference.

Note that KGLR is a rule verification algorithm for rule bases generated from various algo-
rithms discussed in background chapter (see Section 2.3.2).

Relevant Publication

• [Jain and Mausam, 2016]: “Knowledge Guided Linguistic Rewrites for Inference Rule
Verification”. Prachi Jain, Mausam. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2016.
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Chapter 9

Conclusions and Future Directions

Knowledge bases are background assets for various applications, including – visual reasoning,
reading comprehension, anomaly detection, information search, and retrieval. These knowledge
bases are incomplete. Much research focused on building models that add missing facts in such
KBs. Over time we also identified various ways to improve KBC performance by augmenting
KBC models with different gadgets — type, time, language-oriented.

The underlying principles of the research work discussed in this thesis focus on (1) per-
forming qualitative analysis to inspire model design; (2) adding appropriate modeling priors
based on the task at hand; (3) verifying that the model meaningfully incorporates the priors; (4)
carefully designing the evaluation criterion.

In chapter 4, an extensive qualitative analysis of Matrix Factorization (MF) model helps us
identify that under-treatment of OOV-entity pairs is the reason behind its poor performance.
We developed a series of extensions to mitigate the effect of OOVs in MF. Our most successful
model uses ComplEx (Tensor Factorization – TF model) to augment our improved version of
MF via a regularized additive loss. Note that a basic MF added to TF isn’t robust – only an
“OOV trained” MF when integrated with TF attains good performance. Next in chapter 5, we
observe that KBC models often make entity predictions that are incompatible with the type
required by the relation. In chapter 8, a careful analysis revealed that inference rules corpus
(which are often generated using distributional similarity like argument-pair overlap) have a
very low precision, not enough to be useful for many real tasks.

KBC models are customized based on the task at hand. In chapter 5, to incorporate type
information into the base factorization model, we enhance it with two type-compatibility terms
between entity relation pairs. In chapter 7, we build models for temporal knowledge bases in
which entities, relations, and time are all embedded in a uniform, compatible space. Our model
TIMEPLEX also exploits the recurrent nature of some facts/events and temporal interactions
between pairs of relations. In chapter 8, we discuss KBC methods for OpenIE KBs, where
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entities and relations are represented via textual strings. We exploit the compositionality of the
text and linguistic insights to improve the precision of the rule corpus and improve Open-KBC
performance.

In the various models proposed in this thesis, we assess whether the embeddings produced
by them meaningfully capture the modelling prior. In Chapter 5, we confirm that our type mod-
els capture type information better, we correlate the embeddings learned without type supervi-
sion with existing type catalogs. We find that our embeddings indeed separate and predict types
better. In Chapter 7, our diagnostics suggest that the learnt time embeddings are temporally
meaningful, and TIMEPLEX makes fewer temporal consistency and ordering mistakes.

This thesis also emphasizes carefully designing evaluation criteria for a fair estimation of
model performance. In chapter 4, we propose a new evaluation protocol that makes compar-
isons between MF and TF models fair. The new properly designed evaluation protocol helped
us identify that MF model performance is overestimated. In chapter 7 we found that existing
TKBC models heavily overestimate link prediction performance due to imperfect evaluation
mechanisms. In response, we propose improved TKBC evaluation protocols for both link and
time prediction tasks, dealing with subtle issues that arise from the partial overlap of time in-
tervals in gold instances and system predictions.

While the KBC models were developed, the quality of the underlying GPU architectures
also improved, allowing us to study large models. Chapter 6 identified model training, particu-
larly negative sampling, as crucial to model performance. We train large dimensional models by
contrasting positive examples with all entities (very large number of entities) to improve the un-
derlying model’s performance. In particular COMPLEX-V2 (with base-model CX) obtain best
or near best scores.

All the KBC models proposed in this thesis are rigorously evaluated on a variety of baseline
datasets. Our TIMEPLEX model (discussed in Chapter 7) still has state-of-the-art link prediction
performance on time-interval datasets – WIKIDATA12k and YAGO11k. We release all the
datasets and code used in this thesis for further research 1.

Note that the best model (hybrid MF-TF) of Chapter 4 is not carried forward as the base-
line model for the next work. The model performance reported in Chapter 5 are comparable to
model performances reported in Chapter 6. We also trained the best model from Chapter 5 –
TypeComplex with larger (all) set of negative examples and the performance of the model im-
proved but it was still not competitive with the underlying base model ComplEx (when trained
with larger number of negative examples) – COMPLEX-V2. Also, various methods from dif-
ferent chapters are implemented with different hyperparameters, eg. embedding dimensions or
number of negative samples. Also the models are implemented in different frameworks – Chap-

1https://github.com/dair-iitd/

https://github.com/dair-iitd/
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Figure 9.1: This figure demonstrates the benefits of additional temporal information for entity
alignment and the multi-KBC task using dummy data. Following inferences would have been
difficult if we ignored time information. (1) Sachin Bansal of KB1 and Sachin Bansal of KB2
are different entities as the two graduated at different times. (2) Sachin Bansal of KB1 and
Sachin Bansal of KB3 cannot be the same as a person cannot graduate before he is born. (3)
Sachin Bansal of KB2 and Sachin Bansal of KB3 are likely to be the same as his graduation
age is 24 years which is close to the average age of graduation (as computed in Section 7.4.2).

ter 4 models are implemented in keras (theano), and the rest are implemented in pytorch. This
results in the performance of a model different across different chapters, even on one fixed
dataset. Both the issues arise because the methods were developed at different points in time,
and the state of the art (or best practices) also evolved contemporaneously, leading to baselines
that were moving targets themselves.

In addition, there are multiple research directions emanating from this thesis and contem-
porary research which can be pursued in the future:

• Multi-Lingual Knowledge Base Completion: Knowledge Bases are now expanding to
multiple languages. Most KBC research has been focused on mono-lingual single KBs.
However, building a KBC model which can leverage unique information available across
various KBs of different languages is the need of the hour. Entity alignment (EA) and
Relation alignment (RA) are important subtasks for multilingual KBC. On training a
joint model for the three tasks – KBC, EA and RA, we obtained improved performance
on all three tasks on DBP5L dataset [Singh et al., 2021]. DBP5L benchmark Chen et al.
[2020] is derived from DBPedia in five languages: English (En), Greek (El), Spanish
(Es), Japanese (Ja) and French (Fr). We need more datasets that have KBs in multiple
languages. Besides the need for building more datasets for doing this research, we also
identify the following directions to work on:

Time information: is available in various KBs. This attribute can be used to improve in-
ference and entity alignment across multiple KBs (which can be multilingual or monolin-
gual). For examples see Figure 9.1, the facts (Sachin Bansal, obtained bachelors degree
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from, IIT Delhi, in 1970) and (Sachin Bansal, obtained bachelors degree from, IIT Delhi,

in 2005) from KB 1 and KB 2 can be misinterpreted to be talking about the same ‘Sachin

Bansal’, if we ignore the time information. Another fact (Sachin Bansal, born in, Chandi-

garh, 1981) from KB 3 is more likely to be related to Sachin Bansal of KB 2 and than
of KB 1, as KB 1’s Sachin Bansal graduated before KB 3’s Sachin Bansal was born (also
see relation ordering property discussed in Section 7.4.2). Also if Sachin Bansal of KB 2

and KB 3 are same, than Sachin Bansal’s age of graduation is 24 years, which is close to
average age of graduation computed from data in Section 7.4.2 (time gaps between rela-
tions can be modeled). More ideas from Chapter 7 can be borrowed to build a time-aware
multi-lingual and multi-KB completion model.

Type information: is very valuable for improving entity alignment and KBC performance.
For example, facts from two different KBs — (Holy basil, is used in, medicine) and (Thai

food, is served at, Holy Basil), mentions two different entities with the same name Holy

basil. Both entities have a different type; one is a plant, and the other is a restaurant.
Also, a new fact (Holy basil, is used in, Thai food) is more related to the first fact we
mentioned, as they talk about the same entity Holy basil the plant. Modeling such entity-
type information across multiple KBs in an unsupervised manner is an exciting direction
to pursue.

• Multi-Modal Knowledge Base Completion: Knowledge Bases can be heterogeneous,
that is, they may comprise information in different modalities, including - text, numerical
values, and images. Building methods that can encode various modalities and infer new
facts (in various modalities) in KBs is an exciting direction to pursue. We discussed how
to handle text and numeric attributes, but this thesis does not explore image attributes.

Images naturally have a substantial type signal. For example, the Wikipedia page of all
countries has the national flag of the respective country as the head image. Hence the
image of different countries looks similar. Same way, the image of entities of type people
look similar, but they are very different from the pictures of water bodies (see figure 9.2).
Such a strong type signal may further improve KBC model performance.

Recent image-transformers (like BEiT Bao et al. [2021]) can be used to obtain image
embeddings. Distance between the image and entity type embeddings can be added to the
loss function of the type model (see equation 5.2) for learning improved type embedding
and hence improving KBC performance.

• Typing for Open Knowledge Base Completion: Open KBs are generally large. Its enti-
ties and relations are not canonicalized, leading to the storage of redundant and ambigu-
ous facts. Open KBs also suffer from incompleteness. Building KBC models for Open
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(a)

(b)

(c)

Figure 9.2: Images of entities of similar type look alike. Also, they look different from pictures
of other entity types. In this figure, we show Wikipedia title images of entities of type (a) person
(b) countries (c) water bodies.

KBs is an under-explored area. We can build off our previous work on typed models
(discussed in chapter 5) to infer new type compatible facts in OpenKBs.

• TKBC methods for OpenIE KBs: A fraction of OpenIE KBs also has temporal knowl-
edge of facts. Porting TKBC ideas to this new dataset is a promising future direction.

—————————————————–
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Luis Galárraga, Geremy Heitz, Kevin Murphy, and Fabian M Suchanek. Canonicalizing open
knowledge bases. In Proceedings of the 23rd ACM International Conference on Conference

on Information and Knowledge Management, pages 1679–1688. ACM, 2014.

https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf
https://doi.org/10.1016/j.artint.2005.03.001
http://ml.cs.washington.edu/www/media/papers/reverb_emnlp2011.pdf
http://ml.cs.washington.edu/www/media/papers/reverb_emnlp2011.pdf
https://aclanthology.org/Y15-1010/
https://aclanthology.org/Y15-1010/
https://doi.org/10.18653/v1/D19-1269


112 BIBLIOGRAPHY
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