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Abstract

Open Information Extraction (Open IE) aims to extract semi-structured information from
natural language text in a domain-independent fashion. It is formulated as extracting a set of
tuples of the form (subject, relation, object) where each of the fields corresponds to a phrase
in the text. Compared to ‘closed’ information extraction based on canonical KGs, it avoids the
need for experts to define the ontology and data curators, making it scalable across domains. In
this dissertation, we describe novel Open IE systems that take advantage of recent advances in
deep neural models to tackle multiple challenges associated with building automated systems
for the task of Open IE in both monolingual and multilingual settings. We propose solutions
that represent significant advances across multiple axes — (1) design of new models, (2) exten-
sion to multiple languages, (3) support for linguistic phenomena, (4) downstream application
to Knowledge Bases and (5) release of new systems. In models, we build novel deep learning
architectures that establish new state-of-art performance by faithful modelling of the Open IE
task with pre-trained language models. We experiment with both sequence-to-sequence gen-
eration models (named IMoJIE, Gen2OIE) and sequence labeling models (named IGL, CIGL)
for the task. IMoJIE (Iterative Memory-based Joint Open Information Extraction) iteratively
re-encodes the sentence along with the extractions generated so far to generate the remaining
extractions, ensuring diversity in the extractions. Gen2OIE is a two-stage generative model that
first generates all the relations in the sentence, followed by generating extractions corresponding
to each relation. The IGL (Iterative Grid Labeling) model labels all the words in the sentence
in an iterative fashion with tags dictating their position in the Open IE tuples. CIGL improves
over IGL by adding constraints in training to increase the coverage of the extractions. In mul-
tilinguality, to enable extension of Open IE to other languages, we need training data in the
respective language. Therefore, we build a pipeline for translating English Open IE training
data and generating high-quality data in Spanish, Portuguese, Chinese, Hindi and Telugu. In
linguistic phenomena, noticing that current Open IE systems lack in properly handling certain
linguistic phenomena such as noun compounds and conjunctions, we develop systems for noun
compound interpretation and coordination analysis which are incorporated into Open IE sys-
tems. In applications of Open IE extractions, we build a multilingual fact linking benchmark
and model for connecting textual extractions to their knowledge bases while accounting for facts
that can exist in multiple languages. In another application, we advance the state of art in Open
Knowledge Base Completion by using a two-stage entity-aware pipeline to infer new triples. Fi-
nally in systems, we release the OpenIE-6 system that represents the cutting-edge in the line of
Open IE software packages.



सार
खुली सूचना नष्कषर्ण (ओपन आईई) का उदे्दश्य प्राकृ तक भाषा में लखा हुआ पाठ से क्षेत्र-स्वतंत्र रूप में
अधर्-संर चत जानकारी नकालना है। ओपन आईई ( वषय, संबंध, वस्तु) के सेट नकालने के रूप में प रभा षत
कया गया है, जहां प्रत्येक फ़ पाठ में एक वाक्यांश से मेल खाती है। कैनो नकल केजी पर आधा रत 'बंद'
सूचना नष्कषर्ण क तुलना में, यह ऑन्तोलॉजी और डेटा क्यूरेटसर् क आवश्यकता से बचाता है, जससे यह
सभी क्षेत्र में काम कर लेता है। इस शोध प्रबंध में, हम नए ओपन आईई सस्टम्स का वणर्न करते हैं जो एकभाषी
और बहुभाषी दोनों ही से टग में ओपन आईई के कायर् के लए ऑटोमेटेड सस्टम बनाता है। हम ऐसे समाधान
प्रस्ता वत करते हैं जो कई अक्षों में महत्वपूणर् प्रग त का प्र त न धत्व करते हैं --- (1) नए मॉडलों का डज़ाइन,
(2) कई भाषाओं में वस्तार, (3) भाषाई घटनाओं के लए समथर्न, (4) नॉलेज बेस के डाउनस्ट्र म अनुप्रयोगऔर
(5) नए सस्टम क रलीज। मॉडलों में, हम नए डीप ल नग आ कटेक्चर बनाते हैं जो प्री-टे्र नग लैंग्वेज मॉडल
के साथ ओपन आईई टास्क का ईमानदारी से मॉड लग करके नए अत्याधु नक प्रदशर्न ा पत करते हैं। हम
इस काम के लए सीक्वेंस-टू-सीक्वेंस जेनरेशन मॉडल (आईएमओजेई, जेन2ओईई नाम) और सीक्वेंस लेब लग
मॉडल (आईजीएल, सीआईजीएल नाम) दोनों के साथ प्रयोग करते हैं। इमोजी (इटरे टव मेमोरी-आधा रत ज्वाइंट
ओपन इंफॉमशन एक्सटै्र न) शेष नष्कषर्ण उत्प करने के लए अब तक उत्प नष्कषर्ण के साथ वाक्य
को जोड़ता है, जससे नष्कषर्ण में व वधता सु न त होती है। जेन2ओईई एक दो-स्टेज वाला जेनरे टव मॉडल
है जो पहले वाक्य में सभी संबंध उत्प करता है, उसके बाद हर संबंध के अनुरूप नष्कषर्ण उत्प करता है।
आईजीएल (इटरे टव ग्रड लेब लग) मॉडल वाक्य में सभी शब्दों को ओपन आईई टैग के साथ पुनरावृ फैशन
में लेबल करता है। सीआईजीएल नष्कषर्ण का कवरेज बढ़ाने के लए टे्र नग में प्र तबंध लगाकर आईजीएल पर
सुधार करता है। ओपनआईई के नष्कषर्ण को अन्य भाषाओं में सक्षम करने के लए, हमें संबं धत भाषा में टे्र नग
डेटा चा हए. इस लए, इं ग्लश ओपन आईई टे्र नग डेटा का अनुवाद करके े नश, पुतर्गाली, चीनी, हद और
तेलुगु में उ क्वा लट का डेटा उत्प करने के लए हम पाइपलाइन बनाते हैं। भाषाई घटनाओं में, इस बात पर
ध्यान देते हुए क मौजूदा ओपन आईई सस्टम कुछ भाषाई घटनाओं जैसे क नोन कंपाउंड और कंजं न को
सही तरीके से संभालने में कमी है, हम नोन कंपाउंड ाख्या और समन्वय व ेषण के लए सस्टम वक सत
करते हैं जो ओपन आईई सस्टम में शा मल कया जाता है। ओपन आईई नष्कषर्ण के अनुप्रयोगों में, हम एक
बहुभाषी तथ्य ल कग बेंचमाकर् और मॉडल बनाते हैं, जो कई भाषाओं में मौजूद तथ्यों का हसाब करते हुए उनके
ज्ञान के आधार पर नॉलेज बेस और नष्कषर्ण को जोड़ सकता है। एक अन्य अनुप्रयोग में, हम नए नष्कषर्ण का
अनुमान लगाने के लए पाइपलाइन का उपयोग करके ओपन नॉलेज बेस कंपलेशेशन में अत्याधु नक तकनीक
को आगे बढ़ाते हैं। अंततः सस्टम में, हम 'ओपनआईई-६' सस्टम जारी करते हैं जो 'ओपन आईई' सॉफ्टवेयर
पैकेजों क श्रेणी में अत्याधु नक का प्र त न धत्व करता है।
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Chapter 1

Introduction

The advent of World Wide Web brought along with it an explosion of information available
on the Internet, giving rise to the so-called, “Information Age”. However, much of this infor-
mation is unorganized due to the development of the Internet in a decenteralized manner from
its inception and preference of content writers to use natural language. Each source on the In-
ternet chooses their own unique way to express information, which may vary right from the
media used (e.g., video, audio, text, tables, etc. or any combination of them) to the presentation
style (such as markup and encoding formats used). Even within the scope of text, there exists
a broad spectrum of content expression style, ranging from the natural language used (such as
English, Spanish, and so on) to writing style. These choices may be dependent on factors such
as background or cultural norms of the creator and the intended audience.

Proper organization of this vast textual content can help convert data into information, that
can be used effectively by both humans and machines. This has traditionally been a primary
goal for both the Information Extraction (IE) and Information Retrieval (IR) communities. They
have focussed on different startegies for solving the problem. While the IR community tackles
it by building better ways to retrieve documents relevant to a user query, the NLP community
has taken a more fine-grained approach of assigning structure to the information latent in text.
Knowledge Bases (KBs) are a popular way to store such structured information in a consistent
manner. Traditional KBs provide an understanding of the textual content by summarizing them
as fact tuples, which often take the form of triples which represent a relationship between a
head entity and a tail entity in the format (head entity, relation/predicate, tail entity). Each such
predicate comes from a pre-defined canonical list that is curated by ontology experts. Moreover,
any extracted triple in typical IE settings must be disambiguated and presented in terms of
canonical entity and relation ids. However, this severely limits the rate of growth and coverage
of the constructed KBs. Open Information Extraction (Open IE) was introduced to obviate
excessive canonicalization and thus improve coverage.

Open Information Extraction (Open IE) (Banko et al., 2007; Mausam, 2016), is a general
purpose, domain agnostic Information Extraction (IE) paradigm that has been designed to han-
dle the scale and variety of text in the Internet age. Unlike Knowledge Base curation (Suchanek
et al., 2007; Auer et al., 2007; Bollacker et al., 2008), which relies on human-built ontologies to
provide a framework for the types of information extracted, Open IE has been designed to op-
erate in an entirely ontology-free manner. To achieve this, Open IE uses possibly mildly edited
spans from the input text itself in order to extract the information that is expressed in text. By
using the generally accepted notion of a fact as expressing the binary relation between two en-
tities, an Open IE system aims to extract all possible facts from an input sentence, where each
fact is expressed as a tuple containing (subject; relation; object) along with optional fields like
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Figure 1.1: Open Information Extraction (Open IE) systems extract tuples of the format (subject,
relation, object) from a sentence. A collection of such tuples form an Open Knowledge Base,
which can be used as a source of factual information. They provide additional value over using
raw-text due to the possibility of aggregating extractions from multiple source sentences via
clustering (Fan et al., 2019a).

additional arguments, location, time or context, depending on the Open IE system being used.1
Since all these phrases are extracted from the input text itself (or using words from a general
language vocabulary, in the case of relations not explicitly mentioned in the text), no ontology
is needed for expressing the information as facts.

An example is shown in Figure 1.1, where the following two tuples are generated the sen-
tence “Apple’s founder Steve Jobs died of cancer” - (Steve Jobs; [is] founder [of]; Apple) and
(Steve Jobs; died of; cancer). The square brackets indicate words that are not present in the
original sentence and have been added to make the extraction well-formed.

1.1 Semi-structured nature of Open IE
In the NLP literature, various schemes have been proposed to introduce structure into natural lan-
guage text, often converting it to some form of text-annotated graphs. Converting unstructured
text to structured forms has both linguistic and computational advantages. From a linguistic
standpoint, these structures can help give a better picture for understanding the meaning of the
sentence. From a computational standpoint, they provide additional features or make hidden
relations explicit, making it easier for downstream tasks. Some popular examples of structured
representations are explained as follows:

• Constituency parses (Younger, 1967; Aho andUllman, 1973) extract tree-style parse struc-
tures that are based on context-free grammers.

1In limited cases, even the object phrase is treated as optional, such as, (Ram; sings well; ).
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• Dependency parses (Mel’cuk et al., 1988; Nivre et al., 2016) find the lexical relation
between pairs of words from a set of Universal Dependency tags.

• Semantic Parsing represent text as logical programs using various formalisms such as
λ-DCS (Liang, 2013), Answer Set Programming (Baral, 2003), etc.

• Semantic Role Labeling (SRL) (Fillmore, 1985; Carreras and Màrquez, 2005; He et al.,
2017) extracts the predicate role and various argument roles.

• Question-Answering guided Semantic Role Labeling (QA-SRL) (He et al., 2015) enables
easily generating large scale annotated datasets for SRL using a question and answer
framework for identifying the various semantic roles.

• Abstract Meaning Representations (AMR) (Banarescu et al., 2013) uses annotated graphs
to express the semantic meaning of sentences.

Open IE chooses a representation where the text is represented as set of tuples. However,
it is semi-structured in nature. The tuples are made up of textual phrases that are not often
rigourously defined and only have some guiding principles (Stanovsky and Dagan, 2016). This
flexibility allows it to capture a richer variety of phenomena compared to other structured tasks
like semantic role labeling. For example, while SRL can use only single-word predicates, Open
IE often has multi-word predicates which can capture richer relations such as refused to visit or
took advantage of. On the other hand, it also lacks the richer information in SRL, which denotes
the exact link between each argument and the relation.

1.2 Relevance of Open IE
Owing to the domain-agnostic nature of Open IE, combined with the simplicity of its design,
Open IE has found use in a wide variety of NLP applications like question answering (Khot
et al., 2017; Yan et al., 2018), multi-document summarization (Ernst et al., 2021, 2022; Chris-
tensen et al., 2014; Fan et al., 2019a), word embeddings (Stanovsky et al., 2015), event schema
induction (Balasubramanian et al., 2013) and fact salience (Ponza et al., 2018).

Apart from established uses, Open IE holds a lot of potential in the deep learning era as
a rich source of factual knowledge. Explicit reasoning over such factual knowledge stores has
several advantages over implicitly storing the knowledge in the parameters of neural language
models. Implicit knowledge is hard to change because any change in the knowledge may have
non-local consequences. This requires re-training the entire model. Such changes are essential
to support due to the ‘ephemeral’ nature of many real-world facts. For example, the head of a
country is subject to change every few years or new topics of interest may arise with time, such as
COVID-19 from the year 2020 onwards. Supporting these additions or deletions of knowledge is
more straightforward when we use explicit, readable knowledge stores where the corresponding
facts can be added or deleted. Moreover, implicitly storing knowledge in parameters requires
increasing the scale of models to support the wide variety of information available. Hence,
explicit knowledge stores can help in reducing the model sizes as well (Hoffmann et al., 2022;
Rae et al., 2021).

Current knowledge stores often use raw-text itself (Borgeaud et al., 2022) or rely on Wiki-
Data (Verga et al., 2021) as the source of factual knowledge. However, due to the unstructured
nature of raw text, it is often difficult to control the facts the model uses for reasoning. More-
over, with WikiData, the coverage of facts is highly dependent on the existence of a high-quality
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ontology for the particular domain. Open IE tuples provide a promising alternative because the
tuples represent knowledge in a domain-agnostic manner, while using the familiar SRO-format
(Subject, Relation, Object). By searching for tuples that contain the entity in the subject or
object position, the facts can be filtered accordingly.

Open IE tuples can also be treated as a factual summary of the text. This can help reduce
the size of the textual corpora, which may be used for pre-training language models or as a
knowledge source in open-domain question answering. Thus, Open IE is a form of text-corpus
distillation, which can reduce the training times or the memory consumed, in the same vein as
standard techniques of model distillation that help reduce the size of the neural models.

Moreover, Open IE is even useful as a user-facing representation for its ease of human un-
derstandability, especially compared to other structured representations, such as semantic role
labeling, which require a detailed understanding of the various role definitions. Open IE tuples
often read as a factual sentence, with delimiters typically separating the tuple into clearly-defined
relation phrases and argument phrases.

1.3 Thesis Contributions
Approaches to Open IE used to be dominated by statistical and rule-based systems. Successful
systems built for the task (Etzioni et al., 2011; Christensen et al., 2011; Mausam et al., 2012;
Del Corro and Gemulla, 2013; Pal and Mausam, 2016; Saha et al., 2017; Saha and Mausam,
2018) have relied on a mix of linguistic rules and statistical pipelines. Having been developed
before the deep learning wave that swept NLP and many other fields, they do not benefit from
the generalization enabled by neural representations and unsupervised pre-training (Devlin et al.,
2019; Raffel et al., 2020) and supervised fine-tuning (Krizhevsky et al., 2012) due to the lack of
good quality training datasets. In this thesis, we work on enabling the deep learning ecosystem
in the context of Open IE.

Moreover, Open IE, like many other NLP tasks, has been predominantly developed for high-
resource languages like English, although the task definition imposes no such restrictions. Due
to the open nature of the task definition, it can be applied as it is to other languages as well.
Because early generations of Open IE systems often used language-specific insights, develop-
ment of systems was limited to popular languages which had support in the Open IE research
community. However, recent years have seen an increasing focus on multilingual NLP (Liu
et al., 2020b; Xue et al., 2020). This is due to the recognition of the importance of supporting a
wider population of the globe, along with the ease of using language-agnostic embeddings for
easily extending NLP support to low-resourced languages. In this thesis, we attempt to bring
this trend to the task of Open IE by idenfitying the critical challenges and proposing techniques
for solving them.

This thesis contributes to several parts of the Open IE, ranging from:

Models: Building better neural models specifically designed for the task.

Linguistic Phenomena: Enabling proper handling of coordinations and noun compounds in
Open IE extractions.

Multilinguality: Constructing strong translation pipelines for generating training data in other
languages.

Applications: Investigating the application of extracted triples in the context of knowledge
bases.
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Figure 1.2: Schematic of the overall contributions of the thesis. We introduce new Open IE
models, which are generation-based (IMoJIE, Gen2OIE) in Chapter 3 and labeling-based (IGL,
CIGL) in Chapter 4.We handle special linguistic phenomena in Open IE extractions such as
noun compounds (NCI) coordination analysis (Coord-IGL) in Chapter 5. We extend Open IE to
other languages by creating a novel training data translation technique (AACTrans) in Chapter 6.
We use Open IE in downstream applications of multilingual fact linking (MFL) and Open KB
completion (CEAR) in Chapter 7.

Systems: Releasing new Open IE systems that combine various functionalities developed in
this thesis.

The schematic of the overall contributions is shown in Figure 1.2. In the remaining part of the
introduction, we discuss these contributions further.

1.3.1 Models
A primary focus of this thesis is on progressively building strong neural models that establish
a new state of the art in performance on the task of English Open IE while balancing for fast
inference times. Extraction Open IE tuples can be posed as either a labelling task (Stanovsky
et al., 2018) or a generation task (Cui et al., 2018). In the labeling framework, each word of the
sentence is annotated with a tag indicating its role in a tuple as part of either the subject, relation,
object or absent from the tuple. Alternatively, the generative framework generates a tuple word
by word using a sequence-to-sequence model. Special delimiters are output to separate the dif-
ferent parts of the tuple. Generative modeling represents a more powerful representation for the
task as it can introduce new words in the extraction that are absent in the original sentence. This
comes at the cost of increased computation due to auto-regressive nature of generative models.
For example, generating the extraction (Steve Jobs; [is] founder [of]; Apple) from the sentence,
“Apple’s founder Steve Jobs attended Reed College,” requires generating two additional words,
‘is’ and ‘of’ in the relation.

Therefore, we explore both the types ofmodelingwhile building neural models, with IMoJIE
(Kolluru et al., 2020b) and Gen2OIE (Kolluru et al., 2022a) being sequence generation models
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while IGL and CIGL (Kolluru et al., 2020a) being sequence labeling models. The sequence
generation models are covered in Chapter 3, and the labeling models are covered in Chapter 4.

1.3.1.1 Generation models

IMoJIE: IMoJIE is an iterative sequence generation model that relies only on a pre-trained
encoder while allowing the decoder to be randomly-initialized at the beginning of training the
model. This enables the use of encoder-only pretrained models (like BERT (Devlin et al., 2019),
MuRIL (Khanuja et al., 2021), etc.) for the task of generative Open IE. It repeatedly appends
the generated extraction with the input sentence and the remaining extractions generated so far,
using a special separator token, [SEP], that helps to demarcate the different concatenated inputs.
This process converts a set of sequence generation problem (set of Open IE extractions) into an
iterative sequence generation approach (generating Open IE tuples, one extraction at a time).
IMoJIE prevents generation of redundant extractions that plagued previous neural generative
Open IE systems (Cui et al., 2018). This leads to an overall superior quality of generated extrac-
tions, improving upon the previously published state-of-art model by 50.28% due to the faithful
modeling of the task. At the time of publication, the model represented the first neural Open IE
model to makes use of advances in semi-supervised pre-training such as BERT.

Since Open IE lacks a large scale corpus of manually annotated training data, the training
data for IMoJIE was bootstrapped from extractions generated by prior high quality Open IE
systems like OpenIE-4 (Christensen et al., 2011; Pal and Mausam, 2016). Training on this data
enables the neural models to learn by imitating previous systems. Neural models are able to
correct some of the errors due to the power of neural generalization that takes advantage of the
vast amount of knowledge gained during the pre-training phase.

The IMoJIE architecture is described in Section 3.1.

Gen2OIE: In our next iteration of generative models, we develop the Gen2OIE model, which
represents the current state-of-art Open IE model. Extending Ro et al. (2020), Gen2OIE uses a
two-stage pipeline to first generate all relations present in the sentence using a Stage-1 Sequence-
to-Sequence (Seq2Seq) model and then a Stage-2 Seq2Seq model to generate all the extractions
containing the specific relation. This two-stage approach allows independent optimization of
each module, enabling the addition of a Relation Coverage (RC) heuristic that improves the
coverage of generated extractions in a language-agnostic manner. The model achieves a new
state-of-art performance in a total of six languages, including English. The Gen2OIE architec-
ture is described in Section 3.2.

1.3.1.2 Labeling models

IGL: We also developed the Iterative Grid Labeling (IGL) architecture that iteratively labels
each extraction as a sequence of subject, relation or object tags over the sentence words. The
iterative nature of the algorithm allows for capturing dependencies between the extraction, while
the architectural choices of word-level tagging enables an extremely fast model compared to
sequence generationmodels that outputs eachword of the extraction in an autoregressive fashion.
This results in a speedup of as much as 25× in terms of number of sentences processed per
second, compared to the IMoJIE model. The IGL architecture is described in Section 4.1.

CIGL: The speedup using IGL architecture is accompanied by a modest decrease in perfor-
mance. Therefore, we introduce constrained training of the model to balance this. The con-
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strained training increases the relation coverage by ensuring that certain words, such as verbs,
are always labelled as relation in at least one of the generated extractions. Since the constraints
are only imposed during training and do not effect the inference speed of the model, it results
in a significantly fast system with performance matching that of generative models. The CIGL
architecture is described in Section 4.2.

1.3.2 Linguistic Phenomena
We extend the capability of Open IE systems to handle two types of linguistic phenomena —
(1) conjunctions and (2) proper noun compounds. These are further discussed in Chapter 5.

1.3.2.1 Conjunctions

To handle conjunctions appropriately, we need to resolve the coordination structure ambiguity
(Ficler and Goldberg, 2016a; Saha and Mausam, 2018) where the exact boundaries of each of
the conjuncts should be identified. For example, the sentence “Jeff Bezos founded Amazon and
Blue Origin and invested in Google, Grail and ZocDoc” should correctly identify the conjuncts
associated with the two conjunctions – Amazon, Blue Origin for the first “and”, and Google
Grail, ZocDoc for the second “and” in the sentence. This allows generation of correct Open IE
extractions such as (Jeff Bezos; founded; Amazon), (Jeff Bezos; invested in; Google), etc.

By identifying that the problem can also be posed as an iterative labeling scheme, we use
the Iterative Grid Labeling (IGL) architecture from Section 4.1 and use it for identifying the
(possibly nested) coordination structure elements. The IGL scheme results in a gain of 12.3%
F1 compared to prior coordination analysis models (Teranishi et al., 2019). Once correctly iden-
tified, we use heuristics to split the sentence into multiple sub-sentences, each of them involving
individual conjuncts. Open IE then generates the final set of extractions by aggregating extrac-
tions generated from each of these sub-sentences. Properly handling conjunctions results in a
gain of 3.6% F1 in final performance. Handling conjunctions for Open IE are further described
in Section 5.1.

1.3.2.2 Proper Noun Compounds

Proper Noun Compounds (PNCs) often express implicit relations that are currently ignored by
Open IE systems. For example, a “Covid vaccine” is a “vaccine that immunizes against the
Covid disease”. Adding this understanding helps generate better extractions. In the sentence,
“Researchers at Oxford successfully developed a Covid vaccine”, the following extraction can be
generated (Researchers at Oxford; successfully developed a vaccine that immunizes against; the
Covid disease). In absence of the interpretation, the extraction would be limited to (Researchers
at Oxford; succcessfuly developed; a Covid vaccine). We collect a new dataset called ProNCI
(Kolluru et al., 2022b) that contains 25K proper noun compounds (first word is a proper noun)
and their manually annotated semantic interpretations. We train generativemodels for the task of
interpretation and integration into the sentence. The Open IE extractions with proper compound
noun at the start of an object are integrated with the compound noun interpretation and post-
processed to get the final set of extractions. This results in an increased yield of 7.5%, where
the added extractions have a precision of 92%. Adding proper noun compound interpretations
to Open IE is further described in Section 5.2.
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1.3.3 Multilinguality
The primary challenge in extending Open IE to multiple languages is the lack of good-quality
training data in the respective languages. The data which is used for training neural models is
quintessential for determining the quality of the final system. This is a particularly important
factor in the case of Open IE, which is a “resource-poor” task and lacks access to a high quality
training corpus. The current state is likely due to the facts that at its inception, Open IE was
pitched as a completely unsupervised paradigm, because using training data was regarded as
critical requirement for making the system domain-specific (Banko et al., 2007). However, this
may no longer a constraint for neural models that can exhibit more substantial out-of-domain
generalization than prior statistical/symbolic systems.

The lack of high quality training data is particularly acute in languages other than English,
which do not often have strong Open IE systems that can be used for bootstrapping neural sys-
tems. Hence, neural Open IE systems have been developed primarily for English. To overcome
this problem, we devise a novel translation technique called AACTrans (Kolluru et al., 2022a).
It translates Open IE examples from English to other languages. The AACTrans methodology
ensures that the sentence and extractions are translated in a consistent fashion, avoiding any lex-
ical or semantic/syntactic inconsistencies that may result from using independent translations
of the sentence and extractions. We find that this style of translation consistently outperforms
independent translations. When we test this technique on five languages—Spanish, Portuguese,
Hindi, Telugu and Chinese — we find that translating the data using AACTrans results in a con-
sistent improvements with as much as 1.7% F1 in Spanish and 1.3% F1 in Telugu. Moreover,
the final systems are significantly better than previous state-of-art zero-shot system, Multi2OIE
(Ro et al., 2020), by a large margin of 6-25% F1. The AACTrans technique is further described
in Section 6.1.

1.3.4 Applications
Open IE triples are helpful in constructing Open KBs (Gashteovski et al., 2019; Galárraga et al.,
2014), that can be used as a source of general knowledge in various knowledge-seeking applica-
tions. As part of this thesis, we worked on inferring new facts in Open KBs using a novel Knowl-
edge Base Completion (KBC) method called Cross-Entity Aware Re-ranking (CEAR) (Kolluru
et al., 2021a). The CEAR model uses a two-stage architecture that re-ranks top-k predictions
of an existing Knowledge Graph Embedding (KGE) model. This architecture establishes a new
state of the art in a publicly available Open KB dataset - OLPBench (Broscheit et al., 2020),
improving performance by as much as 5.3% HITS@1, compared to prior systems. The CEAR
model is described in Section 7.2.

We further explore how to align natural language sentences or Open IE triples with standard
Knowledge Bases such as WikiData2 that contain ontologically-grounded triples. The goal of
developing the system was to further handle language disparities in both the input and the facts
that have to be linked, as facts in WikiData are often biased towards high resource languages
like English while the input queries may come from any language (Kaffee et al., 2017). For this
purpose, we release a new testing dataset and model architecture for the task Multilingual Fact
Linking (MFL) (Kolluru et al., 2021b) in English and six Indian languages. MFL is described
in Section 7.1.

2https://www.wikidata.org/wiki/Wikidata:Main_Page
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1.3.5 Systems
As part of the thesis, we released a new Open IE system which we call OpenIE6 (Kolluru et al.,
2020a), which represents the latest in the line of Open IE systems, OpenIE-4 (Christensen et al.,
2011; Pal and Mausam, 2016) and OpenIE-5 (Saha et al., 2017; Saha and Mausam, 2018).
It uses the CIGL labeling architecture for generating Open IE extractions and the IGL archi-
tecture for handling examples with coordination structures. This system has been released at
https://github.com/dair-iitd/openie6 and has been downloaded more than 2K times at the time
of writing this dissertation.

In an updated version of the system, called OpenIE6.1, we release a repository which con-
tains code for all three systems (IMoJIE, Gen2OIE and CIGL) in a single framework, along
with handling coordinations and noun compounds, as dictated by user inputs. This also allows
the user to optimize between accuracy and speed, as needed. We describe this final system in
Chapter 5. All of the individual code bases have also been released, with the links given in the
respective chapters.

1.4 Thesis Outline
The remaining part of the thesis is organized as follows:

(i) Chapter 2 gives a detailed overview of various Open IE systems proposed so far and their
applications,

(ii) Chapter 3 describes generative approaches to Open IE, discussing the IMoJIE and
Gen2OIE neural models,

(iii) Chapter 4 describes labeling approaches to Open IE, discussing the CIGL neural model,

(iv) Chapter 5 describes how to handle linguistic features such as coordinations and proper
noun compounds,

(v) Chapter 6 describes the efforts in developing Open IE for multiple languages,

(vi) Chapter 7 describes two applications where the Open IE triples are used in context of
Knowledge Graphs, and

(vii) Chapter 8 describes the final conclusions of the thesis and potential research problems
that remain open in this area.
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Chapter 2

Related Work

In this chapter, we first define the task of Open Information Extraction (Section 2.1) and dis-
cuss some of the existing systems built for the task. We classify the existing systems into two
categories – those which are built primarily for the English language (Section 2.3) and those
which are built for other languages (Section 2.4). Within each of the two categories, we divide
it further into two sub-groups of models – the previous generation syntactic/statistical models
and the more recent deep learning models. We also look at the evaluation of Open IE systems
(Section 2.2), applications of Open IE (Section 2.5) and other tasks related to Open IE (Sec-
tion 2.6).

There have been multiple efforts in the past to build a comprehensive summary of Open IE
systems. Pai et al. (2022) present a recent survey of methods used in Open IE, with a significant
focus on neural systems. Mausam (2016) also presents a comprehensive summary of Open
IE, including the downstream applications of Open IE. Downstream applications include event
schema induction, traditional information extraction, text comprehension, sentence similarity
(summarization), lexical similarity and analogy tasks. Niklaus et al. (2018) also covers non-
neural Open IE systems. The current chapter builds on these surveys by highlighting the aspects
relevant to understanding the various methods proposed in the dissertation.

2.1 Task Definition
The task of Open Information Extraction (Open IE) aims to extract all possible relational tuples
from text, which may be a single sentence or a collection of sentences in a document. Each
tuple primarily conveys a relation expressed in text, often involving a subject and an object,
along with possibly additional information that describes the relation under consideration. In
general, each tuple (also referred to as an extraction) has the format (subject; relation; object;
optional arguments), where the optional arguments may include remaining arguments for an
n-ary relation or have attributes such as location, time or context which add further information
about the relation. Each field in the tuple can be nouns, clauses or even complete sentences.

Each field of the tuple uses phrases directly from the text. This choice ensures that relevant
tuples can be extracted from as wide a corpus as the Web.

There is some allowance for the use of additional words as sparingly as possible to ensure
that the fields in a tuple can be made easier to understand. For example, from “U.S. president
Joe Biden”, the extraction (Joe Biden; [is] president [of], U.S.) needs addition two words, is
and of, to form a grammatical relation. For the case of optional arguments, consider the exam-
ple sentence “U.S. president Joe Biden inaugrated the building at Washington in 2022”. The
extraction (U.S. president Joe Biden; inaugrated; the building; T: in 2022, L: at Washington)
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containing the additional fields of location (L) and time (T) tags provides valuable information
to the end user/application. To ensure domain independence, a tuple is not defined semantically
rigorously, but is left to interpretation of system implementations. For example, in the case of
prepositions that occur in the field boundaries, as shown in the above example, we prefer to
include them in the relation field by default. However, when optional arguments are present,
such as location/time, then they are kept as part of the argument itself.

2.2 Evaluation
Evaluation of Open IE extractions poses a unique challenge from both a linguistic and a com-
putational standpoint. The linguistic definition of Open IE has been left open-ended in the
literature, with the objective of allowing the handling of a wide variety of domains. However,
this leads to each system choosing its own implementation strategy, which makes it challenging
to compare extractions from multiple systems due to the varying representational choices. For
example, some systems choose to output additional arguments that represent the location, time
and context associatedwith the extractions, and some other systems use nested representations to
represent complex extractions. Even after developing reasonably standard guidelines for Open
IE and annotating gold extractions according to it, the computational challenge of evaluating
the predictions of a system is non-trivial. This is due to the nature of the task, which requires
matching of a gold set of tuples/extractions with a variable number of predicted tuples. It can
lead to complications such as having similar content being expressed in multiple extractions,
thus necessitating penalization of near-redundancy. A broad variety of evaluation schemes and
benchmarks have been proposed in literature over the years, which is summarized in this section.

Early works have often relied on manual evaluation to determine the precision of the system,
often ignoring recall due to the challenge in annotating the complete set of valid extractions. For
example, Mausam et al. (2012); Del Corro and Gemulla (2013); Saha et al. (2017); Gashteovski
et al. (2017) use annotators to evaluate the quality of generated extractions without using a ref-
erence set of gold extractions. Hence, only the precision and yield (total number of extractions)
are used as the performance metrics.

Stanovsky and Dagan (2016) is the first work to recognize the challenges associated with
prior Open IE evaluation schemes commonly used in literature, which relied on subjective
human-judgements. In particular, they identify a lack of consistent evaluation guidelines as
well as a lack of large-scale gold-annotated corpus for automated benchmarking of multiple
Open IE systems. As part of the work, they identify three main properties of good Open IE
extractions, including assertedness, minimal propositions and completeness, and they create a
corpus of 3200 Open IE sentences and their gold extractions using an automated procedure for
converting from QA-SRL (He et al., 2015) gold annotations to their corresponding Open IE
tuples. In their proposed scheme, commonly referred to as the OIE2016 benchmark,1 the cor-
rectness of an extraction is evaluated by matching the grammatical head of each field with that
of the gold. OIE2016 creates a one-to-one mapping between (gold, system) pairs by serializing
the extractions and comparing the number of common words within them. Hence the system is
not penalized for misidentifying parts of one argument in another.

Precision and recall for the system are computed using the one-to-one mapping obtained,
i.e. precision is (no. of system extractions mapped to gold extractions)/ (total no. of system ex-
tractions), and recall is (no. of gold extractions mapped to system extractions)/(total no. of gold
extractions). These design choices have several implications (Léchelle et al., 2018; Bhardwaj

1https://github.com/gabrielStanovsky/oie-benchmark
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et al., 2019). Overlong system extractions, which are mapped, are not penalized, and extractions
with partial coverage of gold extractions, which are not mapped, are not rewarded at all.

Wire572 (Léchelle et al., 2018) attempts to tackle the shortcomings of OIE2016. They man-
ualy annotate a relatively small corpus of 57 sentences with their gold tuples. Extractions are
written while adhering to the principles of minimality, informativeness, exhaustiveness and al-
lowing light inferences. The exercise results in a total of 347 tuples. They also propose a new
function to score system predicted extractions. For each gold extraction, a set of candidate sys-
tem extractions are chosen on the basis of whether they share at least one word for each of the
arguments3 of the extraction, with the gold. It then creates a one-to-one mapping by greedily
matching gold with one of the candidate system extraction on the basis of token-level F1 score.
Token level precision and recall of thematches are then aggregated to get the score for the system.
Computing scores at token level helps in penalizing overly long extractions.

Wire57 ignores the confidence of extraction and reports just the F1 score (F1 at zero con-
fidence). One way to generate AUC for Wire57 is by obtaining precision and recall scores at
various confidence levels by passing a subset of extractions to the scorer. However, due to
Wire57’s criteria of matching extractions on the basis of F1 score, the recall of the system does
not decrease monotonically with increasing confidence, which is the norm when calculating
AUC.

OIE2016 and Wire57 both use one-to-one mapping strategy, due to which a system extrac-
tion that contains information from multiple gold extractions is unfairly penalized.

To resolve such unfair penalization, CaRB4 (Bhardwaj et al., 2019) was proposed. CaRB
also computes similarity at a token level, but it is slightly more lenient than Wire57— it consid-
ers number of common words in (gold,system) pair for each argument of the extraction. How-
ever, it uses one-to-one mapping for precision and many-to-one mapping for computing recall.
While this solves the issue of penalizing extractions with information from multiple gold ex-
tractions, it inadvertently creates another one — unsatisfactorily evaluating systems that split
on conjunctive sentences, such as, “I ate an apple and an orange”. We explore this in detail in
Section 5.1.2.1. Along with the scoring function, they also release a more extensive evaluation
set of 1200 sentence extraction pairs that have been annotated using crowdsourcing after care-
fully training the workers on the Open IE task. Using manual verification, they demonstrate
that their dataset and scoring function marks relative performance of systems more accurately
compared to prior proposed benchmarks. Hence, we use CaRB as the primary evaluation metric
throughout the dissertation.

2.3 Models for English Open IE
2.3.1 Syntactic and Statistical Models
Traditional open extractors are rule-based or statistical, e.g., Textrunner (Banko et al., 2007),
ReVerb (Fader et al., 2011; Etzioni et al., 2011), OLLIE (Mausam et al., 2012), Stanford-IE
(Angeli et al., 2015), ClausIE (Del Corro and Gemulla, 2013), OpenIE-4 (Christensen et al.,
2011; Pal and Mausam, 2016), OpenIE-5 (Saha et al., 2017; Saha and Mausam, 2018), MinIE
(Gashteovski et al., 2017) and NestIE (Bhutani et al., 2016). These use syntactic or semantic
parsers combined with rules to extract tuples from sentences. We briefly discuss these systems

2https://github.com/rali-udem/WiRe57
3We refer to subject, relation and object as arguments of the extraction.
4https://github.com/dair-iitd/CaRB
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in this section.

2.3.1.1 TextRunner

Banko et al. (2007) is the first system designed for Open Information Extraction and defines
some of the important features required for this task, as conceived then:

• It must have ideally no supervision or a minimum amount of supervision, in-order to keep
its domain independence.

• It must be fast to scale to the magnitude of information available on the Web. Hence, it
must use shallow features.

The system is designed to operate in a self-supervised fashion. It generates labels for au-
tomatically parsed sentences based on certain heuristics defined. Then using unlexicalized fea-
tures from the sentences, it learns a Naive Bayes classifier to predict the valid relations in the
sentence. It uses noun chunks to come up with argument phrases and then iterates over possible
relation phrases, passing it through the classifier to determine the confidence of the extracted
tuple.

2.3.1.2 ReVerb

ReVerb (Fader et al., 2011) improves on the previous Open IE systems, such as TextRunner, by
using a very simple heuristic rule that matches relations phrases with POS patterns. These POS
patterns are shown to cover up to 85% of naturally occurring verb-based relations in the text.
In addition to these syntactic patterns, a lexical constraint is introduced to avoid overly-specific
relations permitted by the syntactic pattern. The lexical constraint is to consider only relations
less than a pre-specified maximum length.

In order to assign confidence to each extraction, a logistic regression model is trained on
1000 extractions which are manually labelled. The features for the logistic regression are rela-
tion independent and shallow to allow for scale and domain-independence.

2.3.1.3 OLLIE

OLLIE (Mausam et al., 2012), Open Language Learning for Information Extraction, is an Open
IE system that uses bootstrapped data from high-quality extractions of the ReVerb system to
learn extractions from dependency parse trees. The improvements over the previous Open IE
systems is to include noun-mediated relations in its extractions and provide further contextual
information about the extraction, which may, in fact be a supposition, a held-belief, or condi-
tionally asserted, provided the occurrence of future events.

OLLIE learns extractions using deeper features, such as dependency parse trees, compared
to previous systems like ReVerb, which use only shallow PoS tags. It learns pattern templates
over the dependency parse trees, using training data generated using bootstrapping. ReVerb
extractions are taken from a large corpus, such as ClueWeb (Callan et al., 2009), and only highly
confident extractions are retained. The set of extractions is further refined by removing those
which occur less than twice in the entire dataset.

These form a set of seed tuples which is used for bootstrapping the training data. All sen-
tences which have the keywords present in the tuples are retrieved and filtered using constraints
over the dependency parse trees. All the sentences retrieved for extraction are assumed to have
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it as the correct extraction. Using this noisy training data, patterns over the dependency parse
trees are learnt to produce extractions.

At test time, given a new sentence, it’s parse tree is matched against the learnt pattern tem-
plates and based on the slots in the pattern template and their corresponding value in the sen-
tence’s dependency parse tree, the extraction is generated. The generated extractions are then
passed through a contextual analysis step which generates the additional context (based on cer-
tain edges of the dependency parse tree), under which the fact the can be asserted as true.

2.3.1.4 StanfordIE

Most of the previous Open IE extractors are based on learning patterns, either on shallow fea-
tures such as POS tags (Banko et al., 2007) or on deeper features (Mausam et al., 2012) such as
dependency parse trees. The current paper takes a different approach by first extracting clauses
(which are syntactically and semantically independent) entailed by the original sentence. Then
using Natural Logic (Valencia, 1991), these clauses are reduced to minimalistic ones in order
to be more valuable in downstream applications. Once these set of short, independent clauses
are extracted, a small set of hand-written rules over the dependency parse trees are used to get
the Open IE extractions.

Dependency-tree edge classification is used to extract the clauses. Once independent clauses
are extracted, they are minimized to be of maximum utility. The expectation is that this mini-
mization provides a simplistic way for normalizing Open IE extractions, where the downstream
applications (such as Question Answering or Relation Extraction) can then easily identify simi-
lar extractions. Since these extracted clauses are typically simple, 14 manually written patterns
are sufficient to extract high-quality Open IE extractions from them.

2.3.1.5 ClausIE

Similar to StanfordIE, ClausIE Del Corro and Gemulla (2013) uses the notion of clauses for
generating Open IE extractions. It identifies a set of clauses in a input sentence. The grammat-
ical function of the clause is classified based on their constituents. Each clause can be broken
down into multiple extractions or prepositions. The postprocessing of clauses to extractions can
be done in a application-specific manner. Thus, ClausIE maintains a separate knowledge repre-
sention in the form of clauses that is distinct from the final extractions. This feature of ClausIE
allows greater flexibility compared to other systems.

The identification of clauses in sentences is done using grammatical rules on dependency
parses. Each clause is then classified into seven types based on their consitutents. The clause
types are then used for minimizing any additional information in the clause, thus reducing them
to a set of minimalistic clauses. With the set of minimal clauses identified, the extractions are
generated by initially identifying the constituents that should belong to an extraction. Then
the constituents are classified into subject, relation and additional arguments to form the final
extraction. The final system generates 2.5-3.5× the number of correct extractions as OLLIE.
They also note that they don’t use any sort of global post-processing on top of the generated
extractions to filter out some extractions, thus making their system highly parallelizable.

2.3.1.6 OpenIE-4

OpenIE-4 consists of a combination of two systems, SRL-IE (Christensen et al., 2011) and
RelNoun (Pal and Mausam, 2016). SRL-IE forms the core web-based information extractor,
and RelNoun adds noun-mediated relations to the overall mix.
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Christensen et al. (2011) explores the possibility of using very deep semantic features, as
found in the task of semantic role labelling for the purpose of generating open information ex-
tractions. It uses an existing SRL system and repurposes the output to generate open extractions.
It does this by combining the modifier associated with the verb to form the relation, and the var-
ious fields associated with the verb form both the arguments. The dependence on semantic role
labeling comes at the cost of reduced speed, compared to using shallow features like PoS tags
but benefits the system in case of complex extractions.

Pal and Mausam (2016) improves the extractions on noun-mediated relations by using addi-
tional lexicons generated from ClueWeb corpus and Wikipedia. It shows that current systems
suffer from wrong extractions on compound nouns, as they struggle in cases of organization
names, denonyms and compound relational nouns. By semi-automatically curating a set of
160 organization words, 2143 denonym, location enteries and 5,606 common relational noun
prefixes, they create a new system, RelNoun 2.2.

2.3.1.7 OpenIE-5

OpenIE-5 builds on top of OpenIE-4 by adding two components for proper handling of coordi-
nation structures and numerical facts in the input.

Performance of Open IE systems can be improved by identifying coordinating structures
governed by conjunctions (e.g., ‘and’) and splitting conjunctive extractions. CalmIE (Saha and
Mausam, 2018), which is part of OpenIE-5 system, splits a conjunctive sentence into smaller
sentences based on detected coordination boundaries, and runs Open IE on these split sentences
to increase overall recall. The paper proposes a novel approach to dealing with conjunctions
for the task of open information extractions by first parsing the sentence to a tree representation
using its dependency parse. Following this, the natural conjuncts are identified, and the sentence
is split into simpler sentences using a language model to understand the validity of the generated
sentences. The simpler sentences are then passed to Open IE to generate extractions. They name
their system CalmIE.

Numerical facts have been ignored so far in state of the art open extractors. Although they
may produce some numerical facts, they are not number-aware and hence make many mistakes.
Saha et al. (2017) proposes a new system that generates numerical facts using a bootstrapping
process similar to the one used by OLLIE. Theymanually specify a set of seed patterns to extract
high precision numerical facts. Using this as the seed tuples, they retrieve additional sentences
from the web. After enforcing additional lexical constraints, they assume that the seed tuple
is the correct extraction for the retrieved sentence and learn to map dependency patterns to the
extractions. This gives a high precision method for extracting numerical facts from raw text.

2.3.1.8 MinIE

MinIE (Gashteovski et al., 2017) has been proposed to increase the compactness of the Open
IE extractions. It is built on top of the ClausIE system, which they identify as sufferring from
overly-specific extractions. In order to achieve this minimality, they purposefully leave out some
information from the actual extraction and annotate that as special fields associated with the
extraction. They also use statistical modules to identify aspects of the extractions that are overly
specific, either universally or in a domain-specific manner. Once identified, the extractions are
re-written after removing them. This results in system outputs that are much more compact
while being competitive in precision to other state of the art Open IE systems like OLLIE and
ClausIE.
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2.3.1.9 NestIE

NestIE (Bhutani et al., 2016) is a rule-based open extractor that aims to address the issue with
previous extractors that only produce binary tuples. Binary tuples leads to the inability to ex-
press relations in complex sentences that may need tuple nesting. Thus NestIE proposes an
approach to generate various tuples which are linked together to get nested tuples. They use
hand-written templates to get highly confident seed data of dependency patterns and tuple rep-
resentations. By bootstrapping from the seed data, they learn patterns over dependency parses
hence generate extractions from a wide variety of sentences. NestIE achieves higher informa-
tiveness with more minimalness when compared to previous systems.

There exists manymore non-neural Open IE systems that have been published over the years.
We have only described the ones that are prominent and relevant to the dissertation. In the next
section, we discuss the Open IE systems that are built using deep learning techniques.

2.3.2 Deep Learning Models
Traditional Open IE systems discussed in the previous section are either statistical or rule-based.
They often consist of pipelines of several components like POS tagging, and syntactic parsing.
To bypass error accumulation in such pipelines, recent systems use end-to-end neural models.
These neural models are end-to-end becuase they can generate the extractions given the sentence
by directly learning the associations between them from the training data. The training data for
these models are usually bootstrapped from extractions made by earlier systems. Each system
tends to make it’s own choice of the training data used, and hence, we describe them along with
the model descriptions.

The existing neural Open IE methods belong to two categories: sequence labeling and se-
quence generation.

Generation systems generate extractions one word at a time. The generated sequence con-
tains field demarcators, which are used to convert the generated flat sequence into a tuple.

Labeling systems label each word in the sentence as either S (Subject), R (Relation), O
(Object) or N (None) for each extraction. The final extraction is obtained by collecting labeled
spans into different fields and constructing a tuple. Such models are much faster but often less
accurate due to lack of explicit dependencies between the labels. All the labels are generated
parallely in a non-autoregressive manner.

In principle, generation is more powerful than labeling systems because it can introduce aux-
iliary words or change the word order as necessary. For example, for producing the extraction
(Mary; fought with; John) from the sentence, “Mary and John fought each other” requires chang-
ing the word order to bring “fought” into the relation and introducing an additional word “with”
to make the extraction grammatical. However, this additional power comes with a significant
reduction in speed due to the autoregressive nature of sequence generation models.

Sequence Labeling
Sequence Labelingmodels have been commonly used for related tasks like Semantic Role Label-
ing (SRL) (Marcheggiani and Titov, 2017). Hence, sequence labeling paradigm has commonly
been used for the task of Open IE as well. The major challenge in the adoption of the sequence
labeling paradigm for the task of Open IE is the labeling of multiple extractions that may have
overlapping fields. For example, consider the sentence, “Shyam presented a gift to Ram who
was overjoyed”, which has two extractions (Shyam; presented a gift; to Ram) and (Ram; was;
overjoyed). The word “Ram” receives both the subject and object labels in the two extractions.
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2.3.2.1 RnnOIE

RnnOIE (Stanovsky et al., 2018) is the first sequence labeling system proposed for the task of
Open IE. It first identifies the syntactic heads of relations present in the sentence. It does this by
collecting all verbs using PoS tagging and collecting nominalizations (nouns that can act as re-
lations) using Catvar’s subcategorization frames (Habash and Dorr, 2003). For every identified
predicate head, it then uses sequence labelling to get their arguments. Since multiple extrac-
tions are possible for a given predicate head, it identifies all of them using a single BIO tagging
scheme. Multiple arguments are marked for the predicate, and all possible combinations of
the marked arguments are taken as the final set of extractions corresponding to the predicate.
This scheme has the drawback of being incapable of supporting overlapping arguments for the
same predicate head. For example, from the sentence “Barack Obama, a former U.S. presi-
dent was born in Hawaii”, RnnOIE cannot generate both the extractions (Barack Obama; was
born in; Hawaii) and (Barack Obama, a former U.S. president; was born in; Hawaii) as they
both have the same predicate head, “born” and overlapping subjects. It is trained on OIE2016
dataset (Stanovsky and Dagan, 2016), which postprocesses QA-SRL data (He et al., 2015) for
Open IE. QA-SRL poses the SRL task as a set of question-answer pairs that helps in acquiring
crowd-sourced annotations at scale. They also add to the training set QAMR (Michael et al.,
2018), an open variant of QA-SRL, after converting it to Open IE format. Evaluating on the
OIE16 benchmark, the BiLSTM-based model demonstrates superior performance to non-neural
systems usch as OpenIE-4 and ClausIE.

2.3.2.2 SenseOIE

SenseOIE (t et al., 2019) is another sequence labeling system that improves upon RnnOIE by
using the extractions of multiple Open IE systems as input features to the model. They consider
the tag assigned to theword in each of the kOpen IE systems used and pass them as k embeddings
to the model. Along with this, they also add additional features associated with each word, such
as embedding of the associated pos-tag, semantic role label and dependency parent and siblings.
In order to generate multiple extractions, they make use of a beam search strategy. Instead of
labeling in a greedy fashion, they choose the top-k labels at every time step. This leads to k set of
extractions where a single word may be assigned to multiple labels, overcoming the challenges
associated with RnnOIE. However, it also leads to generation of a fixed number of extractions
irrespective of the sentence, and their training requires manually annotated gold extractions,
which is not scalable for the task. This restricts SenseOIE from training on a dataset of 3,000
sentences.

2.3.2.3 Iterative Rank-Aware Learning

To measure the confidence of the model for a generated extraction, log-likelihood loss is often
used as a measure. But it is not optimal as it leads to a difference in training and testing time be-
haviour. At training time, the confidence of gold extractions are maximized using log-likelihood
loss. But at test time, log-likelihood loss is applied to extractions that may be incorrectly gen-
erated by the system. Therefore, Jiang et al. (2020) introduced an iterative rank-aware learning
approach to calibrate the confidence of Open IE tuples and make them comparable across sen-
tences. Hence, they use a binary classifier to predict if the extraction is correct or wrong. The
score of this binary classifier is thus assigned as the score for the extraction. It is trained using
classification loss to boost the confidence of correct tuples and alleviate that of incorrect ones,
which are synthetically generated by replacing valid arguments in an extraction with randomly
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sampled ones. When the classification loss is added to the model, it results in generation of
more accurate extractions. These new extractions are added back to the training data for the
next version of the model.

They use sequence-labeling RnnOIE as the base model, but the technique can also be ap-
plied on other models. The iterative scheme of adding training data helps improve the model
performance by as much as 11% F1 on the OIE16 benchmark.

2.3.2.4 SpanOIE

SpanOIE (Zhan and Zhao, 2020) uses a span selection model, a variant of the sequence la-
belling paradigm. Firstly, the predicate module finds all the predicate spans in a sentence after
classifying all possible spans. Subsequently, the argument module outputs the arguments for
the detected predicates by iterating through all possible spans and classifying each one of them.
Also, for each span embedding, a predicated embedding is added as an additional feature, based
on which the argument role is defined. Since considering all possible spans would be infeasible,
they make use of three constraints to limit computations on unlikely spans. These constraints
include a limit on the length of arguments and predicate, removing syntactically invalid spans
that do not contain any head word in it and spans that overlap with the given predicate span. The
constraints are applied only during training and not during inference to avoid missing certain
types of spans. However this comes with a corresponding increase in inference time.

2.3.2.5 Systematic Comparison

Hohenecker et al. (2020) performs a detailed comparison of various design choices for building
sequence labeling systems. They experiment with differnt types of embedding, encoding and
decoding blocks used. The embedding block produces an embedding vector for each of the input
tokens. The encoding blocks re-contextualizes the embeddings, and the decoding block gener-
ates the sequence of labels. They choose between randomly initialized word-piece embeddings
or embeddings given by ALBERT, BiLSTM, CNN or Transformer encoders and LSTM, CRF
or MLP decoders. They also introduce a novel training scheme for sequence tagging where the
loss corresponding to the “Other” tag is ignored. This is to prevent the loss term from being
swamped by “Other” tag, which dominates Open IE tagging, compared to “Subject”, “Rela-
tion” and “Object” tags. They additionally compare with the SpanOIE formulation in a similar
setting.

The paper finds that on the OIE16 benchmark, the labeling-based systems achieves best
performance when ALBERT, Transformer and LSTM are used as the embedding, encoding and
decoding blocks, respectively.

In summary, we have described many sequence labeling systems that have been proposed
in literature. The common factor is the use of labeling paradigm for assigning a label to each
word in the sentence. The various systems differ in the way they label multiple extractions. In
Chapter 4, we propose a novel labeling architecture, Iterative Grid Labeling (IGL), that treats the
problem as labeling a grid in an iterative fashion. On addition of soft constraints, our architecture
remains fast while reaching performance levels close to that of sequence generation Open IE
systems that are described next.

Sequence Generation
Sequence-labeling based models lack the ability to change the sentence structure or introduce
new auxiliary words while uttering predictions. For example, they cannot extract (Trump; is the
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President of; US) from “US President Trump” since ‘is’, ‘of’ are not in the original sentence.
Also, they assume that all words in one field of the extraction would occur in the same order as
they are in the original sentence. But this may not be ideal in some cases, as shown previously.
On the other hand, sequence-generation models are more general and, in principle, subsume the
former type of models. They comes with the added ability to generate words that are not present
in the sentence as well as the ability to mutate the sentence structure.

2.3.2.6 CopyAttention

Cui et al. (2018) is the first neural Open IE system that has been developed using the sequence
generation paradigm. It contains an LSTM encoder-decoder architecture that is augmented with
a copy module and an attention module. Hence, we refer to it as the CopyAttention model. The
decoder generates the extraction one word at a time, using delimiters to identify the various parts
of the tuple. In the task of Open IE, most of the words in the extraction are directly taken from
the sentence. Therefore, the added copy module allows the model to copy words from the input
directly. Similarly, the attention module allows the decoder to focus on important words in the
input at each decoding step. This is required to overcome the limitations of LSTMs which face
difficulty in remembering longer contexts. During inference, CopyAttention uses beam search
to get the final set of predicted extractions.

The model is trained over bootstrapped data that is generated by running OpenIE-4 on all
sentences of Wikipedia with less than 40 words. The final training data consists of 36M (sen-
tence, extraction) pairs.

Since the model uses a fixed-size beam search, it limits the output to a constant number
of extractions irrespective of the length of the sentence. Moreover, our analysis shows that
CopyAttention extractions severely lack in diversity, as illustrated in Table 3.1. We attribute
this observation to the dependence on beam search, which can only ensure that exact duplicates
are avoided.

2.3.2.7 MCTS

Liu et al. (2020a) proposes a Monte-Carlo Tree Search (MCTS) based RL formulation to gener-
ate Open IE extractions from sentences. The paper introduces a way to model the knowledge
extraction task of Open IE as a Markov Decision Process (MDP) by defining appropriate state
and action spaces along with a reward function. The action space is defined as the set of words
in the vocabulary and special symbols that are added to demarcate the various fields in the facts.
The extraction generated so far forms the state space for the MDP. The similarity of the pre-
dicted fact with the gold fact is used for computing rewards at the training time. Moreover, a
simulator is trained that takes as input the partially generated fact and outputs a reward signal
to compute the reward at inference time when gold facts are absent. The tree search is also
guided using probabilities from an already trained Seq2Seq-based Open IE model. By relying
on tree search, they overcome the issues associated with standard sequence generation by per-
forming a global optimization instead of local greedy optimizations. The paper also proposes a
parallelized version of MCTS to improve inference speeds.

2.3.2.8 DocOIE

DocOIE (Dong et al., 2021) proposes a document-level generative Open IE system that can
produce extractions of a sentence in context of the document it appears in. The paper shows that
this allows the system to resolve certain types of parts of speech or syntactic ambiguities that may
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prove difficult looking only at a specific sentence. For this purpose, they use a Seq2Seq model
with BERT as the encoder and LSTMas the decoder augmentedwith copy and attentionmodules
similar to Cui et al. (2018). The model takes as input the source sentence and specially marked
context sentences. The two types of sentences are differentiated using segment embeddings. The
proposed model also differentiates between the bootom and top layers of BERT. The bottom
layers of BERT take the combined input, while the top layers take only the source sentence
embeddings for generating the final extractions.

The paper also releases a dataset of 800 sentence and expert-annotated extractions along
with context sentences based on the document in which the sentence occurs. They choose a
sample of 80 patents from transportation and healthcare domain to form the dataset. These 800
examples are released as the DocOIE evaluation set. For the training set, they use OpenIE-4
to generate pseudo labels for bootstrapping the systems. Extractions are generated from 100K
sentences picked from the 1200 patents to keep it in the same domain. Context sentences are
then provided for each of the examples bootstrapped from OpenIE-4. Since this procedure
relies on training data generated from context-independent systems, it fundamentally limits the
performance of their approach.

In summary, we discussed various models proposed in literature that autoregressively gen-
erating one word of the extraction at a time. In Chapter 3, we introduce two new novel sequence
generation models, IMoJIE and Gen2OIE, that outperform the extraction quality of existing
generation models.

2.4 Models for Non-English Open IE
Many of the Open IE systems described so far, both non-neural and neural, have been deployed
exclusively for English. Open IE systems built for other languages often work only for a single
language due to their reliance on language-specific resources. Such a reliance makes it infea-
sible to develop systems for the plurality of languages in the world due to the cost and effort
involved. In this section, we explore the systems that operate on a single non-English language
and multilingual approaches. For example, Bassa et al. (2018); Rahat and Talebpour (2018);
Romadhony et al. (2018); Guarasci et al. (2020); Papadopoulos et al. (2021) focus on German,
Persian, Indonesian, Italian, and Greek, respectively.

We first introduce the language specific Open IE models in this section, followed by multi-
lingual Open IE models that work for multiple languages.

2.4.1 Open IE models for German
Bassa et al. (2018) uses German dependency parser and handwritten rules to build an Open
IE system in German languages. They perform a detailed analysis of the difference between
German and English languages, which can affect the open extraction in German language. They
note that the differences in capitalization, gender, cases, and word order needs to be accounted
for in designing German Open IE systems. Their system achieves upto 89% F1 performance on
the 506 gold facts manually annotated by two German experts.

2.4.2 Open IE models for Italian
Guarasci et al. (2020) builds an Open IE system for Italian and proposes a gold standard bench-
mark for evaluating the generated extractions. The benchmark consists of 195 sentences anno-
tated by four native Italian speakers with the corresponding n-ary tuples. Their system, which
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builds on behavioural patterns of verbs in Italian while identifying uninformative extractions,
achieves a precision of 0.79 and recall of 0.84 on their benchmark.

2.4.3 Open IE models for Greek
PENELOPIE (Papadopoulos et al., 2021) is an Open IE system built for the Greek language. It
makes use of a Greek-to-English and English-to-Greek NMT systems to generate extractions for
a given sentence. It translates the Greek sentence into English and generates extractions using
three Open IE systems, Open IE 5.0, ClausIE and RnnOIE. The generated English extractions
are back-translated into Greek language using the Greek-to-English NMT system. Each phrase
of the extraction is indpendently translated in their scheme.

2.4.4 Open IE models for Chinese
Neural models like Logician (Sun et al., 2018b) and Orator (Sun et al., 2018a) use language-
specific training data that limits their system to Chinese.

2.4.4.1 Logician

Sun et al. (2018b) presents a new format for extracting information from text in an ontology-
free, open-domain fashion, called SAOKE format and releases a dataset (called the SAOKE
dataset) of 48,000 Chinese language sentences and their extractions in the SAOKE format. They
also developed a neural Seq2Seq based model, called Logician, that outperforms competitive
baselines on the SAOKE dataset.

The SAOKE format, following the previous Open IE extractors, has the desired properties of
completeness, atomicity, compactness and accurateness. It almost always uses words from the
sentence directly to express the facts in the sentence, except in few cases where it uses special
symbols (to state abbreviations, birth and death dates, descriptions, etc.), and hence aptly named
as Symbol Aided Open Knowledge Expression.

Based on a comprehensive analysis, the authors divide the extractions into four preliminary
types. Facts may

• express the relation between two entities,

• give the attributes of an entity,

• provide descriptions of entity phrases, and

• state hypernymy or synonymy relations between instances.

The proposed neural model, name Logician, convert sentences into “natural logic” in the
form of extractions. Similar to CopyAttention, it uses attention and copy mechanism to copy
most of the words from the sentences. Only a limited vocabulary of symbols are generated. The
model uses a coverage mechanism to avoid the issue of under-extraction or over-extraction of
facts from the sentence. The coverage mechanism also provides a normalization scheme across
facts. When including a word in a fact, the model is aware if the word is already included in other
facts or not. It also uses a gated-dependency mechanism to include dependency information
from the parse trees generated using off-the-shelf syntactic parsers.

The compare their system with competitive baselines, include a SoTA SRL-based extractor
which learns sequence based tagging on SAOKE dataset. They show that Logician, a Seq2Seq
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approach, outperforms the SRL-based system as it is cognizant of the remaining facts while
generation.

2.4.4.2 Orator

The Orator (Sun et al., 2018a) is an open-domain narration system that converts a given set of
facts into a consistence sentence that contains all the facts expressed in it. Thus, Orator and
Logician operate on dual aspects of the same problem where Logician goes from sentence to
facts, and Orator goes from facts to sentence. The paper proposes a reinforcement learning
loss that uses this duality to enable both the systems to improve each other. This results in the
Logician system generating better quality extractions in Chinese language when trained and
evaluated on SAOKE dataset.

2.4.5 Models for multilingual Open IE
Prior literature propose only a few multilingual Open IE systems that target Open IE extractions
in multiple languages. Claro et al. (2019) lists various challenges involved with building such
multilingual systems. They note that the absence of multilingual benchmarks is one of the key
reasons hindering advancement in the field, with current systems evaluated only on one or two
languages. Moreover, since the defintion of a relation is left open-ended, it complicates the
development of such benchmarks where annotators in different languages may choose varying
design choices. Hence this neccessiates a development of an open-standard for creating effective
annotations in different languages. The paper also points to the development and utilization of
multilingual resources such asmachine translation systems and cross-lingual knowledge transfer
as key components for building strong multilingual Open IE systems.

We now summarize some of the important multilingual Open IE systems proposed in liter-
ature.

2.4.5.1 Cross Lingual Projection (CLP)

Cross Lingual Projection (CLP) (Faruqui, 2015) adopts an unsupervised two-step approach for
generating Open IE triples from a sentence in a source language such as Spanish. A machine
translation system is used to translate the sentence into a target language, such as English. An
Open IE system such as OLLIE (Mausam et al., 2012) is used to generate the extractions from
the translated English sentence. The words from the generated English extractions are projected
back into the original source sentence to generate the final set of extractions in Spanish.

The projection algorithm uses automatically detected alignments between the words in the
two languages. Since the word alignments are a many-to-many mapping and the subject, rela-
tion, object fields are mostly contiguous phrases, they use a phrase-extract algorithm to detect
all possible mappings between contiguous phrases in the source and target languages. For the
projection of the relation field, the source phrase from the extracted phrase map with the high-
est BLEU score is chosen. The correspondingly mapped target phrase in Spanish language is
marked as a relation.

We describe the CLP algorithm for projecting labels from English extraction to other lan-
guage with the help of an example. Consider English sentence, E: Dutil - Dumas experiment
was promoted by an organization called Encounter 2001 denotes and Spanish sentence, S: Ex-
perimento Dutil - Dumas fue promovido por una organización llamada Encounter 2001. The
word alignments between these sentences are listed in Figure 2.1, and equivalent phrases from
the phrase extract algorithm are shown in Table 2.1. Consider the English extraction, (Dumas
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Figure 2.1: Equivalent English and Spanish sentence with corresponding word alignments be-
tween them

Figure 2.2: Equivalent English and Spanish sentence with corresponding word alignments be-
tween them

experiment; was promoted; by an organization). For each phrase in the tuple, CLP algorithm
looks for the highest BLEUmatch phrase from Table 2.1. The subject phraseDumas experiment
has best BLEU match to Dutil - Dumas experiment, and so the corresponding Spanish phrase
Experimento Dutil - Dumas will be marked as subject. Note that the phrase Dumas experiment
is not present in Table 2.1 because its aligned phrase is not continuous in Spanish sentence
as can be seen in Figure 2.1. Similarly for the relation phrase was promoted, we find fue pro-
movido from Table 2.1. Continuing the same algorithm, we get (Experimento Dutil - Dumas;
fue promovido; por una organización) as the final Spanish extraction.

The work is originally motivated by open relation extraction, where only the relation phrase
is projected. But the method is trivially extendible to the complete Open IE task itself by pro-
jecting the subject and object as well, which is used in Section 6.2.3.

English Phrases Spanish Phrases

Dutil - Dumas experiment Experimento Dutil - Dumas
Dumas Dumas
experiment Experimento
was promoted fue promovido
.... ....

Table 2.1: Mapped continuous phrases between English (E) and Spanish (S) language sentences
from the phrase extract algorithm
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2.4.5.2 PredPatt

PredPatt (White et al., 2016) builds on top of universal dependency parses5 to extract predicate-
argument structures, similar to Open IE. They reduce the deep semantic notions associated with
universal dependencies to a shallow semantic framework of predicates and their corresponding
arguments. It uses interpretable rules for this conversion and results in a system that achieves
significantly better P-R curves compared to other systems. Since the rules operate on top of uni-
versal dependency tags, which remain same across languages, PredPatt can be easily extended
to work for other languages as well. The performance of PredPatt in multilingual setting has
been explored in Ro et al. (2020).

2.4.5.3 ArgOIE

ArgOIE (Gamallo and Garcia, 2015) works for multiple languages by using dependency parses
in CoNLL-X format (Buchholz and Marsi, 2006) to generate Open IE extractions. CoNLL-X
is a language independent way to represent the dependency tags. They propose a set of rules to
convert the parses into a set of prepositions. Since the parses are language-agnostic in nature, the
ArgOIE system can be applied to any language. They perform experiments on three languages
– English, Spanish and Portuguese.

2.4.5.4 CrossOIE

CrossOIE (Cabral et al., 2020) proposes a multilingual classifier that denotes the validity of a
givenOpen IE triple. They use extractions in three languages – English, Spanish and Portuguese,
manually annotated with their validity or invalidity to train a language model based classifier.
They experiment with two types of language models, mBERT and XLM. They observe strong
zero-shot performance even in the absence of training data for a particular language. This model
can be used to infer the quality of triples that can be used for boostrapping Open IE systems in
the corresponding language.

2.4.5.5 Multi2OIE

Owing to their pipelined nature, PredPatt and ArgOIE performance is below that of neural sys-
tems. Ro et al. (2020) proposed Multi2OIE, a sequence-labeling model for Open IE, which
first predicts all the relation arguments using BERT, and then predicts subject and object ar-
guments associated with each relation using multi-head attention blocks. Their model cannot
handle nominal relations and conjunctions in arguments. The underlying mBERT encoder in
Multi2OIE allows for cross-lingual generalization across various languages even after training
with only English supervised data. However, dependence on zero-shot generalization also limits
the performance of the model.

In summary, we discuss the various Open IE systems that have been proposed for handling
the task of Open IE in languages other than English. In Chapter 6, we discuss our contributions
to this space by proposing a technique to generate Open IE training data in multiple languages.

5https://universaldependencies.org/
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2.5 Applications of Open IE
Apart from the intrinsic value of Open IE extractions, they have also proven to be helpful in
various downstream tasks. They are briefly summarized in this section.

2.5.1 Text Summarization
Multi-document summarization involves generating a human-readable summary using the in-
formation contained in multiple documents. Christensen et al. (2014) proposed a hierarchical
scheme for summarizing multi-documents. The hierarchical scheme makes use of Open IE to
measure similarity between sentences as the number of shared tuples. These scores are used to
ensure that the summary contains non-redundant sentences. Fan et al. (2019a) also uses Open
IE for the task of multi-document summarization. Since transformer models scale quadratically
with the size of the input, they are not capable of handling very large inputs. Processing multiple
documents for summarization using a transformer model would be infeasible. Therefore, they
dynamically construct open knowledge graphs by generating Open IE extractions from multiple
documents. These knowledge graphs are linearized and passed to a Seq2Seqmodel, which then
generate the final summary. Their technique shows strong results in two datasets, WikiSum (Liu
et al., 2018) and ELI5 (Fan et al., 2019b).

Ribeiro et al. (2022) aims to evaluate the factuality of the generated extractions in an in-
terpretable fashion. To achieve this, they extract semantic representations of both the source
document and the generated summary. These semantic representations capture the entities and
relavant relations among them, which are structured in the form of graphs (FactGraphs). By com-
paring the similarity across graphs, they achieve the desired goal of evaluating factuality. They
experiment with both Open IE and Abstract-Meaning Representation (AMR) graphs and find
Open IE to be competitive in performance, when evaluated on CNN/DM and XSum datasets.

2.5.2 Question Answering
Fader et al. (2013) presents a seminal approach for using Open IE facts for answering open-
domain questions. They introduced a completely unsupervised scheme to learn lexicon match-
ing between the query and the database of knowledge facts. Instead of using training data, they
rely on 16 manually annotated seed templates, which are then used to bootstrap additional pat-
terns from WikiAnswers. Using learned lexicon equivalences, they are use to convert the given
query into terms that can be easily matched to the database for extracting the most relevant
answer.

Khot et al. (2017) proposes a scheme for answering complexmultiple choice questions based
on the information expressed in Open IE tuples. They first identify the top-1000 tuples that
are most closely linked to the question based on lexical word overlap. Then they use a graph
matching algorithm to see how well a graph can be formed with the given question, choice and
chosen Open IE tuple to determine the score of each choice. The approach relies on using a
single tuple for each question, thus preventing multi-hop reasoning.

2.5.3 Event Extraction
Balasubramanian et al. (2013) focuses on extracting open-domain schemas for specific events,
such as a “terrorist bombing”. They aim to identify the various actors and how they are linked
to each other through semantic relations. Open IE is used to construct knowledge base of tuples
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from the corpus of texts relevant to the event. Analysis on these tuples and their co-occurrence
are used to identify the various types of actors that occur in the events. The co-occurrence
information is referred to as Rel-grams and represents relations between abstracted Open IE
tuples.

Pratapa et al. (2021) creates a new dataset for linking events across documents, referred to as
the Cross-Document Event Coreference (CDEC) dataset. They identify all open-domain events
in the chosen set ofWikipedia documents using RnnOIE and provide dense annotations whether
each pair of identified events are linked to each other or not.

2.5.4 Entity and Relation Linking
TENET (Lin et al., 2021) proposes a method for joint entity and relation linking that considers
the coherence of mentions within a document, i.e., the entities repeated in a document are usu-
ally similar. In order to take this coherence into account, they build a Knowledge Coherence
Graph that contains the detected entity mentions, relation mentions and independently identi-
fied entities and relations. The relation mentions are identified using the MinIE system. Using
this dynamically constructed KG for each input document, they employ a global optimization
to assign coherent entities and relations to the various detected mentions using tree-coverage
techniques.

2.5.5 Video Grounding
Video Grounding (Hendricks et al., 2017) refers to the task of extracting the video frame that is
most relevant to a given textual caption. Manymethods proposed for the task of video grounding
use image-text similarity matching algorithms (Gao et al., 2017; Zhang et al., 2020b). However
they often result in spurious correlations that are learnt from the training data. Nan et al. (2021)
propose a novel paradigm of using causal inference for removing the selection bias resulting
from the training data. Since the sampling distribution for the training data creation is not
available, they make use of heuristics to determine the prior probability of a sample. They use
a novel method to estimate this prior probability directly from the textual caption. RnnOIE is
used to extract the subject, relation and object phrases from the textual caption. The probability
of finding each of these phrases in the dataset is assumed to be the prior probability for obtaining
the sample in the training data.

2.5.6 Scientific Text
Most of the Open IE extractors are evaluated on text from general domains such as news and
Wikipedia. However, the need for such open extractors is very high in this specific domain, con-
sidering the amount of research output being generated in the past few years. These extractors
would help immensely in processing the information in an intelligent fashion to help research
scientists make the best use of the prior research to develop techniques for tackling crucial life-
saving problems.

Groth et al. (2018) devise a scheme to check the performance of systems on sentences from
scientific publications and compares it with extractions from sentences in Wikipedia. They
use crowdsourcing to annotate if a given extraction is correct or not. In this way, they only
test for the precision of the systems and not the recall (which would require expert annotaters).
They compare two SoTA systems - OpenIE-4 and MinIE and find that both systems suffer from
a considerable gap when applied to science publications vs Wikipedia, and among the two,
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OpenIE-4 outperforms MinIE in precision. These extractions can help in quickly analyzing
vast quantities scientific text and potentially speed up the research process.

In this section, we have summarized the various use cases for Open IE extractionswhich have
found downstream utility in a broad range of tasks. However, the challenge remains for the re-
search community to explore the utility of Open IE extractions in the neural context where dense
vector representations and end-to-end modeling outperform various types of semi-structured
representations for text.

2.6 Related Tasks
In this section, we discuss some of the tasks that are related to Open IE. We discuss the task
of Semantic Role Labeling (SRL), which is closely related to the task of Open IE. Finally, the
task of Open IE has given rise to other sub-fields that resolve some of the challenges arising
from the usage of open extractions. We discuss two such tasks of Open Link Prediction and
Canonicalization.

2.6.1 Ontological/Closed IE
Traditional Information Extraction relies on a pre-defined ontology that guides the conversion
of unstructured text to a structured format. The tasks of entity linking and relation classification
traditionally fall under this paradigm and they are briefly described below:
Entity Linking: Entity linking involves finding the KB entity referred to by a mention marked
in the input sentence. Multilingual pretrained models have advanced the task of entity linking
across languages. MEL (Botha et al., 2020) uses a dual encoder, cross-encoder pipeline trained
on hard negatives to achieve strong performance on 104 languages. mGENRE (Cao et al., 2021)
is an entity-linkingmodel that autoregressively generates the linked entity name using a Seq2Seq
model. Moreover, it augments the decoder with a prefix trie to generate only valid entity names.
We find that combining these models using a dual encoder, constrained generation pipeline leads
to strong multilingual fact-linking performance.
Relation Classification: The task involves identifying the relation between a pair of entity men-
tions. It is also referred to as relation extraction. The recently releasedWebRED (Ormándi et al.,
2021) dataset provides a set of English sentences annotated with the corresponding Wikidata
relation/predicate and the linked entities. We create INDICLINK using these examples. Other
multilingual relation classification datasets such as RELX (Koksal and Ozgur, 2020), DiS-ReX
(Bhartiya et al., 2022) are unusable for fact alignment as they don’t provide the linked enti-
ties. From the task-modelling perspective, it has traditionally been posed as a classification
task (Xiao and Liu, 2016; Ormándi et al., 2021). However, recent techniques (Nayak and Ng,
2020; Huguet Cabot and Navigli, 2021) have shown strong performance using generative mod-
els. Nayak and Ng (2020) treats the entire triple of the two entities and the relation as a single
text and generates it using a Seq2Seq model. Huguet Cabot and Navigli (2021) further makes
use of the power of pre-trained Seq2Seq models to improve relation extraction performance over
200 relations.
Fact Extraction: The task involves joint entity and relation extraction (Zhong and Chen, 2021;
Sui et al., 2020) focusing on discovering new facts that are not present in the KB. Whereas fact
linking deals with connecting existing KB facts with text. Therefore, fact-linking models use
KB facts (which may be millions), whereas fact extraction systems do not.
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2.6.2 Semantic Role Labeling
Semantic role labeling identifies the semantic roles of the words in the sentence, about how they
are related to a mentioned verb. Similar to Open IE, they use the notion of agent and recipient
to correspond to subject and object. The verb or predicate corresponds to the relation in Open
IE. For example, in “Mary loves John”, “loves” is the predicate with “Mary” as the agent and
“John” as the recipient. However, SRL cannot have multi-word relational phrases. Moreover,
they cannot handle noun-based relations or identify implicit relations in the sentence. The use
of a semantically strict set of labels requires higher linguistic expertise from the end users. This
is not the case with Open IE.

2.6.3 Open Link Prediction
Open Knowledge bases represent a special type of Knowledge Base which don’t use a pre-
defined ontology. Instead, they use the triples generated using Open IE systems as the facts.
Open KBs have the potential to augment existing ontology-based KBs and make them widely
applicable to domains not considered during the construction of the KB. Constructing such
Open KBs using Open IE extractions has been a long-standing goal in the IE community. Many
methods have been proposed to add new triples to such open knowledge bases by predicting
new links between existing nodes. Due to the open-domain nature of the problem, such comple-
tion methods are also referred to as Open Link Prediction. The un-normalized surface forms of
entities and relations make link prediction challenging.

Broscheit et al. (2020) provides a benchmark for this task called OLPBench. It uses the
OPIEC KB (Gashteovski et al., 2019), which was constructed by curating the triples generated
from Wikipedia. MinIE was used as the underlying Open IE system for making the KB. OLP-
Bench also provides a version of the test set that ensures no overlapping facts with the train set.
No overlap is ensured to understand the true generalization of the link prediction systems.

2.6.4 Canonicalization
The subject, relation, and object phrases extracted from Open IE are not grounded in a common
framework, resulting in a large number of duplicates referring to the same ground truth entity.
For example, “Barack Obama”, and “Barack H. Obama” refer to the same entity but would be
considered distinct in the Open IE extractions. Similarly, for the relation phrase “the boss of”,
syntactic variants such as “boss of” or synonymous variants such as “leader of” refer to the same
relation phrase. The task of canonicalization deals with assigning a standard reference for such
similarly grounded phrases.

CESI Vashishth et al. (2018) presents a novel way for canonicalization using side information
along with Open IE extractions in order to cluster the entities and relations. The heads of the
clustered entities and relations are considered canonicalized representations.

A wide variety of side information is used to achieve their final goal. For the entities, link-
ing to Wikipedia pages, Wordnet types, a paraphrase database (PPDP), and morphology-based
normalization is used as relevant side-information. For relations, existing KB Populations tech-
niques are used to provide links to existing KB relations.

They introduce a new dataset called ReVerb45K, which contains 45,000 high-quality ex-
tractions that are used to construct the Open KB. The evaluation is performed in terms of the
precision of the generated clusters.
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In this chapter, we have defined the task of Open IE and discussed various Open IE systems
that have been proposed in the literature. We looked at them from the point of view of English
and non-English Open IE systems, non-neural and neural Open IE systems, and how the Open
IE systems are evaluated. We also described some downstream applications where Open IE
extractions have been found to be helpful and the tasks which are closely related to Open IE.
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Chapter 3

Generative Models for Open IE

As discussed in Chapter 1, the task of Open IE can be modeled as either a generative (Cui et al.,
2018) or a labeling (Stanovsky et al., 2018; Ro et al., 2020) task. This chapter describes two
neural architectures for Open IE that belong to the generative modeling paradigm. In Chapter 4,
we describe neural architectures that belong to the labeling paradigm.

In generative modeling, Seq2Seq models are typically used to generate extractions from the
original sentence. Models in this paradigm include a decoder to generate the words in an ex-
traction. The different fields in the extraction tuple are usually demarcated by unique delimiter
tokens, output by the decoder. Models usually differ in how they handle the generation of multi-
ple extractions for each sentence. However, independent generation of extractions may result in
redundancy, where the same information is expressed through similar or identical triples. More-
over, the data used for training the models often miss extractions due to a lack of high-quality
data, resulting in reduced coverage of the trained models.

In Section 3.1, we introduce IMOJIE (Iterative Memory-Based Joint Open Information Ex-
traction), an architecture that captures dependencies among extractions by repeatedly re-encoding
the sentence along with the extractions generated so far before generating the subsequent extrac-
tion.1 In Section 3.2, we introduce the Gen2OIE model, a two-stage generative architecture that
factorizes the dependencies among extractions based on shared relations. Gen2OIE achieves
better performance than IMOJIE due to improved handling of training noise by the use of a
Relation Coverage (RC) heuristic that increases the information covered in its extractions.

3.1 IMoJIE: Iterative Memory Joint Open Information Ex-
traction

In this section, we present IMOJIE (Kolluru et al., 2020b), an extension of CopyAttention (Cui
et al., 2018). IMoJIE produces the next extraction conditioned on all previously extracted tuples,
which results in a variable number of diverse extractions per sentence. We release IMOJIE and
all related resources for further research.2

Our analysis of CopyAttention (Cui et al., 2018) reveals that it suffers from two drawbacks.
First, it does not naturally adapt the number of extractions to the length or complexity of the
input sentence. Second, it is susceptible to stuttering: extraction of multiple triples bearing
redundant information.

1Samarth Aggarwal helped with the ideation and implementation of the IMoJIE architecture and included it as
a part of his BTech thesis.

2https://github.com/dair-iitd/imojie
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Sentence He was appointed Commander of the Order of the British Empire in the 1948
Queen’s Birthday Honours and was knighted in the 1953 Coronation Honours .

CopyAttention

( He ; was appointed ; Commander ... Birthday Honours )
( He ; was appointed ; Commander ... Birthday Honours and was knighted ... Honours )
( Queen ’s Birthday Honours ; was knighted ; in the 1953 Coronation Honours )
( He ; was appointed ; Commander of the Order of the British Empire in the 1948 )
( the 1948 ; was knighted ; in the 1953 Coronation Honours)

IMOJIE ( He ; was appointed ; Commander of the Order ... Birthday Honours )
( He ; was knighted ; in the 1953 Coronation Honours )

Table 3.1: IMOJIE vs. CopyAttention. CopyAttention suffers from stuttering, which IMOJIE
does not.

Sentence
Greek and Roman pagans , who saw their relations with the gods in political and social
terms , scorned the man who constantly trembled with fear at the thought of the gods,
as a slave might fear a cruel and capricious master .

OpenIE-4 ( the man ; constantly trembled ; )

IMOJIE

( a slave ; might fear ; a cruel and capricious master )
( Greek and Roman pagans ; scorned ; the man who constantly trembled with fear
at the thought of the gods, as a slave might fear a cruel and capricious master )
( the man ; constantly trembled ; with fear at the thought of the gods )
( Greek and Roman pagans ; saw ; their relations with the gods in political and social terms )

Table 3.2: IMOJIE vs. OpenIE-4. Pipeline nature of OpenIE-4 can get confused by long
convoluted sentences, but IMOJIE responds gracefully.

These limitations arise because its decoder has no explicit mechanism to remember what
parts of the sentence have already been ‘consumed’ or which triples have already been generated.
Even though decoder in earlier methods used a fixed-size beam for inference, beam search can
only ensure that the extractions are not exact duplicates.

In response, we design a neural Open IE system that uses sequential decoding of tuples
conditioned on previous tuples. We achieve this by adding every extraction generated hitherto
to the encoder. This iterative process stops when an EndOfExtractions tag is generated by the
decoder, allowing it to produce a variable number of extractions. We name our system Iterative
Memory Joint Open Information Extraction (IMOJIE).

At a high level, the next extraction from a sentence is determined in the context of all tuples
extracted from it so far. Hence, IMOJIE uses a decoding strategy that generates extractions in a
sequential fashion, one after another, each one being aware of all the ones generated prior to it.
The architecture of IMoJIE is illustrated in Figure 3.1.

Formally, let us consider a sentence S with N word tokens [w1, w2, . . . , wN ] and set ofM
extractions generated by the system,E = {E1, E2, . . . , EM}, where each extractionEi contains
the tokens [<s>, eis1, . . . ,, </s>, <r>, eir1, . . . </r>, <o>, eio1, . . . , </o>]. The tags, <s> and
</s>, <r> and </r>, <o> and </o> indicate boundaries of the subject, relation and object,
respectively.

In the IMoJIE model, given the sentence S and the previously generated extractions
{E1 . . . Ei−1}, the generation of the next extraction Ei is conditioned on the extractions gener-
ated so far. A special extraction,EM+1 containing the token EndOfExtractions indicates that the
model has generated all the extractions for the sentence. Therefore, the probability of generating
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Figure 3.1: One step of the sequential decoding process, for generating the ith extraction, which
takes the original sentence and all extractions numbered 1, . . . , i − 1, previously generated, as
input.

the set of extractions E, from the sentence S can be expressed as:

Pr(E|S) =
M+1∏
i=1

|Ei|∏
j=1

Pr(Ei,j|S,Ei,j−1, Ei,j−2, . . . , Ei,1, Ei−1, . . . , E1)

 (3.1)

where each extraction Ei is generated conditioned on extractions Ei−1 . . . E1 and each token
Ei,j in Ei is generated autoregressively based on the previously generated tokens Ei,j−1 . . . Ei,1.

This kind of sequential decoding is made possible by the use of an iterative memory. Each
of the generated extractions are added to the memory so that the next iteration of decoding has
access to all of the previous extractions. We simulate this iterative memory with the help of
BERT encoder, whose input includes the [CLS] token and original sentence appended with the
decoded extractions so far, punctuated by the separator token [SEP] before each extraction.

IMOJIE uses an LSTM decoder, which is initialized with the embedding of [CLS] token. The
contextualized embeddings of all the word tokens are used for the Copy (Gu et al., 2016) and
Attention (Bahdanau et al., 2015) modules. The decoder generates the tuple one word at a time,
producing ⟨rel⟩ and ⟨obj⟩ tokens to indicate the start of relation and object, respectively. The
iterative process continues until the EndOfExtractions token is generated.

At the time of development of IMoJIE, pre-trained decoders were not yet well-established.
Hence, we chose BERT as the encoder and LSTM as the decoder. However, using pre-trained
Seq2Seq models such as T5 (Raffel et al., 2020) in the IMoJIE model results in almost similar
performance while adding to the computational cost (shown in Section 3.4). This indicates
that the iterative re-encoding strategy can overcome the limitations of a decoder without any
pretraining. Hence, we continue to use BERT-LSTM as the backbone architecture for IMoJIE.

The overall process is summarized in Algorithm 1 and described below.

1. Pass the sentence through the Seq2Seq architecture to generate the first extraction.

2. Concatenate the generated extraction with the existing input and pass it again through the
Seq2Seq architecture to generate the next extraction.

3. Repeat Step 2 until the EndOfExtractions token is generated.

IMOJIE is trained using a cross-entropy loss between the generated probability distribution
and the gold token at every jth token of the ith extraction. The gold set of extractions for a
sentence are ordered based on decreasing values of confidence scores that are assigned by the
bootstrapping systems. However, we don’t notice any statistically significant change in perfor-
mance of the model, even when trained with the extractions randomly ordered.
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Algorithm 1 IMoJIE Model
Input: Sentence S = [w1, w2, . . . , wN ], Encoder model Enc, Decoder model Dec
I ← [CLS] S
E1 ← Dec(Enc(I))
E ← {E1}
i← 1
while true do

if Ei = EndOfExtractions then
break

end if
I ← I [SEP] Ei

Ei+1 ← Dec(Enc(I))
E ← E ∪ {Ei+1}
i← i+ 1

end while

Formally, the cross-entropy loss for the jth token in the ith gold extraction (denoted by ∗)
can be written as:

CEi
j = − log Pr(e∗ij |e∗i1 . . . e∗ij−1) (3.2)

The final cross-entropy loss, which is minimized for a sentence, sums up the above term
over all tokens in all extractions as follows:

CE =
M∑
i=1

len(E∗
i )∑

j=1

CEi
j (3.3)

3.1.1 Confidence Scoring
To assign a confidence value to every extraction, following previous generation systems (Xue
et al., 2020), we compute the inverse of perplexity as assigned by the IMoJIE decoder. The
log word probabilities assigned by the IMoJIE decoder are averaged to be used as a confidence
score for each of the generated extractions. If Ei is the generated extraction, the confidence
score associated with it is given by the following formula:

Confidence(Ei) =

∑len(Ei)
j=1 log Pr(eij|ei1 . . . eij−1)

len(Ei)
(3.4)

In the next section, we present another generative model that makes use of a two-stage
pipeline that improves upon IMoJIE by using certain coverage heuristics.

3.2 Gen2OIE: Two-Stage Generative Model
In this section, we propose an improved generative approach called Gen2OIE, which, combined
with a training heuristic to improve the coverage of extractions, establishes the current state of
the art performance on the CaRB benchmark (Bhardwaj et al., 2019).

Themodel extends the 2-stage design ofMulti2OIE (Ro et al., 2020) to a generative paradigm.
In the first stage, it uses a Seq2Seq model to generate all possible relations from the input sen-
tence, and in the second stage, it uses another Seq2Seq model to generate all extractions that
contain a given relation, i.e., completes the subject and object fields.
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Figure 3.2: Gen2OIE model contains two Seq2Seq models. In Stage-1, it generates all relations
in the sentence, separated by an [SEP] token. For each detected relation in Stage-2, it generates
extractions containing the relation.

Algorithm 2 Gen2OIE model
Input: Sentence S, Stage-1 Seq2Seq model RelsM , Stage-2 Seq2Seq model ArgsM
E ← {}
R← RelsM(S) ▷ Get all relations from Stage-1
for r ∈ R do

E{r} ← ArgsM(r [SEP] S) ▷ Get extractions for each relation from Stage-2
E ← E ∪ E{r}

end for

Gen2OIE can produce overlapping relations and multiple extractions containing the same
relation, thus overcoming the limitations of Multi2OIE model. Moreover, due to its generative
nature, Gen2OIE can add newwords or introduce changes in morphology that may be necessary
for producing correct extractions, which cannot be achieved by labeling models.

Both the stages of Gen2OIE (shown in Figure 3.2 and summarized in Algorithm 2) use
Seq2Seq models as follows:
Stage-1 Seq2SeqRelsM : The input sentence S is passed to the encoder, and decoder generates
a string formed by concatenating the set of all extracted relations, separated by [SEP] tokens.
This concatenated string is referred to asR. During training, the target relations are concatenated
in the order in which they occur in the sentence. We find that a deterministic order is important
for adding stability to the model training.
Stage-2 Seq2Seq ArgsM : To produce extractions corresponding to each relation generated in
Stage-1, the relation r is concatenated with the input sentence S and passed to the encoder as
“r [SEP] S”. The decoder is trained to generate all the extractions containing the relation r
(referred to as E{r}). Multiple extractions are separated by an <e> token, and hence separating
E{r} based on <e> token gives us the set of individual extractions containing the relation r. Each
extraction contains delimiter tokens to identify the various parts of the extraction. The surround-
ing <s>...</s>, <r>...</r> and <o>...</o> tokens are used to identify the subject, relation and
object phrases, respectively.

We introduce a simple parts-of-speech based heuristic during Stage-1 training of Gen2OIE
that increases the relation coverage in the generative paradigm. In Chapter 4, we also explore
ways to achieve the same goal in the labeling paradigm.
Relation Coverage (RC): Verbs are usually strong expressions of relations. However, the ex-
tractions of training data may be incomplete and not satisfy this property. Therefore, during the
training phase, we modify the input to the Stage-1 model by removing the verbs in the sentence
which are not present in relation of any extraction. Thus the model learns that every verb must
be included in some relation and applies this bias during inference as well. This heuristic does
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not effect Stage-2 model training. Hereafter, Gen2OIE is understood to include training with
Relation Coverage unless explicitly mentioned otherwise. We note that the Relation Coverage
heuristic can only be applied to a two-stage pipeline like Gen2OIE because it artificially alters
the input sentence, and so makes it infeasible to generate complete extractions from it. Hence,
it cannot be applied to the IMoJIE model.

3.2.1 Confidence Scoring
The word log probabilities assigned by the Stage-2 decoder are average to be used as confidence
score for the extractions generated by Gen2OIE. The equation for finding the confidence score
remains the same as Equation (3.4).

3.3 Experimental Setup
In this section, we discuss the training data used, metrics evaluated and the systems with which
IMoJIE and Gen2OIE are compared.

3.3.1 Training Data Construction
To train generative neural models for the task of Open IE, we need a set of (sentence, extraction)
pairs. It is ideal for curating such a training dataset via human annotation, but such a dataset is
unavailable for the task of Open IE. We follow Cui et al. (2018) and use bootstrapping — using
extractions from a pre-existing Open IE system as ‘silver’-labeled (as distinct from ‘human’
or ‘gold’-labeled) instances to train the neural model. We first order all of the extractions in
decreasing order of confidences output by the original system. We then construct training data
assuming that this is the order in which it should produce the extractions.

We obtain our training sentences by scraping Wikipedia, because Wikipedia is a compre-
hensive source of informative text from diverse domains, rich in entities and relations. Using
sentences from Wikipedia3 ensures that our model is not biased towards data from any single
domain. We run OpenIE-44 on 91K randomly sampled sentences to generate a set of Open IE
tuples for every sentence. This results in a total of 181K extractions.

3.3.2 Evaluation Metric
Weuse the CaRB data and evaluation framework (Bhardwaj et al., 2019) to evaluate the systems5
at different confidence thresholds, yielding a precision-recall curve. We identify two important
summary metrics from the P-R curve.
F1: We find the point in the P-R curve corresponding to the largest F1 value and report it. This
is the operating point for getting extractions with the best precision-recall trade-off.
AUC: This is the area under the P-R curve. This metric is useful when the downstream applica-
tion can use the confidence value of the extraction.

3https://archive.org/details/enwiki-20170920
4https://github.com/knowitall/openie
5Our reported CaRB scores for OpenIE-4 and OpenIE-5 are slightly different from those reported by Bhardwaj

et al. (2019). The authors of CaRB have verified our values.
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System F1% AUC%

Stanford-IE 23 13.4
OLLIE 41.1 22.5
PropS 31.9 12.6
MinIE 41.9 -∗
OpenIE-4 51.6 29.5
OpenIE-5 48.5 25.7
ClausIE 45.1 22.4

CopyAttention 35.4 20.4
CopyAttention + BERT 51.6 32.8
RNN-OIE 49.2 26.5
Sense-OIE 17.2 -∗
Span-OIE 47.9 -∗
Multi2OIE 52.5 31.6
IMoJIE 53.2 33.1
GenOIE 52.1 30.3
Gen2OIE w/o RC 51.9 29.7
Gen2OIE 54.4 32.3

Table 3.3: Comparison of various Open IE systems: non-neural, neural and our proposed mod-
els. Gen2OIE outperforms all other systems. (*) Cannot compute AUC because Sense-OIE and
MinIE do not emit confidence values for extractions, and released code for Span-OIE does not
include calculation of confidence values.

3.3.3 Systems Compared
We compare IMOJIE and Gen2OIE against several non-neural baselines, including Stanford-IE
(Angeli et al., 2015), OpenIE-4 (Christensen et al., 2011; Pal and Mausam, 2016), OpenIE-5
(Saha et al., 2017; Saha and Mausam, 2018), ClausIE (Del Corro and Gemulla, 2013), PropS
(Stanovsky et al., 2016), MinIE (Gashteovski et al., 2017), and OLLIE (Mausam et al., 2012).
We also compare with previously proposed neural Open IE models such as CopyAttention with
and without using BERT encoder, (Cui et al., 2018), RnnOIE (Stanovsky et al., 2018), SenseOIE
(t et al., 2019), SpanOIE (Zhan and Zhao, 2020) and Multi2OIE (Ro et al., 2020).

Probably the most closely related baseline to IMoJIE is the neural generation baseline of
CopyAttention. We compare against an English version of Logician (Section 2.4.4.1), which
adds coverage attention, a module to ensure that all the important words in the input are covered,
to a single-decoder model that emits all extractions one after another. We also compare against
CopyAttention augmented with diverse beam search (Vijayakumar et al., 2018) — it adds a
diversity term to the loss function so that new beams have smaller redundancy with respect to
all previous beams.

To further analyze the effectiveness of the 2-stage architecture in Gen2OIE, we introduce
another model called GenOIE, that outputs all extractions for a sentence as a single string, sepa-
rated by an <e> token. The GenOIEmodel differs from the CopyAttentionmodel, which outputs
the various beams from a beam search as the multiple extractions for the input. CopyAttention
only allows a fixed number of extractions for each sentence while GenOIE allows for variable
number of extractions.
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3.3.4 Implementation
We implement IMOJIE in the AllenNLP framework6 (Gardner et al., 2018) using Pytorch 1.2.
At the time of development of the IMoJIE model, pre-trained decoders were not yet well estab-
lished. Hence, we chose BERT as the encoder and LSTM as the decoder for the IMoJIE model.
We use “BERT-small” model as the encoder for faster training. In Section 3.4.5, we also experi-
ment with using Seq2Seq pre-trained models as the IMoJIE backbone. Other hyper-parameters
include learning rate for BERT, set to 2× 10−5, and learning rate, hidden dimension, and word
embedding dimension of the decoder LSTM, set to (10−3, 256, 100), respectively. These hy-
perparameters are generally the standard values usually used for training BERT and LSTMs.
Hyperparameter tuning resulted in no significant changes, and hence we stuck with the default
choices.

Since the model or code of CopyAttention (Cui et al., 2018) were not available, we imple-
mented it ourselves. Our implementation closely matches their reported scores of 47.3% AUC,
achieving a (F1, AUC) of (56.4, 47.7)% on the OIE2016 benchmark.

We implement Gen2OIE using the T5 framework7 using Tensorflow. We use “mT5-base”
model for faster training. The multilingual version of T5 is used as the same model is also
applied to other languages in Chapter 6. Other hyper-parameters include a learning rate of 0.001
with 24576 tokens per batch. As with IMoJIE, we use default hyperparameters recommended
for T5, as intial hyperparameter tuning did not show any significant improvements.

To determine the speed of a system, we analyze the number of sentences it can process per
second. We run all the systems on a common set of 3,200 sentences (Stanovsky et al., 2018),
using a V100 GPU and four cores of Intel Xeon CPU (the non-neural systems use only the CPU).

3.4 Results and Analysis
In this section, we report the performance of IMoJIE and Gen2OIE and compare it with prior
systems. Since IMoJIE was motivated as a model that solves the redundancy issue in CopyAt-
tention, we also conducted experiments to determine if this has indeed been achieved.

3.4.1 Performance of IMOJIE
IMoJIE outperforms previously proposed neural and non-neural systems. It outperformsOpenIE-
4, the best existing Open IE system, by 1.9% F1, 3.8% AUC. Qualitatively, we find that it makes
fewer mistakes than OpenIE-4, probably because OpenIE-4 accumulates errors from upstream
parsing modules (see Table 3.2).

IMOJIE outperforms CopyAttention by large margins— about 18% F1 and 13%AUC. Qual-
itatively, it outputs non-redundant extractions through the use of its iterative memory (see Ta-
ble 3.1) and a variable number of extractions enabled by the EndofExtractions token. It also
outperforms CopyAttention with BERT, which adds pretrained knowledge to the model and is
thus a very strong baseline, by 1.9% F1 and 0.5% AUC.

RnnOIE performs much better than CopyAttention. However, it suffers due to its inability
to generate auxilliary verbs and implied prepositions. E.g., it can only generate (Trump; Presi-
dent; US) instead of (Trump; is President of; US) from the sentence “US President Trump...”.
Moreover, it is trained only on limited number of pseudo-gold extractions generated by Michael
et al. (2018).

6https://github.com/allenai/allennlp
7https://github.com/google-research/text-to-text-transfer-transformer
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Figure 3.3: Precision-Recall curve of Open IE Systems.

CaRB evaluation of SpanOIE8 results in (precision, recall, F1) of (58.9%, 40.3%, 47.9%).
Hence, IMOJIE outperforms SpanOIE as well, both in precision and recall.

Figure 3.3 shows that the precision-recall curve of IMOJIE is consistently above that of exist-
ing Open IE systems, emphasizing that IMOJIE is consistently better than them across different
confidence thresholds. We do find that CopyAttention+BERT outputs slightly higher recall at
a significant loss of precision (due to its beam search with constant size), which gives it some
benefit in the overall AUC.

3.4.2 Performance of Gen2OIE
We report the performance of Gen2OIE with and without using the RC heuristic. We find that
the RC heuristic results in a significant increase of (2.5, 2.6)% in (F1, AUC). We find that using
GenOIE results in (2.3, 2.0)% drop in F1, AUC compared to Gen2OIE, which leverages RC.
We note that RC cannot be applied to GenOIE or IMoJIE as it involves the removal of words in
the input sentence that may appear in other fields of the extraction.

Compared with IMoJIE, we see that Gen2OIE without RC performs worse by (1.3, 3.4)%
in (F1, AUC). But with RC training, it beats IMoJIE by 1.2% in F1. These results indicate
that although the architecture is less powerful than IMoJIE, the RC heuristic, applicable only to
two-stage models, can handle noise in training data and improve the overall performance.

3.4.3 Redundancy
What is the extent of redundancy in IMOJIE output, when compared to earlier Open IE systems?

Apart from themodels compared in Table 3.3, we additionally investigate various approaches
to specifically reduce redundancy in CopyAttention, such as Logician’s coverage attention (with
both an LSTM and a BERT encoder) as well as diverse beam search. Table 3.4 shows that both
approaches make significant improvements beyond CopyAttention. However, qualitative anal-
ysis of diverse beam search output reveals that the model gives out different words in different
tuples in an effort to be diverse without considering their correctness. Moreover, since this
model uses beam search, it still outputs a fixed number of tuples.

This analysis naturally suggested the IMOJIE (w/o BERT) model — an IMOJIE variation
that uses an LSTM encoder instead of BERT. Unfortunately, IMOJIE (w/o BERT) is behind the

8github:zhanjunlang/Span_OIE
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System F1% AUC%

CopyAttention 35.4 20.4
CoverageAttention 41.8 22.1
CoverageAttention+BERT 47.9 27.9
Diverse Beam Search 46.1 26.1
IMOJIE (w/o BERT) 37.9 19.1
IMOJIE 53.2 33.1

Table 3.4: Performance of models that attempt to address the redundancy issue prevalent in
generative neural Open IE systems. All systems are bootstrapped on OpenIE-4.

CopyAttention baseline by 12.1% in AUC and 4.4% in F1. We hypothesize that this is because
the LSTM encoder is unable to learn how to capture inter-fact dependencies adequately — the
input sequences are too long for effectively training LSTMs.

This explains our use of Transformers (BERT) instead of the LSTM encoder to obtain the
final form of IMOJIE.With a better encoder, IMOJIE is able to perform up to its potential, giving
an improvement of (17.8%, 12.7%) in (F1, AUC) over existing Seq2Seq Open IE systems.

We further measure two quantifiable metrics of redundancy:

Mean Number of Occurrences (MNO): The average number of tuples every output word ap-
pears in.

Intersection Over Union (IOU): Cardinality of intersection over cardinality of union of words
in the two tuples, averaged over all pairs of tuples.

These measures were calculated after removing stop words (from NLTK9) in the tuples.
Higher values of these measures suggest higher redundancy among the extractions. IMOJIE is
significantly better than CopyAttention+BERT, the strongest baseline, on both these measures
(Table 3.5). Interestingly, IMOJIE has a lower redundancy than even the gold triples; this is
due to imperfect recall. Gen2OIE also achieves lower redundancy compared to CopyAtten-
tion+BERT. We attribute this to the factorization of the problem into two stages, where the
second stage predicts extractions corresponding to a distinct relation, thus reducing the chances
of redundant extractions.

Extractions MNO IOU #Tuples

CopyAttention+BERT 2.805 0.463 3159
IMOJIE 1.282 0.208 1598
Gen2OIE 1.310 0.283 1699
Gold 1.927 0.31 2650

Table 3.5: Measuring redundancy of extractions. MNO stands forMeanNumber ofOccurrences.
IOU stands for Intersection over Union.

Attention is typically used to enable the model to focus on words considered important for
the task. But the IMOJIE model successfully uses attention to forget certain words, those which
are already covered. Consider the sentence “He served as the first primeminister of Australia and
became a founding justice of the High Court of Australia”. Given the previous extraction (He;
served; as the first prime minister of Australia), the BERT’s attention layers push the decoder
to prioritize ‘founding’ and ‘justice’ as the words ‘prime’, and ‘minister’ have already been
covered.

9https://www.nltk.org/
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Base Architecture Model F1% AUC%

GenOIE BERT/LSTM 47.9 27.9
T5 52.1 30.3

IMoJIE BERT/LSTM 53.2 33.1
T5 53.5 31.6

Table 3.6: Performance of IMoJIE and GenOIE architectures with BERT/LSTM and T5 base
architectures. IMoJIE achieves similar performancewith either of the architectures, but GenOIE
achieves a significant increase. However, at the higher performance levels of IMoJIE, LSTM
seems to better at confidence scoring compared to the transformer-based T5, resulting in a 1.5%
drop in AUC from 33.1 to 31.6.

3.4.4 Performance with varying sentence lengths
In this experiment, we measure the performance of baseline and our models by testing on sen-
tences of varying lengths. We partition the original CaRB test data into six parts with sentences
of lengths 9-16 words, 17-24 words, 25-32 words, 33-40 words, 41-48 words and 49-62 words,
respectively. Note that the minimum and maximum sentence lengths are 9 and 62, respectively.
We measure the F1 score of both IMOJIE and Gen2OIE on these partitions as depicted in Fig-
ure 3.4. We observe that the performance deteriorates with increasing sentence length, which is
expected. Also, for each of the partitions, Gen2OIE performs marginally better than or similar
to IMoJIE.

Figure 3.4: Measuring performance with varying input sentence lengths

3.4.5 Effectiveness of pre-trained decoders
Recent years have seen a rise in popularity of pre-trained Seq2Seq models such as mBART (Liu
et al., 2020b) and mT5 (Xue et al., 2020). To test whether the iterative re-encoding strategy still
provides value with the current generation of pre-trained models, we reimplement IMoJIE using
the mT5 encoder-decoder model. The results are shown in Table 3.6. We also reimplement the
single stage GenOIE model with BERT-LSTM, and it outputs all extractions for a sentence as
a single string, separated by <e> tokens. GenOIE forms a strong baseline for IMoJIE as it also
uses a similar autoregressive decoding strategy as IMoJIE without the iterative memory.

We find that while GenOIE (BERT/LSTM) lagged behind IMoJIE by a considerable mar-
gin of 5.3% F1 and 5.2% AUC, GenOIE (T5) fares much better, achieving only 1.1% F1 and
2.8% AUC lower than IMoJIE. It is also interesting to note that the IMoJIE (BERT/LSTM) can
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achieve similar performance to IMoJIE (T5), indicating that the iterative re-encoding strategy
can overcome the limitations of a weak decoder.

From a computational cost perspective, the BERT/LSTM model is much faster than the T5
model. For example, the inference speed of IMoJIE (T5) is 0.51 sentences per second, while that
of IMoJIE (BERT/LSTM) is 2.6 sentences per second. Therefore, considering the faster infer-
ence time and a minor gap in F1 of 0.2%, we recommend using the IMoJIE with BERT/LSTM
architecture as the default for future applications. In the rest of the dissertation, IMoJIE will
indicate the model that uses BERT/LSTM as the encoder/decoder.

One natural-seeming way to combine IMoJIE and Gen2OIE would be to use iterative con-
ditioning while generating the set of relations in Stage-1 of Gen2OIE. However, from the above
results, we find that the iterative style of IMoJIE is more important when using weaker decoders
such as LSTMs. With more powerful decoders, iterative conditioning doesn’t seem to provide
much additional value. Since Gen2OIE Stage-1 uses a pre-trained transformer decoder, chang-
ing it to iterative re-encoding doesn’t seem promising.

3.4.6 Discussion on Order of Extractions
Open IE involves generating a set of tuples, a task that presents considerable challenges for
neural models due to the unordered nature of the set along with the potential interdependencies
among the set elements. Our experiments with IMoJIE and Gen2OIE indicate that the most crit-
ical interdependency is primarily the element’s existence or presence in the set. This is needed
to ensure that near-redundant extractions with only slightly differing subject/relation/object are
not generated. The existential dependency implies that the exact order of extractions is not im-
portant for the final generation. The set of extractions should have nearly the same probability
of generation irrespective of the order in which they have been generated.

As such, we do find that the order of extractions is not particularly vital to training the
IMoJIE model. Due to the repeated encoding of generated extractions, the IMoJIE model can
easily understand the presence/absence dependency among the extractions. However, in the
Gen2OIE Stage-1 model, maintaining a deterministic order of relations (such as their order of
appearance in sentence) does improve training stability. We attribute this to the fact that using
randomorder of extractions for the same example across different batches results in theGen2OIE
Stage-1 model being trained with different outputs for the same input. This is not encountered
with IMoJIE as random ordering also results in correspondingly different inputs, due to iterative
concatenation strategy.

3.5 Conclusion
In this chapter, we have introduced two generative methods for the task of Open IE — IMoJIE
and Gen2OIE. They are in the generative family of Open IE methods because they generate
each word in the extraction, one after the other, in an auto-regressive fashion. IMoJIE also gen-
erates multiple extractions in an auto-regressive fashion, one extraction after another, with each
extraction explicitly conditioned on all the previous extractions. However, Gen2OIE shortcuts
this auto-regressive step at the extraction level by factorizing the extractions based on predict-
ing relations and then generating all arguments corresponding to each predicted relation using
a two-stage model.

Although they achieve superior accuracy compared to prior Open IE models, generative
models are typically slower at inference time, as shown in Table 3.7. It is fundamentally due to
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Model F1% AUC% Sentences/sec

Labeling RnnOIE 49.0 26.0 149.2
Multi2OIE 52.5 31.6 41.3

Generative
IMoJIE 53.2 33.1 2.6
GenOIE 52.1 30.3 1.4

Gen2OIE 54.4 32.3 0.6

Table 3.7: Performance and Speed of labeling Open IE systems (RnnOIE, Multi2OIE) and gen-
erative Open IE systems (IMoJIE, GenOIE, Gen2OIE) evaluated on the CaRB benchmark. Gen-
erative systems lead to better performance at the cost of slower inference speeds.

their autoregressive nature at the word level. Labeling models avoid this by generating labels
for each word in the extraction in parallel. Therefore, in the next chapter, we develop novel
labelling models that are much faster and, when trained with constraints, can effectively reduce
the performance gap between labeling and generative models.
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Chapter 4

Labeling Models for Open IE

As seen in Chapter 3, generative models output each word in the extraction in an auto-regressive
manner. However, this comes at a high computational cost. An alternative paradigm is to la-
bel each input token as part of the subject, relation or object token of an extraction. In this
chapter, we present a labeling-based system that achieves good performance for Open IE while
processing inputs significantly faster.

Compared to generation systems such as IMoJIE (2.6 sentences per second), labeling-based
systems like RnnOIE (Stanovsky et al., 2015) are much faster (149.2 sentences per second)
but are relatively less accurate. The performance of RnnOIE is limited by the fact that each
extraction is predicted independently, which does not model the inherent dependencies among
the extractions.

We bridge this trade-off between speed and performance using a novel Open IE system that
is both fast and accurate. It is based on a novel iterative labeling-based architecture — Iterative
Grid Labeling (IGL). Using this architecture, Open IE is modeled as a 2-D grid labeling prob-
lem of size (M,N) where M is the number of extractions and N is the sentence length, as
shown in Figure 4.1. Each extraction corresponds to one row in the grid. Iterative assignment
of labels in the grid helps IGL capture dependencies among extractions without the need for

Figure 4.1: The extractions (Rome; [is] the capital of; Italy) and (Rome; is known for; it’s rich
history) can be seen as the output of grid labeling. We additionally introduce a synthetic token
[is] to the input to facilitate more natural relation extractions.

Sentence Other signs of lens subluxation include mild conjunctival redness, vitreous humour
degeneration, and an increase or decrease of anterior chamber depth .

IGL (Other signs of lens subluxation; include; mild conjunctival redness,
vitreous humour degeneration)

IGL
+Constraints

(Other signs of lens subluxation; include; mild conjunctival redness,
vitreous humour degeneration,
and an increase or decrease of anterior chamber depth)

Table 4.1: For the given sentence, IGL based Open IE extractor produces an incomplete extrac-
tion. Constraints improve the recall by covering the remaining words.
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Figure 4.2: 2-D grid for Open IE with extraction as rows and words as columns. The values
represent the labels (S)ubject, (R)elation, (O)bject. The empty cells representNone. Constraints
can be applied across rows and columns.

re-encoding, thus making it much faster than generation-based approaches.
While IGL gives high precision, we can further improve recall by incorporating (soft) global

coverage constraints on this 2-D grid. We use constrained training (Mehta et al., 2018; Nandwani
et al., 2019) by adding a penalty term for all constraint violations. This encourages the model to
satisfy these constraints during inference as well, leading to improved extraction quality, without
affecting running time.1

4.1 Iterative Grid Labeling for Open IE
Recall that given a sentence S with N word tokens [w1, w2, . . . , wN ], the task of Open IE is
to output a set of extractions, E = {E1, E2, . . . , EM}, where each extraction is of the form
(subject; relation; object). For a labeling-based system, each word is labeled as S (Subject),
R (Relation), O (Object), or None for every extraction. We model this as a 2-D grid labeling
problem of size (M,N), where the words represent the columns and the extractions represent
the rows (Figure 4.2). The output at position (m,n) in the grid (Lm,n) represents the label
assigned to the nth word in themth extraction.

We propose a novel Iterative Grid Labeling (IGL) approach to label this grid, filling up
one row after another iteratively. Since each row corresponds to a distinct Open IE extraction,
each extraction is conditioned on the previously generated extractions. We refer to the Open
IE extractor trained using this approach as IGL-OIE. This iterative conditioning differentiates
IGL-OIE from RnnOIE, which generates the extractions independently. The overall process is
summarized in Algorithm 3 and shown schematically in Figure 4.3.

IGL-OIE is based on a BERT encoder, which computes contextualized embeddings for each
word. The input to the BERT encoder is [w1, w2, . . . , wN , [is], [of], [from]]. The last three
tokens (referred as sti) are appended because, sometimes, Open IE is required to predict tokens
that are not present in the input sentence.2 E.g., the sentence “US president Donald Trump gave
a speech on Wednesday.” will have one of the extractions as (Donald Trump; [is] president [of];
US). The appended tokens make such extractions possible in a labeling framework.

The contextualized embeddings for each word or appended token are iteratively passed
through a 2-layer transformer to get their Iterative Layer (IL) embeddings at different levels,
until a maximum levelM , i.e. a word wn has a different contextual embedding ILm,n for every
row (level)m. At every levelm, each ILm,n is passed through a fully-connected labeling layer to
get the labels for words at that level (Figure 4.3). Embeddings of the predicted labels are added

1The code and trained models are available at https://github.com/dair-iitd/openie6
2‘is’, ‘of’ and ‘from’ are the most frequent such tokens adopted by the OpenIE-4 system.
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Algorithm 3 IGL-OIE Model
Input: Sentence S = [w1, w2, . . . , wN ], Encoder model Enc, Self-Attention Layers SA, Label

Classifier LCls, Label Embedder LEmb
IL0 ← Enc(S)
LE0 ← 0
E ← {}
for i = 1, 2, 3 . . . , M do

if Ei−1 = Empty then
break

end if
ILi ← SA(ILi−1 + LEi−1)
Ei ← LCls(ILi)
E ← E ∪ {Ei}
LEi ← LEmb(Ei)

end for

Figure 4.3: Architecture of IGL. BERT-embeddings of the words are iteratively passed through
self-attention layers. st1, st2, st3 refer to the appended tokens [is], [of], [from], respectively.
At every iteration, we get an extraction by labeling the words using a fully-connected layer.
Embeddings of the generated labels are added to the iterative layer embeddings.

to the IL embeddings before passing them to the next iteration. This, in principle, maintains the
information of the extractions output so far, and hence can capture dependencies among labels
of different extractions. For words that were broken into word pieces by BERT, only the embed-
ding of the first word piece is retained for label prediction. We find the model performance to be
insensitive to this design choice as choosing the embedding of the last word-piece or an average
of all word-piece embeddings gave similar results. We sum the cross-entropy loss between the
predicted labels and the gold labels at every level to get the final loss, denoted by JCE .

Open IE systems typically assign a confidence value to an extraction. In IGL, at every level,
the respective extraction is assigned a confidence value by adding the log probabilities of the
predicted labels (S, R, and O), and normalizing this by the extraction length.
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4.2 Grid Constraints
Our preliminary experiments revealed that IGL-OIE has good precision, but misses important
extractions. In particular, we observed that the set of output extractions may not capture all
the information from the sentence (Table 4.1). We formulate constraints over the 2-D grid of
extractions (as shown in Figure 4.2) which act as an additional form of supervision to improve
the recall. We implement these as soft constraints, by imposing additional violation penalties
in the loss function. This biases the model to learn to satisfy the constraints, without explicitly
enforcing them at inference time.

To describe the constraints, we first define the notion of a head verb as all verbs except
light verbs (do, be, is, has, etc). We run a POS tagger on the input sentence and find all head
verbs in the sentence after removing all light verbs.3 For example, for the sentence “Obama
gained popularity after Oprah endorsed him for the presidency”, the head verbs are gained and
endorsed. In order to cover all valid extractions like (Obama; gained; popularity) and (Oprah;
endorsed him for; the presidency), we design various coverage constraints. Note that these
constraints are only encouraged. We introduce some notation that is used for formulating the
constraints.

Notation: Let pn be the POS tag of the word wn. We define an importance indicator ximp
n = 1

if pn ∈ {Noun, Verb, Adjective, Adverb}, and 0 otherwise. Similarly, let xhvn = 1 denote that
wn is a head verb. At each extraction level m, the model computes Ymn(k), the probability of
assigning the nth word the label k ∈ {S, R, O, None}.

We now describe the constraints and the penalty terms corresponding to these constraints.

4.2.1 POS Coverage (POSC)
All words with POS tags as nouns, verbs, adjectives, and adverbs should be part of at least one
extraction. E.g. the words Obama, gained, popularity, Oprah, endorsed, presidency should be
covered in the set of extractions.

To ensure that the nth word is covered, we compute its maximum probability (poscn) of be-
longing to any extraction. We introduce a penalty if this value is low. This penalty is aggregated
over words with important POS tags, Jposc =

∑N
n=1 x

imp
n · poscn, where

poscn = 1− max
m∈[1,M ]

(
max

k∈{S,R,O}
Ymn(k)

)

4.2.2 Head Verb Coverage (HVC)
Each head verb should be present in the relation span of some (but not too many) extractions.
E.g. (Obama; gained; popularity), (Obama; gained; presidency) is not a comprehensive set of
extractions.

A penalty is imposed for the nth word if it is not present in the relation span of any extraction
or if it is present in the relation span of many extractions. This penalty is aggregated over head
verbs, Jhvc =

∑N
n=1 x

hv
n · hvcn, where hvcn =

∣∣∣1−∑M
m=1 Ymn(R)

∣∣∣.
We subtract the summation from one to penalize the model in case of the model does not

generate the head verb in the relation of any of the extractions.
3We used the light verbs listed by Jain and Mausam (2016).
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4.2.3 Head Verb Exclusivity (HVE)
The relation span of one extraction can contain at most one head verb. E.g. gained popularity
after Oprah endorsed is not a good relation as it contains two head verbs.

A penalty is imposed if the relation span of an extraction contains more than one head verb.
This penalty is summed over all extractions. I.e., Jhve =

∑M
m=1 hvem, where

hvem = max

(
0,

(
N∑

n=1

xhvn · Ymn(R)

)
− 1

)

4.2.4 Extraction Count (EC)
The total number of extractions with head verbs in the relation span must be no fewer than the
number of head verbs in the sentence. In the example, there must be at least two extractions
containing head verbs, as the sentence itself has two head verbs.

ecm denotes the score ∈ [0, 1] of the mth extraction containing a head verb, i.e. ecm =
maxn∈[1,N ]

(
xhvn · Ymn(R)

)
. A penalty is imposed if the sum of these scores is less than the

actual number of head verbs in the sentence.

Jec = max

(
0,

N∑
n=1

xhvn −
M∑

m=1

ecm

)

Ideally, no constraint violations of HVC and HVE would imply that EC would also never
get violated. However, as these are implemented as soft constraints, both constraints help in
practice. We find that our model performs better and results in fewer constraint violations when
trained with POSC, HVC, HVE and EC combined. The full loss function is given by:

J = JCE + λposcJposc + λhvcJhvc + λhveJhve + λecJec

where λ⋆ are hyperparameters. We refer to the Open IE extractor trained using this con-
strained loss as Constrained Iterative Grid Labeling Open IE Extractor (CIGL-OIE).

The model is initially trained without constraints for a fixed warmup number of iterations,
followed by constrained training till convergence.

4.3 Confidence Rescoring
The extractions output by an Open IE system is typically assigned a score based on the model’s
confidence for generating the particular extraction. However, the extractions generated by Open
IE systems can be further rescored using a different set of models than the ones used to generate
them. We find that this often leads to better calibration and an increase in the AUC of the
system. We experiment with two types of rescoring models: labeling-based and generation-
based models. The two approaches are briefly described below.

Labeling-based A sequence-labeling model is trained on extractions with ext-sentence (the
sentencized form of the extractions after removing the tags) as input and S, R, and O labels over
the ext-sentence as the output. The log probabilities given by the sequence-labeling model to
the labels predicted by the Open IE system are summed up to get the new confidence scores of
the extraction.
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Generation-based A generative model consisting of a BERT encoder and an LSTM decoder
is trained on (sentence, extraction) pairs. This trainedmodel is used to compute the log-likelihood
of the given extraction that has been generated by an Open IE system.

4.4 Experimental Setup
We train IGL and CIGL using the OpenIE-4 training dataset (from Section 3.3.1). We convert
each extraction to a sequence of labels over the sentence. This is done by looking for an exact
string match of the words in the extraction with the sentence. In case there are multiple string
matches for one of the arguments of the extraction, we choose the string match closest to the
other arguments. This simple heuristic covers almost 95% of the training data. We ignore the
remaining extractions that have multiple string matches for more than one argument.

We implement our models using Pytorch Lightning (Falcon, 2019). We use pre-trained
weights of “BERT-base-cased”4 for Open IE extractor. We do not use BERT-large for Open IE
extractor as we observe almost identical performance, but with a significant increase in compu-
tational costs. We set the maximum number of iterations,M=5 for Open IE. We use the SpaCy
POS tagger5 for enforcing constraints.

We follow the experimental setup mentioned in Section 3.3.

4.5 Experiments

System CaRB Speed

F1% AUC% Sentences/sec.

MinIE 41.9 - 8.9
ClausIE 45.0 22.0 4.0
OpenIE-4 51.6 29.5 20.1
OpenIE-5 48.0 25.0 3.1

SenseOIE 28.2 - -
SpanOIE 48.5 - 19.4
RnnOIE* 49.0 26.0 64
CopyAttention 51.6 32.8 11.5
IMoJIE 53.2 33.1 2.6
Gen2OIE 54.4 34.2 0.6
IGL-OIE 52.5 31.7 142.0
CIGL-OIE 54.0 33.6 142.0

Table 4.2: Evaluation of Open IE. Using constrained learning, CIGL-OIE gives better F1 than
IMoJIE and reaches close to Gen2OIE. MinIE, SenseOIE, SpanOIE do not output confidence.
The code of SenseOIE is not available to compute speed. *For RnnOIE, the reported speed is
149.2 sentences/sec, however, we have only been able to reproduce 64 sentences/sec with their
latest implementation.

4https://github.com/huggingface/transformers
5https://spacy.io
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4.5.1 Speed and Performance
How does IGL and CIGL compare in speed and performance?

Table 4.2 reports the speed and performance comparisons. We find that the base Open IE
extractor — IGL-OIE — achieves a 60× speed-up compared to IMoJIE, while being lower in
performance by 1.1% F1.

We find that training IGL-OIE along with constraints (CIGL-OIE), helps to improve the
performance without affecting inference time. It beats IMoJIE by 0.8% F1 and narrows the gap
with Gen2OIE to only 0.8% in F1. To improve the AUC we experiment with the two types
of rescoring methods on the three neural architectures — IMoJIE, CIGL and Gen2OIE. The
OpenIE-4 bootstrapped training data is used for training both the labeling-based and generation-
based rescoring methods.

In Table 4.3, we notice that label-based rescoring performsmost effectively in terms of AUC,
outperforming both generation-based rescoring and the original model confidences themselves.
However, analyzing the P-R plot corresponding to the label-rescoring methods, as shown in
Figure 4.5, Figure 4.6 and Figure 4.7, we notice discontinuous curves. The discontinuity occurs
as a consequence of the system outputting confidence values only within a limited range. This
limits the recall values possible by filtering out low-confidence extractions. Such discontinuous
curves are not properly evaluated using the trapezoidal-rule-based AUC that has been adopted
by CaRB.

Therefore, we also measure the AUC of the interpolated P-R curve6 (Manning et al., 2005),
which is better suited for these cases. It considers the highest precision achieved by the model at
or beyond a particular recall level. The interpolation thus considers the precision at every point
to be the maximum precision value achieved at any correspondingly larger recall value. Thus,
the empty region to the left of the curve is replaced by a flat line at the highest precision level.
We refer to this metric as AUCint.

Using this AUCint, it is revealed that label-rescoring methods in fact perform worse than
generation-rescoring. Generation rescoring improves over normal model confidences with both
the AUC and AUCint metrics. The AUC increases by as much as 0.6% in the case of CIGL and
1.3% in the case of Gen2OIE. The AUCint increases by 1.3% and 1.2% in the case of CIGL and
Gen2OIE, respectively. The optimal value of F1 remains nearly the same for all architectures
with generation rescoring except for a decrease of 0.9% AUC for IMoJIE in the case of label
rescoring.

We hypothesize that generation rescoring results in the better calibration of confidence
scores as it can capture the “grammaticality” of the extraction – the confidence that the ex-
traction forms a grammatical sentence on its own. This is possible due to the auto-regressive
nature of generation rescoring which is absent in label rescoring.

In summary, CIGL achieves good extraction quality with a very high inference speed. If
well-calibrated confidence scores are needed for each extraction, generative rescoring can help to
achieve it. The final P-R curves of all generative-rescored P-R systems are shown in Figure 4.4.

4.5.2 Constraints Ablation
How are constraint violations related to model performance?

We divide the constraints into two groups: one which is dependent on head verb(s): {HVC,
HVE and EC}, and the other which is not – POSC. We separately train IGL architecture-based
Open IE extractor with these two groups of constraints and compare them with no constraints

6https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
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Figure 4.4: P-R curve of IMoJIE, Gen2OIE, CIGL and CIGL with generation rescoring.

Figure 4.5: P-R curve of IMoJIE with no rescoring, label rescoring and generation rescoring.

Figure 4.6: P-R curve of CIGL with no rescoring, label rescoring and generation rescoring.
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Model Model
Confidence

Generation
Rescore

Label
Rescore

F1% AUC% AUCint% F1% AUC% AUCint% F1% AUC% AUCint%

IMoJIE 53.3 33.1 33.3 53.3 33.5 33.6 52.4 36.2 30.1
CIGL 54.0 33.6 33.0 54.0 34.2 34.3 54.0 34.9 33.4
Gen2OIE 54.4 34.2 34.4 54.5 35.5 35.6 54.5 38.9 32.2

Table 4.3: The F1 and AUC scores of the three models – IMoJIE, CIGL and Gen2OIE using
the original model confidence, generation rescoring and label rescoring.

Figure 4.7: P-R curve of Gen2OIE with no rescoring, label rescoring and generation rescoring.

(IGL-OIE) and all constraints (CIGL-OIE). In Table 4.4, we report the CaRB metric, and also
report the number of constraint violations in each scenario.

System CaRB Constraint Violations Num. of
Extractions

F1% POSC HVC HVE EC HVC+HVE+EC

IGL-OIE 52.4 1494 375 128 284 787 1401
IGL-OIE (POSC) 49.6 396 303 200 243 746 1577
IGL-OIE (HVC,HVE,EC) 53.2 1170 295 144 246 655 1509
CIGL-OIE 54.0 766 274 157 237 668 1531

Gold 100 371 324 272 224 820 2714

Table 4.4: Performance and the number of constraint violations for training with different sets
of constraints. CIGL-OIE represents training IGL architecture-based Open IE extractor with all
the constraints: POSC, HVC, HVE and EC.

Training IGL architecture-basedOpen IE extractorwith POSC constraint (IGL-OIE (POSC)),
leads to a reduction in POSC violations. However, the number of violations of (HVC+HVE+EC)
remains high. On the other hand, training only with head-verb constraints (HVC, HVE, EC) re-
duces their violations but the POSC violations remain high. Hence, we find that training with
all the constraints achieves the best performance. Compared to IGL-OIE, it reduces the POSC
violation from 1494 to 766 and (HVC+HVE+EC) violations from 787 to 668. The higher vi-
olations of Gold may be attributed to an overall larger number of extractions in the reference
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set.

4.5.3 Performance using different metrics
We also evaluate the performance of the proposed models with OIE16 and Wire57 metrics
evaluated on the same CaRB dataset. They are denoted as OIE16-C andWire57-C, respectively.
We report the results in Table 4.5. We find that CIGL-OIE is consistently able to reach the F1
performance of Gen2OIE while being significantly faster. Since label-rescoring is not involved
in these experiments, we continue to use the normal AUC metric, which was observed to be
within 0.5% of AUCint metric for the Model Confidence and Generation Rescore methods in
Table 4.3.

System CaRB OIE16-C Wire57-C Speed

F1% AUC% F1% AUC% F1% Sentences/sec.

IMoJIE 53.2 33.1 56.1 38.1 34.9 2.6
Gen2OIE 54.4 34.2 60.5 40.0 37.1 0.6
IGL-OIE 52.5 31.7 55.4 36.5 34.9 142.0
CIGL-OIE 54.0 33.6 59.6 40.7 36.8 142.0

Table 4.5: Evaluation of IMoJIE, Gen2OIE, IGL-OIE and CIGL-OIE using different metrics
proposed for Open IE.

4.6 Conclusion
In this chapter, we introduce a novel way of modelling the task of Open IE using the Iterative
Grid Labeling (IGL) architecture. We further improve the coverage of generated extractions
using carefully designed constraints applied at the training time. The final Constrained Iterative
Grid Labeling (CIGL) model achieves performance close to that of the best generation model,
Gen2OIE (with a modest decrease of only 0.4% F1) while being significantly faster. The CIGL
model can process sentences at a rate of 142 per second, which is 236× faster than Gen2OIE.
IGL architecture has value beyond Open IE and can be helpful in tasks where a set of label-
ings for a sentence is desired, especially when labelings have dependencies amongst them. We
showcase another application of IGL for the task of coordination analysis in Section 5.1.

We also demonstrate the utility of using separate models for rescoring the generated extrac-
tions. Experimentation with generative rescoring leads to an improvement in the AUC of the
final set of extractions for the CIGL architecture.

In the next chapter, we look at improving the handling of specific linguistic phenomena that
current Open IE systems struggle with, such as coordination and noun compounds.
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Chapter 5

Handling of Linguistic Phenomena in
Open IE

In Chapter 3 and Chapter 4, we focused on building better neural models for the task of Open IE,
intending to build faster and more accurate systems. However, apart from the neural model used,
the final system is also constrained by the data used for training the model. Since the training
data only represents a sample of the entire distribution of possible examples, certain linguistic
phenomena may be underrepresented or even completely absent. In this chapter, we explore
two such linguistic phenomena which we have identified as sources of potential improvement
for existing Open IE models:

1. Coordinations (such as “and”, “but”) are often used to compose simple statements to ex-
press a more complex idea. Open IE systems benefit from special handling of these struc-
tures to ensure that the generated extractions are as atomic as possible while maintaining
faithfulness (Saha and Mausam, 2018). In Section 5.1, we build a new coordination an-
alyzer to accurately extract the various parts of a coordination structure and use them to
generate better Open IE extractions.

2. Noun Compounds (such as Covid vaccine) are a commonly occurring construct in the
English language used to represent a more elaborate phrase (such as a vaccine used to
protect against Covid disease) in a shortened manner. The longer phrase is also referred
to as an interpretation of the noun compound. Adding these interpretations to Open IE
extractions can lead to the discovery of implicit relations that are not mentioned explicitly
in the sentence. In Section 5.2, we introduce a new task of interpreting proper noun
compounds (where the first part of the compound is a proper noun). We collect a new
dataset and build models for the task and develop an integrated mechanism to include the
interpretations in Open IE systems.

Finally, in Section 5.3, we conclude this chapter by describing the construction of a new
Open IE system that integrates all the advances introduced in Chapter 3, Chapter 4 and Chapter 5
into one common framework.

5.1 Coordinations
Coordinated conjunctions (CC) are conjunctions such as “and” and “or” that connect or coordi-
nate words, phrases, or clauses (which are called the conjuncts). Sentences can have hierarchical
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Sentence Other signs of lens subluxation include mild conjunctival redness, vitreous humour
degeneration, and an increase or decrease of anterior chamber depth .

CIGL-OIE
(Other signs of lens subluxation; include; mild conjunctival redness,
vitreous humour degeneration,
and an increase or decrease of anterior chamber depth)

CIGL-OIE
+Coordination
Analyzer

(Other signs of lens subluxation; include; mild conjunctival redness)
(Other signs of lens subluxation; include; vitreous humour degeneration)
(Other signs of lens subluxation; include; an increase of anterior chamber depth)
(Other signs of lens subluxation; include; an decrease of anterior chamber depth)

Table 5.1: For the given sentence, IGL based Open IE extractor produces an incomplete ex-
traction. Constraints improve recall by covering the remaining words. Coordination Analyzer
handles hierarchical conjunctions.

coordinations, i.e., some coordination structures nested within the conjunct span of others (Saha
and Mausam, 2018). The goal of coordination analysis is to detect coordination structures —
the coordinating conjunctions along with their constituent conjuncts. We observe that existing
neural Open IE models struggle in handling coordination structures and do not split conjunctive
extractions properly. An example is shown in Table 5.1 where the Open IE model, CIGL-OIE,
is unable to separate the various signs of the disease into different extractions. In response, we
first design a new coordination analyzer. It is built with the IGL (Chapter 4) architecture by
interpreting each row in the 2-D grid as a coordination structure. This leads to a new state of the
art on this task, with a 12.3 pts improvement in F1 over the previous best-reported result (Teran-
ishi et al., 2019), and a 1.8 pts gain in F1 over a strong BERT baseline. We then combine the
output of our coordination analyzer with our Open IE extractor, resulting in a further increase
in performance (Table 5.1).

5.1.1 Coordination Analyzer
We observe that coordination analysis can be posed as a hierarchical labeling problem. This
is because coordination structures can be seen as labeling over the words in the sequence with
their appropriate tags to indicate the particular parts of the coordination structure. Further,
nested coordination structures can be treated as multiple levels of labeling. This is illustrated
with an example in Figure 5.1, where the sentence “Jeff founded Amazon and Blue Origin and
invested in Google” has three coordinate structures with the three “and’s” as the coordinating
conjunctions (CC) and their respective conjunctions spans (CONJ). The “and” with “founded
Amazon and Blue Origin’ and “invested in Google, Grail and ZocDoc” as the conjunct spans has
the remaining two nested conjunct structures within it. Hence, the first top-level coordination
structure is extracted in the level 1 of the labeling (L1) while the remaining two coordination
structures are extracted in the level 2 (L2).

Therefore, we formulate a 2-D grid labeling problem, where all coordination structures at
the same hierarchical level are predicted in the same row. Specifically, we define a grid of size
(M,N), where M is the maximum depth of hierarchy, and N is the number of words in the
sentence. The value at position (m,n) in the grid represents the label assigned to the nth word
in the mth hierarchical level, which can be CC (coordinating conjunction), CONJ (belonging
to a conjunct span), or N (None). We can use the IGL architecture, introduced in Chapter 4 for
labeling this grid. This gives us an end-to-end coordination analyzer that can detect multiple
coordination structures with two or more conjuncts. We refer to this coordination analyzer as
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Figure 5.1: IGL-CA identifies conjunct boundaries by labeling a 2-D grid. This generates simple
sentences, and CIGL-OIE emits the final extractions.

IGL-CA.1

5.1.1.1 Experimental Setup

We train and evaluate the quality of cooridnation analyzer on the coordination-annotated Penn
Tree Bank (PTB) (Ficler and Goldberg, 2016b). We compute the precision, recall and F1 of
the predicted conjunct spans. We compare our end-to-end IGL-CA model against previous
state-of-the-art coordination analyzers. Teranishi et al. (2017) uses neural parsers trained on
the PTB data using similarity and replaceability of conjuncts as features. Teranishi et al. (2019)
independently detects coordinator, begin, and end of conjuncts and does joint inference using
Cocke–Younger–Kasami (CYK) parsing over context-free grammar (CFG) rules.

5.1.1.2 Experiments

How does our coordination analyzer compare against other analyzers?
We evaluate two variants of our IGL architecture-based coordination analyzer (IGL-CA) –

using BERT-Base and BERT-Large. In Table 5.2, we find that both BERT-Base and BERT-
Large variants outperform the previous state-of-art (Teranishi et al., 2019) by 9.4 and 12.3 F1
points, respectively. For a fair comparison, we train a stronger variant of Teranishi et al. (2019),
replacing the LSTM encoder with BERT-Base and BERT-Large. Even in these settings, IGL-
CA performs better by 1.8 and 1.3 F1 points, respectively, highlighting the significance of our
IGL architecture. Overall, IGL-CA establishes a new state of the art for the task of coordination
analysis due to the use of an end-to-end neural network that avoids the pipeline errors that arise
in the prior systems.

5.1.2 Coordination Analyzer in Open IE
Conjuncts in a coordinate structure exhibit replaceability – a sentence is still coherent and con-
sistent if we replace a coordination structure with any of its conjuncts (Ficler and Goldberg,
2016c). Following CalmIE’s Section 2.3.1.7 approach, we generate simple (non-conjunctive)
sentences using IGL-CA. For example, the following simple sentences are generated from the
example in Figure 5.1, “Jeff founded Amazon”, “Jeff founded Blue Origin”, “Jeff invested in
Google”, “Jeff invested in Grail” and “Jeff invested in ZocDoc”. We also use some heuristics
to determine cases where the sentence should not be split. For example, if the word “between”
preceeds the coordination structure, then we do not split it. We then run CIGL-OIE on these

1The code and models are released at https://github.com/dair-iitd/openie6
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System Precision Recall F1

(Teranishi et al., 2017) 71.5 70.7 71.0
(Teranishi et al., 2019) 75.3 75.6 75.5

BERT-Base:
(Teranishi et al., 2019) 83.1 83.2 83.1
IGL-CA 86.3 83.6 84.9

BERT-Large:
(Teranishi et al., 2019) 86.4 86.6 86.5
IGL-CA 88.1 87.4 87.8

Table 5.2: P, R, F1 of the system evaluated on Penn Tree Bank for different systems. We use
both BERT-Base and BERT-Large as the encoder

System 1 (P, R, F1) System 2 (P, R, F1)

Talks resumed
between USA and China

Gold:
(Talks; resumed between;

USA and China)

(Talks; resumed between; USA)
(Talks; resumed between; China)

CaRB: (50.0, 66.7, 57.1)
CaRB (1-1): (50.0, 66.7, 57.1)

(Talks; resumed between; USA and China)

CaRB: (100, 100, 100)
CaRB (1-1): (100, 100, 100)

I ate an apple and orange
Gold:

(I; ate; an apple)
(I; ate; an orange)

(I; ate; an apple)
(I; ate; an orange)

CaRB: (100, 100, 100)
CaRB (1-1): (100, 100, 100)

(I; ate; an apple and an orange)

CaRB: (57.1, 100, 72.7)
CaRB (1-1): (53.5, 50.0, 57.1)

Table 5.3: Evaluation of CaRB and CaRB(1-1) on two sentences. CaRB under-penalizes Open
IE systems for incorrect coordination split by giving a recall of 100% for the second example
of System 2. On the other hand, CaRB(1-1) reports the recall as 50% in the second example for
System 2.

simple sentences to generate the extractions. These extractions are de-duplicated and merged to
yield the final extraction set for the original sentence. We call this combined system, OpenIE-6.

For a conjunctive sentence, CIGL-OIE’s confidence values for extractions will be with re-
spect to multiple simple sentences extracted from the original input, and may not be calibrated
across them. Therefore, we use a separate confidence estimator (described in Section 4.3). It
computes a log-likelihood for every extraction w.r.t. the original sentence — this serves as a
better confidence measure for the generated extractions.

5.1.2.1 Evaluation

Apart from using CaRBmetric for evaluating the generated Open IE extractions, we additionally
introduce a new metric, CaRB(1-1), a variant of CaRB that retains CaRB’s similarity computa-
tion but uses a one-to-one mapping for both precision and recall. We find experimentally that
CaRB(1-1) is a better metric for evaluating conjunctive sentences.

CaRB on Conjunctive Sentences: We analyze the issues with using CaRB on conjunctive
sentences and the motivating factors for developing CaRB(1-1).

Coordinate structure in conjunctive sentences are of two types (Shaw, 1998):

• Combinatory, where splitting the sentence by replacing the coordinate structure with one
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of the conjuncts can lead to incoherent extractions. E.g. splitting “Talks resumed between
USA and China” will give (Talks; resumed; between USA).

• Segregatory, where splitting on the coordinate structure can lead to shorter and more
coherent extractions. E.g. splitting “I ate an apple and orange.” gives (I; ate; an apple)
and (I; ate; an orange).

Combinatory coordinate structures are hard to detect (in some cases, even for humans). Some
systems (ClausIE, CalmIE and ours) use some heuristics, such as not splitting if the coordinate
structure is preceded by “between”. In all other cases, the coordinate structure is treated as
segregatory and is split.

The human-annotated gold labels of the CaRB dataset correctly handle conjunctive sen-
tences in most cases. However, we find that compared to the scoring function of OIE2016 and
Wire57 (Section 2.2), CaRB under-penalizes systems for incorrectly splitting combinatory co-
ordinate structures. We trace this issue to the difference in mapping used for recall computation
(one-to-one vs many-to-one).

Consider two systems – System 1, which splits into all conjunctive sentences (without any
heuristics), and System 2, which does not. For the sentence “I ate an apple and orange”, the
set of gold extractions are {(I; ate; an apple), (I; ate; orange)}. System 2, which (incorrectly)
does not split on the coordinate structure, gets a perfect recall score of 1.0, similar to System 1,
which correctly splits the extractions (Table 5.3).

Due to this phenomenon, we find that CaRB does not sufficiently penalize current systems
for not splitting on seggregatory coordinations while penalizing the systems for incorrectly split-
ting on combinatory coordinations. This leads to gains obtained from our system being over-
shadowed. To re-affirm this, we evaluate all the systems on CaRB(1-1), a variant of CaRB
which retains all the properties of CaRB, except that it uses one-to-one mapping for computing
recall. This ensures that System 2 gets a recall of only 50 pts as the generated extraction can
match only one of the two gold extractions for computing recall.

We notice that our CIGL-OIE+IGL-CA shows improvements in CaRB(1-1) and other met-
rics which use one-to-one mapping (OIE16, Wire57) (Table 4.2). However, it shows a decrease
in the CaRB score. This demonstrates that the primary reason for the decrease in performance
is the many-to-one mapping in CaRB.

However, we also observe that CaRB(1-1) is also not the best strategy for evaluation as it
assigns an equal score to both the cases — splitting a combinatory coordinate structure and
not splitting a segregatory coordinate structure (Table 5.3). This is also not desirable as a long
extraction which is not split is better than two incorrectly split extractions. Hence, we consider
that one-to-one mapping for computing recall over-penalizes splitting a combinatory coordinate
structure.

Determining the right penalty, in this case, is an open-ended problem. We leave it to fur-
ther research to design an optimal metric for evaluating conjunctive sentences for Open IE. In
this experiment, we use CaRB(1-1) as the metric for better evaluating the quality of Open IE
extractions in conjunctive sentences.

5.1.2.2 Experiments

How much does the coordination analyzer benefit Open IE systems?
In Table 5.6, we find that adding the coordination analyzer module (IGL-CA) to any of the

three Open IE models — IMoJIE, Gen2OIE, and CIGL— leads to improvements in CaRB(1-1)
score, while leading to a decrease in the original CaRB metric.
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Coordination Analyzer IMoJIE CIGL-OIE
None 36.0 36.8
CalmIE 37.7 38.0
(Teranishi et al., 2019) 36.1 36.5
IGL-CA 39.5 40.0

Table 5.4: Wire57 F1 scores of IMoJIE and CIGL-OIE with addition of different coordination
analyzers. IGL-CA improves both of the Open IE extractors.

System Precision Yield Total
Extrs

CIGL-OIE 77.9 131 174
CIGL-OIE + IGL-CA 78.8 222 291

Table 5.5: Manual comparison of Precision and Yield on 100 random conjunctive sentences
from CaRB Gold.

As discussed, we notice that the current scoring function used in CaRB does not handle
conjunctions properly. CaRB under-penalizes Open IE systems which do not split seggregatory
coordinations by assigning them a higher recall while still penalizing Open IE systems that split
on combinatory coordination splits. This is also evidenced in the lower CaRB scores for both
OpenIE-52 (vs. OpenIE-4) and OpenIE-6 (vs. CIGL-OIE)— the two systems that focus on con-
junctive sentences. We trace this issue to the difference in mapping used for recall computation
(one-to-one vs many-to-one).

To resolve this variation in different scoring functions, we undertake a manual evaluation
(discussed in detail in Section 5.1.2.3). Two annotators (authors of the paper), blind to the
underlying systems (CIGL-OIE andOpenIE-6), independently label each extraction as correct or
incorrect for a subset of 100 conjunctive sentences. Their inter-annotator agreement is 93.46%.
After resolving the extractions where they differ, we report the precision and yield in Table 5.5.
Here, yield is the number of correct extractions generated by a system. It is a surrogate for recall
since its denominator, the number of all correct extractions, is hard to determine for Open IE.

We find that OpenIE-6 significantly increases the yield (1.7×) compared to CIGL-OIE,
along with a marginal increase in precision. This result underscores the importance of split-
ting coordination structures for Open IE.

To affirm that the gains of better coordination analysis help the downstream Open IE task,
we experiment by using different coordination analyzers with CIGL-OIE and IMoJIE. From
Table 5.4, we see a considerable improvement in the downstream Open IE task using IGL-CA
for both IMoJIE and CIGL-OIE, which we attribute to better conjunct-boundary detection ca-
pabilities of the model. For CIGL-OIE, this gives a 3.5 pts increase in Wire57-C F1, compared
to using the CA from Teranishi et al. (2019). In Table 5.6, we find that the IGL-CA benefits
the Gen2OIE system with an increase of 1.8 pts in F1 and 2.4 pts in AUC with the CaRB(1-1)
metric.

5.1.2.3 Manual Comparison

The set of extractions from both the systems, CIGL-OIE and OpenIE-6 were considered for a
random 100 conjunctive sentences from the validation set. We identify a conjunctive sentence

2OpenIE-5 uses CalmIE for conjunctive sentences.
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System CaRB CaRB(1-1)

F1 AUC F1 AUC

IMoJIE 52.5 36.2 41.6 24.8
IMoJIE + IGL-CA 50.9 34.9 44.4 27.5
Gen2OIE 54.5 38.9 43.8 26.7
Gen2OIE + IGL-CA 51.5 36.4 45.6 29.1
CIGL-OIE 54.0 35.7 42.8 24.6
CIGL-OIE + IGL-CA 50.6 35.1 45.0 28.4

Table 5.6: Adding a coordination analyzer, IGL-CA, to IMoJIE, Gen2OIE and CIGL, improves
the score consistently in the CaRB(1-1) metric that is suitable for evaluating conjunctive sen-
tences. Label rescoring is consistently used in all the experiments.

based on the predicted conjuncts of the coordination analyzer. The annotators are instructed to
check if the extraction has well-formed arguments and is implied by the sentence.

A screenshot of the process is shown in Figure 5.2.

Figure 5.2: Process for manual comparison. Each extraction from both systems is presented to
the annotator in a randomized order. The annotator checks if the extraction can be inferred from
the original sentence and marks it accordingly.

5.1.3 Discussion
Breaking complex sentences into simpler sentences enables us to generate more accurate Open
IE extractions, but in the process, we may lose the context of the other parts of the sentence.
Therefore, using models from document-level Open IE (Yong et al., 2023) which are capable
of reincorporating such context when generating extractions may prove advantageous in certain
cases that involve complex relations that may span over multiple simple sentences or involve
complex reasoning between them. For example, in the sentence ‘Maria stored her valuables in
a safe, and her son knew only about the key.’, the extraction with an implicit relation (Her son;
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Type Example Semantic Interpretations
Proper NC Shakespeare biography is a biography about Shakespeare
(Proper-Common) London theatre is a theatre in London ; is a theatre located in London

Concorde airplane [NON-CMP] (Non-Compositional)
Notre Dame cathedral [NON-CMP] (Non-Compositional)

Common NC nursing job is a job in nursing field ; is a job involving nursing
(Common-Common) oil price is price paid for the oil

Table 5.7: Examples of common and proper noun compounds along with their semantic inter-
pretations (“;” separates multiple interpretations). [NON-CMP] indicates the absence of implicit
relation between the constituent nouns.

did not know about; her valuables) would be missed by using simple sentences alone, even after
co-reference resolution is used.

5.2 Proper Noun Compound Interpretation
In the previous section, we introduced techniques to handle coordinations within the framework
of Open IE. In this section, similarly deal with another common linguistic structure, which are
called proper noun compounds. Proper noun compounds (PNCs) (Breban et al., 2019)3 are
grammatical constructions where a proper noun is followed by a common noun, for example
Covid vaccines or Buddhist monks. These often serve as a compact way to convey informa-
tion about an already known entity, omitting predicates that are interpreted by the reader using
surrounding context, common sense, and world knowledge. For example, a reader is likely to in-
terpret that “Buddhist monks” are “religious people who are Buddhists”. In other cases, PNCs
are used to identify specific entities and do not provide additional information. For example,
Watergate scandal and Kawasaki disease do not have any implicit relation between the proper
and common nouns as they refer to a specific instance of a scandal and a disease. Table 5.7
provides additional examples.

Thanks to their brevity, PNCs are commonly used to shorten descriptions in space-constrained
domains, such as news articles headlines (Breban et al., 2019). However, we find that prior
work on compound noun interpretations only considered cases where the constituents are com-
mon nouns (e.g. baby oil), thus missing all of the information conveyed in proper noun com-
pounds (Shwartz et al., 2018; Hendrickx et al., 2019).

To address this limitation in current systems, we design a two-stagemethod for PNC interpre-
tation (Section 5.2.2). The first stage requires identifying whether a given PNC is compositional
or not, while the second stage is the generation of an interpretation, where applicable.

In Section 5.2.3, we present PRONCI, a crowd-sourced dataset over Wikipedia containing
22.5K proper noun compounds and their annotated semantic interpretations. Candidates’ PNCs
are found using syntactic parsing and are then presented to crowd workers who are asked to
interpret them. Our annotation interfacemarks whether workers needed to read the full sentence,
thus identifying PNCs whose interpretation relies on context.

In Section 5.2.4, we develop two approaches for PNC interpretation: (1) a multi-task neu-
ral model that performs classification and sequence generation in two distinct stages and (2)
a text-to-text approach, using a sequence-to-sequence model for both classification and gen-

3also referred to as proper noun modified compounds.
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eration. We further experiment with different methods for injecting various sources of world
knowledge, which seems crucial for the task, using external resources like Wikipedia and Word-
Net (Fellbaum, 2010), that give relevant information or definitions about the PNCs, that help in
improving performance.

For evaluating the generated interpretations, we propose a combination of classification-
based metrics and generation metrics to properly handle the interpretable and non-interpretable
cases, respectively (Section 5.2.5). Since multiple correct interpretations are possible for a PNC,
we use learned metrics such as BLEURT (Sellam et al., 2020), which is finetuned on human-
annotated preferences.

In Section 5.2.7 we show that training on PRONCI yields models that can readily benefit
extrinsic downstream application in the task of Open IE, thus widely extending its coverage.
Our approach first automatically extracts PNC interpretations using our models, then introduces
it explicitly back into an Open IE extraction using a sequence-to-sequence model, thus giving
an interpretation-integrated extraction. We then apply a high precision rule to generate new
relations which leads to a 7.5% increase in yield at an estimated precision of 85% on the added
extractions, when compared to extractions generated from the original sentences themselves.
A major advantage of this approach is that it is agnostic to the Open IE system being used.4
Summarizing, the main contributions described in this section are:

1. We introduce the PRONCI dataset, containing interpretation for 22.5K proper noun com-
pounds and their semantic interpretations.

2. We develop multi-task and generation-based neural baselines that can leverage external
knowledge for achieving higher performance.

3. We propose metrics for evaluating the quality of generated semantic interpretations.

4. We demonstrate the extrinsic usefulness of our model in a downstream application by
using the interpretations to augment the expressivity of Open Information Extraction sys-
tems.

5.2.1 Related Work
Noun compounds are commonly used in the English language, constituting 3.9% of the tokens
in the Reuters corpus (Baldwin and Tanaka, 2004). They can be arbitrary length phrases, such as
split air conditioner, but most prior work on interpreting noun compounds has primarily looked
at two-word noun compounds of the type noun-noun, where both are common nouns. To the best
of our knowledge challenges in interpretation where the first word is a proper noun (i.e., proper
noun compounds) have not been addressed, although their functional analysis and prevalence
in certain domains have been studied in linguistics (Rosenbach, 2007; Alexiadou, 2019; Breban
et al., 2019). We briefly summarise the various types of noun-compound interpretations in
literature and discuss their uses in applications.

Types of Interpretation: Various types of interpretations for noun compounds have been ex-
plored, covering classification, ranking and generation. Prior literature has frequently posed
the interpretation as a classification task, where the classes can belong to abstract labels (Fares,
2016), semantic frame elements (Ponkiya et al., 2018) or prepositions (Lauer, 1995). How-
ever, none of these schemes can cover all range of possible noun compounds, thus limiting their

4The dataset and code are available at https://github.com/dair-iitd/pronci
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expressivity and coverage. SemEval 2010 Task 9 (Butnariu et al., 2009) annotates human pref-
erences for a set of 25-30 templatized paraphrases for each of the 250 training and 300 testing
noun compounds. The task is framed as producing an accurate score for each paraphrase that
ranks them in the correct order. SemEval 2013 Task 4 (Hendrickx et al., 2019) released a
dataset of noun compounds and annotated free paraphrases for each compound. Participating
models were evaluated by matching and scoring the generated predictions with the gold set.

Non-compositionality of common noun compounds has been defined inYazdani et al. (2015);
Reddy et al. (2011) as compounds whose meanings don’t follow from their constituents (e.g.,
sitting duck, acid duck). However, for the case of semantic interpretation of proper noun com-
pounds, we define it as the absence of an implicit relation between the constituents.

Ponkiya et al. (2020) is the current state of the art which poses the problem of generation of
masked tokens using a pretrained T5 model (Raffel et al., 2020) to get free paraphrase interpre-
tations in a completely unsupervised manner. This leads to better performance than techniques
that use the available training data. However, with the PRONCI dataset, we find that supervised
models do outperform zero-shot models due to the scale of the dataset.

Applications: Noun compound interpretations have been helpful in the translation of noun
compounds by either using a one-to-one mapping of interpreted prepositions (Paul et al., 2010)
or using recursive translation patterns (Balyan and Chatterjee, 2015). In Question Answering
systems, they have been used for disambiguating different types of noun-noun compounds in
passage analysis (Ahn et al., 2005). They have also been useful for normalizing text that can
help textual entailment (Nakov, 2013) and as auxiliary semantic annotation modules to improve
parsing (Tratz, 2011). We also show their use in the task of Open IE.

5.2.2 Problem Definition
Interpretations of noun compounds are meant to expose the implicit relation. Free-form para-
phrases as interpretations provide flexibility for expressing relations implied in noun compounds,
overcoming the limitations associated with choosing from a fixed set of classes or templates at
the cost of a possibly non-consolidated representation, i.e., where similar-meaning noun com-
pounds are represented differently. Hence, we define the semantic interpretation of a PNC as
a free-form paraphrase that exposes the implicit relation between the constituent nouns, if any
relation exists, else identify it as non-compositional ([NON-CMP]).

SemInt(pnc) =

{
Paraphrase, if reln. exists
[NON-CMP], if reln. absent

5.2.3 PRONCI Dataset
To facilitate research on semantic understanding of proper noun compounds, we collect and
release a supervised dataset called PRONCI. It contains 22,500 PNCs and their semantic inter-
pretations which were written by human workers hired from Amazon Mechanical Turk (AMT).
Here we describe how PRONCI was prepared.

The scale of the dataset is orders of magnitude greater than previously published free para-
phrase (common) noun compound datasets like SemEval 2013 Task 4 (Hendrickx et al., 2019)
that have only considered 355 noun compounds. For handling the evaluation of generated inter-
pretations where multiple correct answers are possible, prior datasets choose to annotate multi-
ple interpretations for each noun compound (varying from 30-50). On the other hand, PRONCI
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Task Instructions
1. Your goal is to describe the relation be-
tween the two words by filling in the blanks.
2. You can write up to five words (or less!)
3. The resulting relation should form a valid
English sentence (see below for an example).
4. You can consult an example sentence as
additional context, but the relation you write
should be inferred only from the two words,
and not using additional information.
5. If the compound is a name, entity, or lo-
cation or if you can’t describe the relation
between the words, please leave the relation
blank.
Examples
1. Coke Spokesman is a worker of Coke.
2. Leake government is located in Leake.
3. Capitol Hill
Pitfalls
1. Coke Spokesman employment Coke.
The relation should form a valid sentence.
2. Leake government has a failed goverment.
The relation should be inferred by the words
themselves and not by additional context.

Table 5.8: Instructions for the task along with examples and common pitfalls that are provided
to the human workers from AMT for constructing PRONCI dataset.

dataset only contains one interpretation per noun compound, because we choose to invest our
annotation budget in breadth rather than depth. We rely on recent advances in semantic text
similarity (e.g. BLEURT (Sellam et al., 2020)) to help evaluate the generated interpretations.

Moreover, prior datasets consider noun compounds out of context, while PRONCI also con-
tains the sentence in which the proper noun compound is used. Providing this additional context
helps to limit the ambiguity associated with multiple possible interpretations of the noun com-
pound. For example, U.S. sanctions can mean either sanction imposed by U.S. or sanctions
imposed on the U.S. The exact case can be determined based on the context in which it is used.
“U.S. sanctions on Iran have crippled the country”, implies the former and “U.S. sanctions by
Iran...” implies the latter.

To prepare the PRONCI dataset, we randomly sample sentences from Wikipedia and retain
sentences which contain two-word proper noun compounds as identified by the SpaCy depen-
dency parser (Honnibal et al., 2019). For every word, SpaCy identifies the root word along with
the dependency tag. The “compound” dependency tag is used if the word and its root are part
of a compound word. Then the parts of speech of the first and second word of the compound are
checked. If they are proper nouns (“PROPN”) and common nouns (“NOUN”) respectively, we
identify them as a proper noun compound and include it. If any word pairs have been identified
incorrectly as proper noun compounds, they are marked by annotators to indicate the absence
of any relation.
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Figure 5.3: MTGEN (multi-task Seq2Seqmodel) classifies the example into (non) compositional
classes and generates the interpretation where valid, while UNIGEN (unified generation model),
uses a Seq2Seq model to generate interpretations or identify non-compositional examples using
a specific string “is not compositional”.

After the collection of proper noun compounds and corresponding sentences in which they
appear, we posted Human Intelligence Tasks (HITs) on the AMT platform for the identification
of the relation between two words. The HITs were accompanied by task instructions, summa-
rized in Table 5.8. The workers were paid 9 USD per hour on average, based on initial annotation
experiments which indicated an average annotation time of 20 seconds on each compound.

We split the collected 22,500 examples into training, validation and testing examples (see
Section 5.2.3). To check the quality of the annotation, we randomly sample 100 examples from
the validation set and get the annotations verified independently by three NLP experts. At least
two of the experts agree with the annotated interpretation 93% of the time, which represents
an acceptable level, considering the difficulty of understanding certain compounds that need
technical knowledge (AES key) or cultural background (Abner characters), as well as the sub-
jectiveness in determining non-compositionality.

Knowledge Example
None Buddhist monks
Sentence Recent visitors to the campus include Buddhist monks who installed an environ-

mental artwork at Lower Pond. [SEP] Buddhist monks
WordNet-NN Buddhist meaning: Buddhism is a widespread Asian religion based on a series of

original teachings attributed to Gautama Buddha. [SEP] Buddhist monks
Wiki-NNP monks meaning: a religious male living in a cloister and devoting himself to con-

templation and prayer and work [SEP] Buddhist monks
NER-NNP Buddhist belongs to nationalities or religious groups [SEP] Buddhist monks

Table 5.9: Examples demonstrating the addition of different sources of knowledge for the com-
pound, “Buddhist monks”, in form of prompts that are concatenated with [SEP] token. NNP
and NN correspond for information about proper and common nouns respectively, which can
be from WordNet, Named Entity tags or Wikipedia.

5.2.4 Models
The task of semantic interpretation of proper noun compounds involves generating valid para-
phrases that explicate the relation in compositional cases. So a model designed for this task
needs to first identify if the given noun compound is compositional ([CMP]) or not ([NON-CMP]),
and generate a paraphrase accordingly. We experiment with (1) supervised neural models, (2)
adding external information and (3) zero/few-shot prompting models.

64



Supervised neural models: We use two types of supervised neural models: (1) a multi-task
and (2) a unified generative model. Both models are depicted in Figure 5.3. The multi-task
neural model uses a single model to perform both the tasks of classification as well as genera-
tion. For classification, the model uses the max-pooled representations of encoder hidden states
that are passed to an MLP (Maini et al., 2020) to get the corresponding class probabilities of
[CMP] and [NON-CMP]. In case the example is classified as compositional, a decoder is used for
generating the paraphrase. We refer to this model as MTGEN.

In the unified generation model, we follow the recent advances in NLP where multiple tasks
are posed in a common text-to-text format and are handled by a single Seq2Seq model like T5
(Raffel et al., 2020). For this purpose, we pose the task as a simple string generation problem
that outputs either the paraphrase itself in cases where it is interpretable or generates the string
“proper noun compound is non-compositional” in the remaining cases. We refer to this model
as UNIGEN.

External Information: Since the task of interpretation requires knowledge of the noun com-
pound, we also experiment with adding different types of knowledge to the model that help it
in generating accurate interpretations. Various methods have been proposed to incorporate ex-
ternal knowledge into pre-trained language models (Wang et al., 2020; Liu et al., 2022b; Verga
et al., 2021). We use a simple strategy of concatenating the knowledge along with the proper
noun compound before passing it to the model. A [SEP] token is added to demarcate the added
knowledge.

We use four sources of knowledge that provide further information about the noun com-
pound. They include information on the proper noun, from (1) the first paragraph of theWikipedia
page associated with the entity linked to the mention represented in the text by an entity linking
system (Wiki-NNP), (2) tags assigned to it by the Named Entity Recognition system (NER-
NNP), or include information about the common noun using (3) the corresponding synset def-
initions provided in Wordnet (WordNet-NN), or information about the entire compound based
on (4) the sentence in which it is used. An example of each type of knowledge is shown in
Table 5.9.

Zero/Few-Shot Prompting: Prior techniques for noun compound interpretation such as (Ponkiya
et al., 2020) have proposed zero-shot generation using pre-trained language models to achieve
state-of-art performance on SemEval 2013 Task 4 (Hendrickx et al., 2019) and SemEval 2010
Task 9 (Butnariu et al., 2009). We, therefore, evaluate the performance of such techniques along
with some extensions using few-shot learning on the PRONCI dataset. We find that they lead to
a significant decrease in performance compared to finetuning on the supervised dataset, demon-
strating the importance of having a large-scale dataset for the task of PNC interpretation.

5.2.5 Experimental Setup
Data Splits: The 22,500 examples of PRONCI are split into the train, validation and test such
that all compounds with the same common noun occur exclusively in a single set. Such splitting
ensures that there is no intersecting common noun in either the train or evaluation splits. This
results in a more challenging setting than splitting the examples randomly, for which results are
shown in Section 5.2.6.5. Further, we also consider subsets that contain only compositional
examples (CMP) or only non-compositional examples (Non-CMP). The number of examples in
each case is shown in Table 5.10.
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Type #Train #Validation #Test #Total

CMP 9,722 1,416 2,497 14,389
Non-CMP 5,568 934 1,609 8,111

All 15,290 2,350 4,106 22,500

Table 5.10: The number of training, validation and testing examples in the PRONCI dataset.
CMP indicates the subset that contains only compositional examples and constitutes 63.9%
of the examples. Non-CMP indicates the complementary subset that contains only non-
compositional examples and constitutes the remaining 36.1% of the examples.

Figure 5.4: The plot of relation distribution in the PRONCI dataset. It shows the number of
relations that have a frequency of 1 to 9 and >=10.

The dataset has 7,383 unique relations, with every relation occurring in an average of 1.84
examples. It contains 6,061 relations that occur only once in the dataset, as shown in Figure 5.4.
The top 5 most commonly occurring relations along with their frequency (indicated in brackets)
are is located in (560), is based in (389), are relatives of (245), is an area of (215) and are
located in (125).
Evaluation metrics: Since the task involves a combination of classification and generation,
the evaluation metric uses either an exact match or semantic similarity depending on the type
of instance. If an instance has either the model prediction (p) or the gold annotation (g) as
non-compositional, then an exact match (EX-MATCH) between the prediction and gold gives a
binary score of 0 or 1. In examples where both the gold annotation and model prediction are
compositional, a semantic matching algorithm (SEM-MATCH) is used to give a score between 0
and 1 which indicates the extent of their similarity.

Score(g, p) =
{
SEM-MATCH(g, p), if gold label is CMP
EX-MATCH(g, p), if gold label is Non-CMP.

In particular, we compare two alternatives for SEM-MATCH: (1) the popular BLEU score
(Papineni et al., 2002), which relies on n-gram overlap and is often used in machine translations;
and (2) BLEURT (Sellam et al., 2020), which is a finetuned soft-matching function that builds
upon a pretrained language model. BLEURT represents a recent trend in trained evaluation
metrics for text generation tasks.

For both alternatives, we use the entire paraphrase to evaluate the semantic score. Evaluating
only the relations does not suit metrics such as BLEURT, which expects a well-formed sentence
to infer the semantic meaning. Evaluation of the quality of BLUERT for the similarity between
predicted and gold paraphrases using 1K human-annotated judgements indicates a 0.57 Pearson
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and 0.56 Kendall correlation. We follow standard protocols in evaluating metric quality, as
used in WMT Metrics shared tasks, and ask human annotators to rate the compositional model
predictions as good, average and bad and see how these judgement scores correlate with the
BLEU and BLEURT scores. Further details are provided in Section 5.2.6.4.

We denote the final evaluationmetric as SEM/EX-MATCH. When usingBLEUor BLEURT as
the semantic matcher, the metric is also referred to as BLEU/EX or BLEURT/EX, respectively.
To understand the effect of each type of match, we also report the EX-MATCH classification
accuracy over all the examples, where the compositional type is assigned the positive class, and
the non-compositional type is assigned as the negative class. Along with binary accuracy, we
compute the precision and recall as well. Since the SEM-MATCH cannot be computed over all
examples, we report the scores averaged over only the cases where both gold and prediction are
compositional.

Pre-trained models: For all our experiments, we use the T5-base (Raffel et al., 2020) as the
default initialization, unless explicitly mentioned otherwise. It contains 220M parameters. For
checking the statistical consistency, every model is trained five times with different seeds and
their mean and standard deviation are reported.

Hyper-parameters and computational resources: We run all our experiments using a V100
GPU.We use the standard hyper-parameters recommended in T5 for all the experiments, using a
batch size of 16, the initial learning rate of 2e-5. The final model is chosen using early stopping
on the validation set after training for 10 epochs. Each round of training and evaluation takes
around one hour.

5.2.6 Experimental Results
In this section, we address three primary questions:

1. How do UNIGEN and MTGEN compare with each other and what benefit does adding
external knowledge provide to these models?

2. What is the performance difference between few-shot learning and supervised training?

3. How do individual components of the noun compound influence the model predictions?

We also study the quality of evaluation metrics used, the performance on a random split of
PRONCI, the effect of pre-training, effect of adding multiple sources of knowledge and analyze
the mistakes made by the current model.

5.2.6.1 Performance of Supervised Models

In Table 5.11, we show the results of both, the multi-task model, MTGEN and the unified gener-
ation model, UNIGEN (Section 5.2.4).

We find that the UNIGEN model outperforms the MTGEN model in overall performance but
leads to a modest drop in the compositionality classification performance. For example, in the
case where no additional knowledge is used, UNIGEN leads to a higher SEM/EX-MATCH score
with both BLEU and BLEURT leading to an increase of (2.4, 1.1) pts. But UNIGEN achieves
a lower classification score with the EX-MATCH accuracy reducing by 0.8%. We attribute this
observation to the fact that MTGEN uses a separate module that enables it to be tuned better for
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Model Knowledge EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

MTGEN

None 79.1 ± 1.37 67.1 ± 1.84 79.5 ± 0.58 32.7 ± 1.61 57.9 ± 0.42 44.3 ± 1.05 57.5 ± 0.66

Sentence 78.1 ± 1.51 68.4 ± 2.50 79.4 ± 0.25 34.7 ± 0.36 58.3 ± 0.76 45.7 ± 0.60 57.8 ± 0.75

WordNet-NN 74.2 ± 3.71 76.4 ± 5.68 79.4 ± 1.08 33.2 ± 1.08 57.6 ± 0.51 47.1 ± 0.92 58.9 ± 0.76

Wiki-NNP 52.8 ± 2.43 90.6 ± 3.02 63.2 ± 2.96 24.0 ± 0.36 32.9 ± 2.38 43.0 ± 0.50 45.4 ± 0.98

NER-NNP 79.1 ± 0.63 67.7 ± 1.63 79.7 ± 0.55 34.5 ± 0.23 59.2 ± 0.37 45.4 ± 0.51 58.3 ± 0.68

UNIGEN

None 73.5 ± 2.99 74.4 ± 2.26 78.7 ± 1.40 34.1 ± 1.99 58.6 ± 0.78 46.7 ± 1.12 58.6 ± 0.94

Sentence 73.0 ± 1.57 77.6 ± 1.83 79.3 ± 0.55 34.4 ± 0.81 58.8 ± 0.68 47.9 ± 0.41 59.5 ± 0.57

WordNet-NN 65.3 ± 5.76 82.9 ± 5.05 74.5 ± 3.74 33.7 ± 0.88 56.5 ± 0.65 47.4 ± 0.45 56.7 ± 1.52

Wiki-NNP 65.3 ± 3.05 66.3 ± 5.50 71.8 ± 1.32 25.7 ± 0.59 37.8 ± 2.13 38.4 ± 1.55 43.9 ± 1.09

NER-NNP 75.7 ± 0.95 72.3 ± 1.52 79.4 ± 0.21 35.2 ± 0.23 59.4 ± 0.40 46.9 ± 0.45 59.0 ± 0.42

Table 5.11: Performance of MTGEN and UNIGEN on the PRONCI dataset trained under five
different knowledge settings. All the models are evaluated using the three types of matching.
‘None’ corresponds to using no external knowledge. Adding external knowledge improves the
performance of the models in three out of four cases.

the classification task. However, UNIGEN performs better in overall performance as both the
encoder and decoder can benefit from positive transfer between the tasks.

By adding knowledge to the model, using the prompting described in Table 5.9, at both train-
ing and testing time, we see gains in performance in three out of four types of knowledge added.
Using information of the proper noun from Wikipedia often reduces the performance due to in-
correct entity linking. Among the remaining three sources of knowledge, we find that WordNet-
NN leads to the maximum increase in performance in three of the four settings. We find that the
predicted interpretations are often biased to re-use words that occur in the knowledge prompts
and this leads to higher scores in the case of less frequently occurring compounds. For instance,
the prediction changes from “Kirati community is a group of Kirati” to “Kirati community are
people of Kirati”, when added with the knowledge, “Major groups of Kirati community follows
Buddhism”. Using student paired t-test we find that improvements are statistically significant
with p-value of 3.78e−10 of BLEURT scores averaged over all 5 seeds. We do not find additional
improvements when multiple knowledge sources are added simultaneously (Section 5.2.6.7).

Predictions of UNIGEN trained with sentence knowledge are rated to be 72% correct when
checked manually on a sample of 100 sentences. This indicates a significant scope for improve-
ment, when compared to the upper bound of 93% data quality (Section 5.2.3).

We conduct two further experiments on the trainedUNIGENmodel to understand the strength
of semantic matching used and the effectiveness of the model on the related task of common
noun compound interpretation.

Template scoring: To test the effect of template words (i.e, ‘is’, ‘of’, ‘noun-compound’ and
‘common-noun’), on BLEU and BLEURT scores, we use an output which contains a dummy re-
lation: i.e., the prediction for every non-compositional example is forced to be ‘noun-compound
is none of common-noun’. This ensures that only template words match, but the semantic mean-
ing is wrong. On re-computing the SEM-MATCH scores of UNIGEN, this reduces the BLEU
score from 34.1 to 22.9 and the BLEURT score from 46.7 to -3. This follows the expected trend
as BLEU gives partial scores to template matches, but BLEURT focuses on the overall semantic
meaning.
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Model EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

Ponkiya et al. (2020) 0.0 0.0 60.8 23.1 44.9 13.8 26.8
Rand Few-Shot (5) 37.3 11.0 55.3 27.7 40.2 18.5 25.1
Rand Few-Shot (10) 62.1 21.4 58.2 27.6 39.3 22.3 28.2
KNN Few-Shot (5) 68.7 43.6 69.1 29.9 46.1 33.1 41.4
KNN Few-Shot (10) 67.1 50.5 69.9 29.9 46.9 35.2 43.7

Table 5.12: Performance of T5 model without any finetuning. Ponkiya et al. (2020) corresponds
to the zero-shot setting adapted from the corresponding paper. Few-shot techniques use either
five or ten example demonstrations. In ‘Rand’ the few-shot examples are chosen randomly while
in ‘KNN’ the nearest neighbours of the query are chosen as the few-shot examples. Availabil-
ity of annotated examples from PRONCI helps to substantially improve the performance of the
model. Overall performance remains inferior to the finetuned models.

SemEval evaluation: When UNIGEN is evaluated on the free noun compound paraphrasing
task of SemEval 2013 Task 4 (Hendrickx et al., 2019), it achieves a result of 72.8 compared
to 80.1 on the isomorphic scoring used by Ponkiya et al. (2018). We attribute this to different
interpretation styles with PRONCI focusing on detailed relations (average length of 6.9 words)
compared to SemEval (average length of 5.1 words), leading to slightly lower scores with word
match heuristics adopted by the task.

5.2.6.2 Performance of few-shot learning

State-of-the-art models for free paraphrasal interpretations of common noun compounds (Ponkiya
et al., 2020) use the zero-shot generation capabilities of T5. They find that the performance ex-
ceeds that of supervised models. To check if the same holds for the PRONCI dataset, we also
experiment with zero-shot generation. Similar to Ponkiya et al. (2020), we use the masked
template, “w1w2 is a <extra_id_0> the w1”, where T5 fills in the missing words in place of
<extra_id_0>.

We further experiment with few-shot learning, where K training examples are chosen as
part of the prompt which the model can use to perform in-context learning and generate the
prediction for the given input. No additional knowledge is used in this set of experiments. These
K examples can either be chosen randomly or the nearest neighbours to the input query can be
chosen, where the cosine distance between the input and a training example is computed after
embedding them with a pre-trained T5-Encoder (Liu et al., 2022a). We experiment with K =
5 or 10. The limitations of context size in the pretrained models prevent us from testing with
higher values of K.

In Table 5.12, we find that the zero-shot performance trails behind the best few-shot model
with a decrease of 21.4 and 41 pts in BLEU/EX and BLEURT/EX, respectively. This is partly
because of the variety of examples in the PRONCI dataset, which cannot be fit into specific tem-
plates and the inability of the zero-shot model to handle non-compositional examples. Ponkiya
et al. (2020) cannot detect non-compositional cases and hence achieves a score of zero in the EX-
MATCH metrics. In few-shot learning, expanding the prompt size and dynamically choosing the
prompt examples helps achieve higher performance but the performance remains lower than the
fully supervised UNIGEN model which is still 11.2, 15.3 pts higher in BLEU/EX, BLEURT/EX.
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Shuffle EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

None 78.7 ± 1.40 46.7 ± 1.12 58.6 ± 0.94

NNP 62.4 ± 0.97 43.6 ± 1.01 50.6 ± 0.44

NN 43.7 ± 1.02 40.9 ± 0.15 41.0 ± 0.16

Table 5.13: UNIGEN evaluated after random shuffling of characters in the proper (NNP) or
common (NN) noun.

5.2.6.3 Proper noun vs. Common noun

The interpretation of a proper noun compound depends on both the proper noun and common
noun present in it. To study how each of the two nouns influences the prediction, we randomly
shuffle their characters in both input and gold annotation. For example, to study the effect of
proper noun, the characters of “Buddhist” in “Buddhist monks” are randomly shuffled to give
the new proper noun compound, “Dudhsitb monks” whose interpretation is generated.

In Table 5.13, we find that common noun has a larger effect on the model performance
as shuffling its characters leads to a significant drop performance of (5.8, 17.6, 35) pts in
(BLEU/EX, BLEURT/EX, EX-MATCH Accuracy%). Comparatively, the proper noun results
in a much smaller drop of (3.1, 8, 16.3) pts in the three evaluation metrics. This shows that the
common noun has a more prominent role to play in the generation of semantic interpretations,
compared to the proper noun in the PNC.

5.2.6.4 Quality Assessment of Evaluation Metrics

For evaluating the quality of the metrics that are used for evaluating the model predictions, in
particular, the semantic matching component (Section 5.2.5), we manually annotate the quality
of model predictions with respect to gold using a 3-index scale. The scale indicates whether the
quality of the prediction is bad, average or good. This is done only for the cases where the gold
annotation indicates that the compound is compositional and the prediction of the model is also
a paraphrase, as semantic matching is applicable only in these cases. A total of 1500 examples
are annotated out of which 500 are used for finetuning the learned metrics such as BLEURT.
On the remaining 1K examples, we compute the Pearson and Kendall correlation between the
scores assigned by the evaluation metric and the human-annotated scores. We report the results
in Table 5.14 for five evaluation metrics which include BLEU, and BLEURT with and without
finetuning on both the base and large variants. We find that the fine-tuned BLEURT outperforms
both BLEU and the un-trained BLEURT. It specifically outperforms BLEU by a significant
margin from 0.28 to 0.57 in Pearson correlation and 0.23 to 0.46 in Kendall correlation. We
find that the performance of both the base and large variants of BLEURT perform similarly after
being finetuned and a minor difference exists in their untuned variants. Therefore, we use the
base variant of BLEURT in the rest of the experiments.

We note that the correlation of 0.57 is on par with the current state of NLG metrics. For ex-
ample, Chen et al. (2020), reports a correlation of 0.45-0.60 for standard metrics such as BLEU,
BERTScore (Zhang* et al., 2020) on short-text evaluation. To further encourage research in
building better generation metrics, we release the human judgements of the interpretations.
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Metric Pearson
|ρ|

Kendall
τ

BLEU 0.28 0.23
BLEURT-base 0.43 0.37
BLEURT-large 0.49 0.4
BLEURT-base (tuned) 0.56 0.46
BLEURT-large (tuned) 0.57 0.46

Table 5.14: Quality of metrics evaluated using Pearson and Kendall rank correlation. (tuned)
indicates models that are fine-tuned on 500 manually evaluated comparisons.

Model Knowledge EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

MTGEN

None 78.2 ± 1.14 74.5 ± 1.48 82.8 ± 0.25 40.5 ± 0.58 63.8 ± 0.36 50.0 ± 0.39 62.9 ± 0.29

Sentence 76.9 ± 1.70 78.6 ± 1.38 83.3 ± 0.69 40.4 ± 0.43 63.2 ± 0.30 51.1 ± 0.25 63.4 ± 0.50

WordNet-NN 76.4 ± 1.30 80.5 ± 1.95 83.5 ± 0.36 40.8 ± 0.63 63.3 ± 0.40 51.8 ± 0.55 63.8 ± 0.47

Wiki-NNP 51.7 ± 1.04 94.7 ± 0.82 65.2 ± 1.41 25.9 ± 1.26 36.0 ± 3.80 42.9 ± 0.44 46.0 ± 1.14

NER-NNP 75.4 ± 2.19 80.5 ± 3.06 82.9 ± 0.45 40.5 ± 0.79 63.4 ± 0.62 51.4 ± 0.29 63.5 ± 0.26

UNIGEN

None 71.7 ± 0.68 83.4 ± 1.07 81.6 ± 0.21 41.5 ± 0.16 63.7 ± 0.17 52.0 ± 0.24 63.2 ± 0.15

Sentence 72.1 ± 0.32 83.6 ± 0.44 81.9 ± 0.19 41.3 ± 0.19 63.4 ± 0.45 52.0 ± 0.12 63.3 ± 0.17

WordNet-NN 71.0 ± 1.71 86.2 ± 1.23 81.7 ± 0.88 42.0 ± 0.40 64.0 ± 0.39 52.9 ± 0.34 63.8 ± 0.42

Wiki-NNP 68.6 ± 2.08 68.2 ± 1.93 76.5 ± 0.82 26.1 ± 0.78 39.0 ± 2.18 38.7 ± 0.42 45.3 ± 1.25

NER-NNP 71.9 ± 0.98 81.8 ± 1.70 81.3 ± 0.25 41.6 ± 0.34 64.2 ± 0.68 51.6 ± 0.42 63.1 ± 0.49

Table 5.15: Performance of the twomodels, MTGEN andUNIGEN on the randomly split PRONCI
dataset trained under five different knowledge settings.

Model EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

Ponkiya et al. (2020) 0.0 0.0 62.8 22.9 44.1 14.4 27.7
Rand Few-Shot (5) 53.7 1.2 63.0 27.6 41.2 17.7 26.2
Rand Few-Shot (10) 37.7 33.6 54.4 28.8 42.2 24.7 29.7
KNN Few-Shot (5) 70.5 53.0 74.3 34.8 51.7 38.7 48.0
KNN Few-Shot (10) 68.4 60.1 74.8 35.4 53.2 41.0 50.3

Table 5.16: Performance of T5 model without any finetuning on the random split of PRONCI
dataset.

5.2.6.5 Random Split of PRONCI

In this section, we evaluate the results of UNIGEN and MTGEN on a random split of the PRONCI
dataset, where the 22,500 examples are randomly split into 17,500 training, 2,500 validation
and 2,500 testing examples. The results are reported in Table 5.15 and Table 5.16. We find
that the performance is higher compared to when split according to common nouns. This can
be attributed to the lack of intersecting common nouns between the training and evaluation sets
that could have provided additional clues. This leads to a drop in (BLEU/EX, BLEURT/EX, EX
Acc%) scores of (5.7, 5.4, 3.3) pts in MTGEN and (5.3, 4.6, 2.9) pts in UNIGEN.
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Init EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

Random 63.9 ± 1.98 33.9 ± 1.25 30.5 ± 1.27

T5-base 78.7 ± 1.40 46.7 ± 1.12 58.6 ± 0.94

T5-large 79.4 ± 0.11 47.7 ± 0.29 58.7 ± 0.35

Table 5.17: Performance of the UNIGEN model on the PRONCI dataset trained using different
initializations of the Seq2Seqmodel. Random initialization leads to a huge drop in performance.

Knowledge EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

Sentence 79.3 ± 0.55 47.9 ± 0.41 59.5 ± 0.57

+WNet-NN 77.4 ± 2.14 46.5 ± 1.48 57.4 ± 1.63

+Wiki-NNP 74.0 ± 1.62 38.9 ± 4.21 46.1 ± 6.38

+NER-NNP 79.4 ± 0.23 47.0 ± 0.52 58.9 ± 0.40

Table 5.18: Performance of the UNIGEN model on PRONCI dataset trained with additional
sources of knowledge added over Sentence knowledge. The additional sources do not provide
further benefits.

5.2.6.6 Effect of Pretraining

To understand the effect pretraining has on the effect of model performance for the task of se-
mantic interpretation of proper noun compounds, we re-train the UNIGEN on the NOUN split
starting from random initialization, instead of using T5-base, the default in all of our experi-
ments. We also experiment with using T5-large. We report the results in Table 5.17. We find
that Random initialization is considerably worse, where the scores reduces from 46.7 to 33.9 in
BLEU/EM and 58.6 to 30.5 in BLEURT/EM. This indicates that pretrained initialization plays
a significant role in the final performance on the task. Moreover, on experimenting with the
larger model, T5-large, we find a slight increase in scores from (46.7, 58.6, 78.7) to (47.7, 58.7,
79.4) in (BLEU/EM, BLEURT/EM, CMP). Thus the task can benefit from the scaling of the
language models as they typically gain more information about the common and proper nouns.

5.2.6.7 Adding multiple sources of knowledge

In Table 5.11 and Table 5.15, we observed statistically significant benefits to model performance
after adding information about the noun compound from various sources of knowledge. We also
experiment with adding information from multiple sources of knowledge to see if it can further
augment the model performance. On taking the best-performing sentence knowledge in the
UNIGEN model on NOUN split, we add the remaining three sources of knowledge and report
their performance in Table 5.18. We find that it results in a slight decrease in performance in
the case of WNet-NN and NER-NNP and in the case of Wiki-NNP the decrease is much greater
because of the reduced quality of Wikipedia entities. We attribute this to possible confusion
arising from disparate sources of knowledge that highlight different parts of the noun compound.
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5.2.6.8 Error Analysis

We analyze the mistakes made by the UNIGEN model trained with Sentence Knowledge to find
potential scopes for improvement. We divide them into the following categories -

1. Lack of word sense disambiguation: We notice mistakes in the model predictions in cases
when some words have multiple meanings. The model defaults to choosing the one with
the most frequent usage and not disambiguating properly based on the context. For ex-
ample, the interpretation, “Sunday strip is a comic printed on a Sunday” is mistaken as
“Sunday strip is a show on Sunday”, even when the sentence contains sufficient clues for
the same. The given sentence is “In a few cases, the topper introduced characters later
developed into a successful Sunday strip.”

2. Non-Informative predictions: Although predictions are not wrong they are often not
very informative. For example, the model produces the following interpretation, “EU
economies are based in EU” compared to the more detailed gold “EU economies are the
financial condition of EU members”.

3. Errors in evaluation and mistakes in Gold: In some cases, the evaluation metric is unable
to capture semantic similarity. For example, the model prediction “Baltimore hospitals
are located in Baltimore” and the gold, “Baltimore hospitals are medical institutions in
Baltimore”, has a BLEURT score of only −0.11.

5.2.7 Application to Open IE
To demonstrate the downstream value of the noun compound interpretations, we add them to a
state-of-art Open IE system, Gen2OIE (Section 3.2), and generate new extractions that capture
implicit relations. We apply this on a corpus of 21,228 COVID-19 news headlines that contain
proper noun compounds like COVID-19 outbreak, Rohingya refugee, etc (Aslam et al., 2020).
Integration: To achieve this, we train a Seq2Seq model that takes as input the sentence concate-
nated with the interpretation of the PNC present in it and outputs an interpretation-augmented
sentence. For example, the sentence, “Workers sound alarm on Covid-19 outbreak” and the in-
terpretation, “Covid-19 outbreak is an outbreak of Covid-19” are integrated to get the following
output, “Workers sound alarm on outbreak of Covid-19”. Considering the simplicity of the task,
we annotate a small set of 200 examples of this kind and use it to train a Seq2Seq model. Since
this style of integration converts the implicit relation in the noun compound to an explicit form,
it allows for the Open IE system to add new relations that were missing earlier.
Processing: We experiment with a high-precision rule that post-processes an extraction to gen-
erate a new one, whenever the extraction contains a PNC at the start of its object. For example, if
the original extraction is (Workers; sound alarm on; COVID-19 outbreak), and the correspond-
ing integrated extraction is (Workers; sound alarm on; outbreak of COVID-19), then the rule
generates a new extraction by moving words till the proper noun back into the relation. In this
case, we get the extraction, (Workers; sound alarm on outbreak of; COVID-19) – thus expos-
ing a direct relationship between workers and COVID-19, which was not present earlier. The
overall pipeline is shown in Figure 5.5.

We find that extractions generated using this pipeline lead to an increase in yield of 7.5%
where the added extractions have a precision of 85%, compared to a precision of 82.2% of the
original extractions, as determined on a random sample of 500 extractions. We note that the
method can use any Open IE system without any additional finetuning to produce the noun-
compound extractions.
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Figure 5.5: Open IE Pipeline. Postprocessing of the extraction integrated with noun compound
interpretation generates the new extraction.

5.3 Open IE Systems: Open IE 6.2
Concluding the contributions discussed in Chapter 3, Chapter 4 and Chapter 5 – we have con-
tributed three new Open IE architectures, handled two specific linguistic phenomena and used
two rescoring mechanisms. We release a new Open IE system, OpenIE-6.2, that combines all
these features and releases them as a software package for the community to use.5

In this subsection, we describe the overall flow of the proposed OpenIE-6.2 system, sum-
marized in Figure 5.6. The input sentences are passed through a coordination analysis module
that uses the IGL-CA model. The model detects the coordination structures present in the in-
put and splits a possibly complex sentence into multiple simple sentences (Section 5.1). Each
sentence is passed to one of the three available Open IE systems – IMoJIE, Gen2OIE or CIGL-
OIE to generate extractions of each of the outputs of the simple sentence by the coordination
analysis module. The simple extractions that are generated by the chosen Open IE system are
merged to get the coordination-analyzed set of extractions for each of the original input sen-
tences. The noun compound interpretation module takes the merged extractions and integrates
the interpretations of any proper noun compounds that may be present in the input (Section 5.2).
The interpreted extractions are then passed into either the labeling or generative rescoring model
(Section 4.3) to give the final set of output extractions.

In summary, we build a new state-of-the-art model for Open IE in Chapter 3, Chapter 4
and Chapter 5. However, the proposed OpenIE-6.2 system is still limited to English and is not
designed to handle other languages. To address this, in the next chapter, we focus on building
Open IE systems in other languages apart from English.

5https://github.com/dair-iitd/openie6
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Figure 5.6: Flowchart of the OpenIE-6.2 system. It allows flexibility of choosing from three
Open IE systems (IMoJIE, Gen2OIE, CIGL), adding two linguistic features (Coordination Struc-
tures, Noun Compounds) and rescoring using two models (Labeling, Generative)
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Chapter 6

Interlingual Transfer of Open IE Training
Data

Progress with supervised Open IE has been largely limited to English, owing to the scarcity of
training data in other languages. In this chapter, we explore techniques to automatically convert
English text for training Open IE systems to other languages. We introduce a model to translate
English sentences and their corresponding extractions consistently with each other — with no
changes to the vocabulary or the semantic meaning. We call this the Alignment-Augmented
Consistent Translation (AACTRANS)model. Using the data generatedwithAACTRANS, we train
the generative Open IEmodel, Gen2OIE, introduced in Section 3.2. Gen2OIE increases relation
coverage using the RC heuristic that is generalizable to multiple languages, in contrast to CIGL
which uses an English-specific training loss. Evaluations on 5 languages—Spanish, Portuguese,
Chinese, Hindi and Telugu — show that the Gen2OIE with AACTRANS data outperforms prior
systems by a margin of 6-25% F1.1

6.1 Alignment Augmented Consistent Translation
Both neural and non-neural types of Open IE systems have been limited to only a few languages
– earlier non-neural systems required language-specific Open IE insights, and current neural
systems require annotated training corpus that pose a barrier, particularly for low-resource lan-
guages.

Related tasks such as Semantic Role Labeling face similar challenges in extending to multi-
ple languages. X-SRL (Daza and Frank, 2020) addresses this by automatic translation of English
sentences to the target language followed by projecting the labels from the source sentence to
the target sentence. This allows us to infer the semantic role labels in the translated sentence.
However, translating the sentence alone may be insufficient for Open IE because the generated
tuples can include additional words that are absent in the sentence, or require some changes to
the word morphology used in the sentence. Although less prevalent in English, these character-
istics need to be addressed in many other languages.

X-SRL approach may be extended such that each extraction can also be automatically trans-
lated and subject, relation, and object labels projected from English extractions. However, inde-
pendent translation of sentence and extraction may introduce unwanted lexical (e.g. synonyms)
or semantic (e.g., change in gender) variations between the translations, as shown in Table 6.1.
Such translation inconsistencies in the training data lead to suboptimal Open IE examples.

1Code and models are released at https://github.com:dair-iitd/moie
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Lexical
Inconsistency
English Sentence
English Extraction
Spanish Sentence
Spanish Ext (Indp)
Spanish Ext (Const)

The shield of Athena Parthenos, sculpted by Phideas, depicts a fallen Amazon
<s> The shield of Athena Parthenos </s> <r> depicts </r> <o> a fallen Amazon </o>
El escudo de Atena Parthenos, sculptado por Phideas, representa un Amazonas fallecido
<s> El escudo de Atena Parthenos </s> <r> representa </r> <o> un Amazonas caído </o>

<s> El escudo de · · · <r> representa </r> <o> un Amazonas fallecido </o>
Semantic
Inconsistency
English Sentence
English Extraction
Spanish Sentence
Spanish Ext (Indp)
Spanish Ext (Const)

The discovery was remarkable as the skeleton was almost identical to a modern Kuvasz
<s> skeleton </s> <r> was </r> <o> almost identical to a modern Kuvasz </o>
Un descubrimiento notable porque fósil era casi idéntica a un Kuvasz moderno
<s> skeleto </s> <r> era </r> <o> casi idéntica a una Kuvasz moderna </o>
<s> fósil </s> <r> era </r> <o> casi idéntica a un Kuvasz moderno </o>

Table 6.1: Open IE examples transferred fromEnglish to Spanish, using both Independent (Indp)
and Consistent (Const) translations. Independent translation results in inconsistencies which
may have the samemeaning (by using synonyms, fallecido vs. caído) ormay change themeaning
(changing gender from male to female, moderno to moderna). Consistent translation avoids
these issues, resulting in better-quality training data.

To maintain consistency between translations of a sentence and its extractions, both trans-
lations must use the same words and their morphological variants as much as possible. Hence,
we propose Alignment-Augmented Consistent Translation (AACTRANS), a seq2seq model that
translates the given input text in a way that is consistent with a reference translation by biasing
the translation to use words similar to those available in the reference. To ensure that transla-
tions of sentences and extractions are consistent with each other, we use the AACTRANS model
to translate each of them with the same reference. In Section 6.2.1, we describe the reference
used in training and inference.

As shown in Chapter 3 and Chapter 4, both generation-based and labeling-based architec-
tures have shown competitive performance on English Open IE. However, labeling-based mod-
els cannot naturally introduce new words or change the morphology of sentence words required
in some languages. We also use the training heuristic specific to two-stage models that increase
relation coverage across multiple languages.

Our major contributions in this chapter are that:

1. we introduce a novel technique for transferring data from English to other languages using
the AACTRANS model and label projection,

2. we release Open IE evaluation datasets for two Indian languages, Hindi and Telugu, and

3. the Gen2OIE trained with AACTRANS outperforms prior systems by 6-25% in F1 across
five languages – Hindi, Telugu, Spanish, Portuguese and Chinese.

6.2 AACTrans: Crosslingual Data Transfer
In this section, we introduce a new translation methodology, which is developed for converting
Open IE training data from source language2 Lsrc to a target language Ltgt. More formally, the

2In the current work, we always use English as the source.
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Figure 6.1: Crosslingual Data Transfer pipeline from English to Spanish. Firstly, The sentence
and ext-sentences in English are aligned with a translation of the sentence (Source Sentence +
Translated Sentence→ Aligned Sentence and Source Ext-sentence + Translated Sentence
→Aligned Ext-sentence). Secondly, theAACTRANSmodel uses the aligned text to generate the
final consistent translations (Aligned Sentence→Target Sentence and Aligned Ext-Sentence
→ Target Ext-Sentence). Finally, Cross Lingual Projection (CLP) introduces S, R, O tags in
the extraction (Target Ext-Sentence + Input Extraction→ Target Extraction).

source sentence, SLsrc , and all of its extractions, ELsrc , are translated to language Ltgt, to get
the translated sentence SLtgt and its corresponding extractions ELtgt

i .
The data transfer is achieved with the help of two components, a novel type of translation

model called AACTrans that ensures consistency in translations and a label projection model
called CLP that projects word-level labels from one language to another. The overall flow is
described in Algorithm 4 which includes 1) the training of the AACTrans model (Section 6.2.1),
2) applying the AACTrans model on Open IE examples in the source language (Section 6.2.2),
3) using the CLP algorithm to get extractions of the target language (Section 6.2.3).

Algorithm 4 Crosslingual Data Transfer
Step 1: AACTRANS model is trained for translation between Lsrc and Ltgt languages.
Step 2: The trained AACTRANS model is used to translate the Open IE examples in Lsrc.
Step 3: The CLP label projection is used to obtain the final labelled extractions in Ltgt.

Figure 6.1 further illustrates the application of the AACTrans+CLP pipeline to Open IE with
the help of an example.

6.2.1 Consistent Translation
The pursuit of high-quality, accurate machine translation is a prominent challenge in the field
of natural language processing. However, most existing models tend to focus on translation
accuracy at the sentence level, sometimes leading to inconsistent translations across multiple
related texts. The Alignment-Augmented Consistent Translation (AACTRANS) model seeks to
address this gap by ensuring consistent translations of similar phrases across different sentences.
This is needed to ensure that the extraction is translated similarly to the original sentence.

We propose a novel Seq2Seq-based translation model, denoted as Alignment-Augmented
Consistent Translation (AACTRANS), that ensures consistent translations from the source lan-
guage, Lsrc, to the target language, Ltgt. A translation is deemed consistent if similar phrases
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across multiple texts maintain the same grammatical structure and vocabulary, allowing for
minimal adjustments necessary to maintain fluency.

To understand how consistency among multiple translated texts applies to Open IE, we can
look at it from the angle that there is a ‘parent text’ (the original sentence) and a ‘child text’ (the
linearized version of the extraction, removing the field delimiters). Let Psrc and Ptgt represent
the parent text in the source and target languages, respectively, and Csrc and Ctgt represent the
child text in the source and target languages respectively. A translation T : Lsrc → Ltgt is
deemed consistent if for all similar phrases p present in multiple texts x ∈ Psrc, Csrc, we have:

T (pxsrc) = pxtgt (6.1)

for minimal adjustments necessary to maintain fluency, where pxsrc is the phrase in the
source language text xsrc and pxtgt is the translated phrase in the target language text xtgt.

To aid this process of consistent translation, we employ a reference text in the target language,
Rtgt, that guides all translations. By individuallymaintaining consistencywith the reference text,
the translations of both parent and child texts are intrinsically consistent with each other. For
instance, the phrase ‘a fallen Amazon’ might appear in both the parent and child texts, but we
desire a consistent translation of this phrase in both contexts. Therefore, a reference translation
like ‘un Amazonas fallecido’ is provided, biasing the translation system to opt for ‘fallecido’
(or its appropriate morphological variants) as the translation of ’fallen’ over synonymous words
such as ‘caído’.

LetAsi denote the set of aligned words inRtgt for each word si in Psrc orCsrc, as determined
by a word alignment model, which identifies pairs of semantically equivalent words in two
parallel sentences in different languages (Dou and Neubig, 2021). Then an aligned text S ′

xsrc
for

each xsrc in Psrc, Csrc is constructed by concatenating each of the words si with their aligned
words Asi , using ## as a separator. Using our example, we detect ‘Amazon’ is aligned with
‘Amazonas’ and ‘fallen’ with ‘fallecido’. So ‘fallen Amazon’ will appear as ‘fallen ## fallecido
# Amazon ## Amazonas’ in S ′.

Next, we train the AACTRANS model using parallel sentences from languages Lsrc and Ltgt

available in existing translation corpora. For each parallel sentence pair, s and t, we utilize t
as the reference r. We then form the input s′ using the alignments between the words of s and
t. The AACTRANS model is trained with s′ as the input and t as the output using the Seq2Seq
architecture. Since s′ has words from t, the model learns to use them during training and applies
the same at inference time. As a result of this process, the AACTRANS model learns to generate
translations of the child text that match the source language’s semantic content and maintain
grammatical consistency with the parent text in the target language.

6.2.2 Consistent Translation for Crosslingual Data Transfer
To aid in the translation of Open IE extractions, we create a sub-sentence from each extraction
by concatenating the phrases in all the fields of the extraction. The order of concatenation is
such that the constructed sub-sentence is grammatically valid. We refer to this sub-sentence as
an ext-sentence and represent it as esL, where the superscript L represents the language. For
most English extractions, the ext-sentence corresponds to concatenating the fields in the order
of subject, relation and object. However, other languages may follow a different order or allow
for multiple orders. We rely on the output of the system that translates the English ext-sentence
to determine the ext-sentence in other languages. Moreover, each extraction can be seen as a
labeling over the words of ext-sentence with either the Subject, Relation or Object tags. Tags
for each word in the ext-sentence can also be regarded as the extraction.
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We need to consistently translate English sentence SLsrc and each of its ext-sentences esLsrc
i .

We use an off-the-shelf translation system (ofst) to translate SLsrc to language Ltgt, represented
as ofst-SLtgt . For example, the sentence could be ‘The shield of Athena Parthenos sculpted by
Phideas, depicts a fallenAmazon’ and the ext-sentence could be ‘The shield of Athena Parthenos
depicts a fallen Amazon’, with the reference translation as ‘El escudo de Athena Parthenos,
sculptado por Phideas, representa unAmazonas fallecido’. This ofst-SLtgt is used as the common
reference r for constructing aligned sentence al-S and aligned ext-sentence al-esi from sentence
SLsrc and ext-sentence esLsrc

i , respectively. Due to using alignments, al-S and al-esi contain
words from both the languages, Lsrc and Ltgt.

In the above example, the aligned sentence would be ‘The ## El # shield ## escudo # of ##
de # Athena ## Athena # Parthenos ## Parthenos # sculpted ## sculptado # by ## por # Phideas,
## Phideas, # depicts ## representa # a ## un # fallen ## fallecido # Amazon ## Amazonas’ and
the aligned ext-sentence would be ‘The ## El # shield ## escudo # of ## de # Athena ## Athena
# Parthenos ## Parthenos # depicts ## representa # a ## un # fallen ## fallecido # Amazon ##
Amazonas’. We then apply the trained AACTRANS model on al-S and al-esi to generate target
sentence aact-SLtgt and target ext-sentence aact-esLtgt

i respectively. This leads to generation
of the target sentence, ‘El escudo de Atena Parthenos, sculptado por Phideas, representa un
Amazonas fallido’ and the target ext-sentence, ‘El escudo de Atena Parthenos representa un
Amazonas fallido’ that corresponds to the triple (El escudo de Atena Parthenos; representa;
un Amazonas fallido). To get the triple from the ext-sentence, we rely on Crosslingual Label
Projection which is explained next.

6.2.3 Crosslingual Label Projection (CLP)
Each word in the target ext-sentence, aact-esLtgt

i , must be labeled with either the S, R, or O
tag to form the completed extraction in language Ltgt. The tags from the corresponding ELsrc

i

are projected onto aact-esLtgt

i using the Crosslingual Projection algorithm (described in Sec-
tion 2.4.5.1), which uses word alignments between esLsrc

i and aact-esLtgt

i and produces as out-
put, the tags over aact-esLtgt

i , giving extraction aact-ELtgt

i . For example, the labels from input
extraction, (The shield of Athena Parthenos; depicts; a fallen Amazon) are projected onto the
target ext-sentence ‘El escudo de Atena Parthenos representa un Amazonas fallido’ to give the
extraction, (El escudo de Atena Parthenos; representa; un Amazonas fallido). The final set of
<sentence, extractions> pairs constitute the data for training the Open IE system in language
Ltgt.

6.3 Experimental Setting
We train Open IE systems in 5 languages, Spanish (ES), Portuguese (PT), Chinese (ZH), Hindi
(HI) and Telugu (TE), by using the training data transferred from English to the respective
language. For training the Seq2Seq models used in the data generation pipeline and the Open IE
systems based on the Gen2OIE architecture, we choose either the mBART (Liu et al., 2020b) or
mT5 (Xue et al., 2020)model depending on the particular language. Both of them are pre-trained
multilingual Seq2Seq models that are trained with a span denoising objective on a large corpus
of text containing many languages. mBART is pre-trained on CC25 and mT5 is pre-trained on
mC4 corpus which contains text in 25 and 101 languages, respectively. Since mBART does
not support Portuguese and Telugu, we use mT5 for these two languages and mBART for the
remaining 3 languages. We use the default hyperparameters recommended for these models.
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Training Datasets for AACTRANS: We make use of parallel (English, language Lt) sentences
available in standard translation corpora using the method described in Section 6.2. For Spanish,
we use parallel sentences from EuroParl corpus (Koehn et al., 2005), and for Portuguese, we
use a subset of the ParaCrawl corpus (Bañón et al., 2019), as chosen by Lopes et al. (2020).
For Hindi, we use the IIT-B corpus (Kunchukuttan et al., 2018), and for Telugu, we use the
Samanantar corpus (Ramesh et al., 2021). For Chinese, we use the data released for WMT19
(Barrault et al., 2019). We list the BLEU scores of the various systems in Section 6.4.4.
Training Dataset for Open IE: We use the same OIE4 training corpus from Chapters 3 and 4
and transfer it to the other languages.
Evaluation Datasets and Metrics: For evaluating translation systems we use the test sets avail-
able in the respective corpora and use SacreBLEU (Post, 2018) as the metric.3 As in Chapter 3
and Chapter 4, for evaluating different Open IE systems we use the Optimal F1 and Area Under
Curve (AUC) computed by the CaRB (Bhardwaj et al., 2019) scoring function. For Spanish,
and Portuguese Open IE we use test sets provided in Ro et al. (2020). For Chinese Open IE, we
randomly choose 10% of the SAOKE dataset (Sun et al., 2018b).

To evaluate our method on medium and low-resource languages, we release new Open IE
test sets in Hindi and Telugu. Human annotators who are fluent in both languages and are
knowledgeable about the Open IE task translated about 300 randomly chosen sentences and
their corresponding extractions from the CaRB test set. They were paid $2.5 per sentence.4

Table 6.2 lists the number of examples in different languages used for training and evaluating
translation and Open IE systems.

EN ES PT ZH HI TE

Translation
Train - 1.9M 5M 1M 1.6M 4.8M
Test - 38473 99,087 2001 2507 2390

Open IE
Train 91K 91K 91K 91K 91K 91K
Test 641 594 594 3833 298 302

Table 6.2: Data statistics for Open IE examples and (English, language F) parallel sentences.

6.4 Experiments
We perform experiments to answer the questions:

1. What is the quality of data generated with the AACTRANS+CLP pipeline, assessed both by
the final performance of systems trained using it and with metrics defined for evaluating
consistency?

2. What are the incremental contributions of different components in the performance of
Gen2OIE with AACTRANS+CLP data?

3BLEU+case.mixed+numrefs.1+smooth.none+tok.intl+version.1.5.1
4Shubham Mittal helped with parts of the evaluation dataset collection and ablation analysis, which has been

included as part of his BTech thesis.
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Model Training Data ES PT ZH HI TE

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

(Faruqui, 2015) English 45.5 28.6 48.5 31.5 13.7 3.3 30.4 12.5 36.7 16.2
Multi2OIE English 60.0 41.5 60.2 41.1 23.7 8.1 28.8 10.9 16.5 4.1
Multi2OIE SentTrans+CLP 62.0 42.8 60.9 41.3 21.2 6.5 48.1 27.6 33.4 15.4
OpenIE6 SentTrans+CLP 56.8 37.4 58.7 39.4 18.2 4.8 46.3 28.0 39.0 18.3
IMoJIE AACTRANS+CLP 61.6 43.1 59.7 39.9 15.4 4.0 47.5 26.3 33.9 15.5

GenOIE
SentTrans+CLP 60.4 40.6 63.5 43.7 20.9 4.9 51.5 28.5 41.7 16.3
SentExtTrans+CLP 58.3 39.7 57.3 36.5 20.8 5.6 51.6 28.1 36.6 13.9
AACTRANS+CLP 60.8 41.3 63.9 44.8 23.1 5.9 51.6 28.6 39.3 15.1

Gen2OIE
SentTrans+CLP 64.2 44.6 65.6 50.0 29.0 8.9 52.3 30.8 40.3 15.6
SentExtTrans+CLP 64.7 46.1 63.7 45.5 29.3 10.2 52.5 31.0 39.8 15.6
AACTRANS+CLP 65.9 47.2 66.4 49.2 29.8 10.3 52.8 32.0 41.5 16.6

Gen2OIE-mT5 AACTRANS+CLP 67.9 48.5 66.4 49.2 33.3 12.7 53.6 30.9 41.5 16.6

Table 6.3: F1 and AUC performance of Open IE systems in Spanish (ES), Portuguese (PT),
Chinese (ZH), Hindi (HI) and Telugu (TE). Training with AACTRANS+CLP data shows strong
performance with both GenOIE and Gen2OIE models. We also report the results of training
Gen2OIE model with mT5 on all languages.

6.4.1 Quality of AACTRANS+CLP data
To test the quality of the Open IE examples generated using the AACTRANS+CLP pipeline, we
train both the GenOIE and Gen2OIE models over the data generated for different languages.
In Table 6.3, we compare it with examples generated from two other methods, SentTrans and
SentExtTrans.

SentTrans+CLP represents an adaptation of X-SRL (Daza and Frank, 2020) for Open IE
where only the sentence is translated, and each extraction, which is expressed as labeling over
the words in the sentence, is projected onto the translated sentence using the CLP algorithm
described in Section 6.2.3. The projected extraction is now a labeling over the translated sen-
tence; hence, it uses the same morphology as the sentence and cannot add new words. SentExt-
Trans+CLP uses an independent translation of English sentences and ext-sentences followed by
CLP algorithm between the English and translated ext-sentences to transfer the labels. Although
this allows for adding newwords and changing morphology, it can result in a lack of consistency
between the translations.

We find that both GenOIE and Gen2OIE show consistent gains with AACTRANS+CLP data
across various languages when compared with SentExtTrans+CLP and SentTrans+CLP data.

We experiment with two versions of Multi2OIE (Section 2.4.5.5): 1) trained only on En-
glish Open IE data and applied to other languages in a zero-shot manner and 2) using language-
specific training data generated from SentTrans+CLP. We specifically choose SentTrans+CLP
data as all the extractions can be expressed as labels over the sentence, which is a requirement
for training Multi2OIE which is itself a labeling model. We find that Multi2OIE model trained
with SentTrans+CLP data improves over the zero-shot setting in all languages other than Chi-
nese (discussed below). However, it performs significantly worse than Gen2OIE by (5.2, 3.3)%
in (F1, AUC) on average, even on training with the same SentTrans+CLP data. This can be
attributed to Multi2OIE’s lack of capability to handle: 1) overlapping relations, 2) multiple ex-
tractions per relation, 3) adding auxiliary words or 4) changing inflectional forms.
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Model (Data) ES ZH HI

F1 AUC F1 AUC F1 AUC

Gen2OIE (AACTRANS+CLP) 65.9 47.2 29.8 10.3 52.8 32.0
Gen2OIE (AACTRANS w/o Sentence Consistency+CLP) 64.0 44.3 29.6 10.3 51.9 30.8
Gen2OIE w/o Relation Ordering (AACTRANS+CLP) 65.2 45.6 29.6 9.8 52.5 31.8
Gen2OIE w/o Relation Coverage (AACTRANS+CLP) 60.6 40.3 23.9 6.6 52.8 32.3

Table 6.4: Ablations of Gen2OIE model trained with AACTRANS+CLP data on ES, ZH and HI.
We analyze the effect of removing three components and re-training the model: 1. Sentence
Consistency used in AACTRANS data generation, and 2. Relation Ordering is used, and 3. Re-
lation Coverage used in Stage-1 model training.

ES PT ZH HI TE

SenExtTrans+CLP 12.2 9.5 24.5 13.3 19.6
AACTrans+CLP 5.4 3.9 5.7 6.9 10.3

Table 6.5: Evaluating inconsistency between translated extractions and corresponding sen-
tences.

We train IMoJIE and OpenIE6 (initialized with mBERT) on AACTRANS+CLP and Sent-
Trans+CLP data. We find that they underperform Gen2OIE and Multi2OIE. Compared to the
two-stagemodels, both IMoJIE andOpenIE6 generate all the extractions autoregressively, which
makes them more susceptible to noise in the automatically generated training data.

We additionally compare with Faruqui (2015), where the test sentence is translated into
English, extractions are generated using OpenIE6 and they are projected back onto the test
sentence. We find that the system results in poor performance due to a lack of language-specific
training.

We observe that all systems have low performance in Chinese. We attribute this to the
various artifacts present in the SAOKE test set, which include special relations such DESC,
TIME, ISA, etc. Since these extractions cannot be generated in our pipeline, we observe the
performance of only 33.2% F1 and 15.8%AUCwith our best model, when compared to training
Gen2OIE with SAOKE training data, which gives 52.5% F1 and 32% AUC.

We additionally train the Gen2OIE model using mT5 on AACTRANS data for all five lan-
guages (Gen2OIE-mT5 in Table 6.3) and find improvements of (2.1%, 3.5%, 0.8%) F1 over the
mBART models used for ES, ZH and HI.

6.4.2 Evaluating Consistency
In order to measure the inconsistency of the generated extractions with respect to the sen-
tence, we compute the fraction of words that occur in the extraction but are absent in the sen-
tence. In Table 6.5, we find that across languages, the fraction is lower for training examples
generated through the consistent translation methodology (AACTRANS+CLP) when compared
against independent translations (SentExtTrans+CLP). This indicates that AACTRANS+CLP in-
deed achieve better consistency.

To analyze the reasons for the improvement in CaRB performance, we compute the frac-
tion of words that are present in model predictions but absent in the gold extractions of the test
set (denoted by AG - Absent in Gold). In Table 6.6, we see that Gen2OIE trained on AAC-
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Data ES PT ZH HI TE

AG↓ F1↑ AG↓ F1↑ AG↓ F1↑ AG↓ F1↑ AG↓ F1↑

SentExtTrans+CLP 2.74 64.7 3.51 63.7 10.55 29.3 1.78 52.5 2.36 39.8
AACTRANS+CLP 2.31 65.9 2.22 66.4 9.67 29.8 1.6 52.8 2.09 41.5

Table 6.6: Evaluating CaRB F1 and AG of Gen2OIE predictions trained on SentExtTrans+CLP
and AACTrans+CLP data. We find a decreasing trend of AG with increasing F1.

TRANS+CLP achieves lower values than the same model trained on SentExtTrans+CLP data
and this correlates with the increased CaRB performance. This shows that the model generates
words closer to gold extractions (and hence closer to the input sentence), which contributes to
higher performance.

6.4.3 Ablation Study
We choose three representative languages to conduct the ablation study — Spanish, Chinese,
and Hindi. Portuguese and Telugu belong to the same language family as Spanish and Hindi,
respectively. In Table 6.4, we show the results of individually removing components from the
Gen2OIE trained on AACTRANS+CLP data.

In AACTRANS w/o Sentence Consistency, we use regular translation of sentences while
using the consistent translation of extraction. This leads to a drop of (1.9, 0.2, 0.9)% in F1
for the three languages, and shows the importance of using consistent translation on both the
sentence and extraction.

In Gen2OIE w/o Relation Ordering, we train Stage-1 Gen2OIE with randomly shuffled rela-
tions. This reduces the performance as our model uses auto-regressive training which benefits
from following a fixed order, which we choose as the order of occurrence of the relations in the
sentence.

In Gen2OIE w/o Relation Coverage, we find that performance decreases in Spanish and
Chinese by 5.3% and 5.9% in F1, respectively, but remains the same in Hindi.

6.4.4 BLEU scores
Table 6.7 contains the BLEU scores of both the normal as well as consistent translations. We
find that the performance remains nearly the same, indicating that the improved Open IE perfor-
mance stems from the consistency in the translations.

BLEU ES PT ZH HI TE

Translation 45.2 48.4 26.8 20.5 7.0
AACTranslation 43.7 47.8 28.2 20.1 7.5

Table 6.7: BLEU scores of translation and AAC-translation are similar showing that the perfor-
mance improvement is because of the added consistency.
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6.4.5 Effect of word alignments quality
To understand the effect of alignment quality, we replace the language-specific trained aligners
(TA), with a standard pre-trained mBERT model (MA). We first note that in Table 6.8 that MA
has a much higher alignment perplexity (used as a measure of unsupervised alignment quality
in (Dou and Neubig, 2021)). We now experiment to replace TA with MA in our methodology.
Aligners are used at two places in our setup - 1. Alignment-Constrained Translation and 2.
Crosslingual Label Projection. We replace each of them with an mBERT aligner (MA) and
show the results in Table 6.9. We find that there is some performance drop by using MA, but
it is quite less compared to the drop in alignment perplexity. This suggests that our model is
relatively robust to the quality of alignment.

Language MA TA

ES 0.38 0.19
HI 0.49 0.20

Table 6.8: Unsupervised alignment perplexity for mBERT (MA) and Trained (TA) aligners

(AACTRANS,CLP) HI ES

F1 AUC F1 AUC

(TA, TA) 62.1 38.8 65.9 47.2
(TA, MA) 58.7 34.4 64.7 46.2
(MA, TA) 59.4 37.9 65.6 46.7

Table 6.9: F1 and AUC of Gen2OIE trained with examples generated using TA and MA align-
ment strategies. (1, 2) corresponds to aligner 1 being used in AACTRANS and aligner 2 being
used in CLP.

6.5 Conclusion
In this chapter, we develop a novel AACTRANS+CLP pipeline for consistently transferring En-
glish Open IE examples to other languages. We show improvements over the existing baseline
of Multi2OIE, with an average improvement of 7.2% in F1 and 16.1% in AUC. It is tested in
five languages, the largest number of languages covered by a single Open IE technique known
to us. To encourage research in medium and low-resource languages, we additionally release
new Open IE evaluation examples in Hindi and Telugu.
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Chapter 7

Application of Open IE to Knowledge
Bases

So far, we have focused on building Open IE systems that can generate a better quality of ex-
tractions, focusing on computational efficiency, handling special linguistic structures such as
coordination, and noun compounds, and extending to other languages. In this chapter, we ex-
plore applications of the generated Open IE extractions – particularly, in relation to a structured
source of knowledge, such as Knowledge Bases (KBs).

KBs are a large and useful source of information about the world and are composed of cu-
rated facts regarding entities. Each fact asserts a relation that exists between two entities, which
can be expressed as (subject; relation; object). KBs have proven to be helpful for NLP tasks
like Question Answering (Saxena et al., 2020) and are used in a variety of industry applica-
tions (Dong, 2017; Fensel et al., 2020). KBs can be classified into two types: canonical KBs,
like WikiData1, DBPedia (Auer et al., 2007) and Open KBs, like OLPBench (Broscheit et al.,
2020), ReVerb Open KB (Vashishth et al., 2018). Creation of KBs such as WikiData requires
a lot of manual supervision, with KB facts comprising entities and relations that come from a
pre-defined set with distinct unambiguous IDs. On the other hand, Open KBs are automatically
constructed, making use of Open IE tuples themselves as facts, where all the fields contain un-
restricted text. This allows Open KBs to achieve wider coverage of knowledge, at the cost of
additional noise that may be introduced due to the reliance on existing Open IE systems.

In this chapter, we explore applications that deal with both kinds of KBs. First, in Sec-
tion 7.1, we look at how natural language text or Open IE tuples can be linked to facts from
existing canonical KBs across languages when the source text and target canonical tuple may
be in different languages. Second, in Section 7.2, we tackle the problem of inferring new facts
from existing Open KBs constructed from Open IE tuples.

7.1 Knowledge Base Fact Linking
In general, external sources of knowledge are helpful for NLP tasks such as question answering
and fact verification. For example, KILT (Petroni et al., 2020) uses a retrieval+seq2seq model
with Wikipedia documents as the knowledge source to solve many knowledge-intensive tasks
and FAE (Verga et al., 2021) uses WikiData KG to inject knowledge into pre-trained language
models in a modular fashion. Such knowledge-intensive NLP tasks can further benefit from
linking natural language text to tuples from a canonical KB. While linking KB facts to text

1https://www.wikidata.org/
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has received some attention in the literature (Elsahar et al., 2018), most of that work has been
restricted to English facts and text. There is a growing need to connect facts and their mentions
in text, especially when the language of the fact and text are different. For example, we would
like to link a fact in English with a text in Hindi or Telugu. Therefore, we define the task of
multilingual fact linking (MFL) as the task of predicting all the KB facts that are implied by a
sentence, even when the sentence and KB fact are expressed in different languages.

KBs such asWikidata often contain entity and property surface forms in multiple languages,
although with severe skew (Kaffee et al., 2017). For example, Argovia and Argau are the English
and Spanish entity surface forms for entity Q11972 in Wikidata. Similarly, country and país are
the English and Spanish property surface forms for property P17. Combining these labels, we
define the notion of fact surface forms, which are language-specific textual representations of an
otherwise language-agnostic fact. For example, (Aargau; country; Switzerland) and (Argovia;
país; Suiza) are the English and Spanish fact surface forms for the canonical fact (Q11972; P17;
Q39) in Wikidata.

Figure 7.1: Distribution of languages of fact surface forms (in millions) on a subset of Wikidata.
Compared to English and a few other languages, fact surface forms in Indian languages (the last
five: HI, TE, TA, UR, GU) are extremely sparsely represented.

The problem of multilingual fact linking is made more difficult due to language skew among
the fact surface forms in a KB. In Figure 7.1, we present the language distribution of fact surface
forms (across ten languages) obtained from a subset of Wikidata containing popular entities.
We find that the fact surface forms are heavily skewed towards higher-resource languages (first
five), compared to the remaining five Indian languages, viz., Hindi (HI), Telugu (TE), Tamil
(TA), Urdu (UR), and Gujarati (GU). These languages are spoken by hundreds of millions of
speakers, although they are severely understudied in the NLP community. We focus on the
problem of MFL, particularly Indian languages.

Multilingual fact linking involves selecting a small subset of facts relevant to the input sen-
tence from the complete list of all KB facts, which may run into the scale of millions. To
handle this, we make use of the dual encoder-cross encoder paradigm, where a dual encoder
(Reimers and Gurevych, 2019) is used to retrieve the potential top-k facts quickly. These top-k
facts can be re-ranked using classification-based cross-encoder architectures. However, due to
the pipelined nature of the system, the performance of the re-ranking model is limited by that
of the retrieval model. Therefore, we propose a novel model, Retrieval based Fact-Constrained
Generation (ReFCoG), which replaces re-ranking cross encoders with a Seq2Seq cross encoder
that is constrained to generate facts from the KB. This allows the generation of facts even when
they are absent in the re-ranked set of facts, but are present in the KB. We show that such gen-
erative models outperform classification-based re-ranking, achieving a 10.7 pts improvement in
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Task Input/Output

Entity Linking
(Botha et al., 2020)

Input: Table Jura stretches across the Swiss cantons
of {Basel-Landschaft} and Aargau.
Output: Q12146; English Surface Form = Landschaft

Relation Classification
(Ormándi et al., 2021)

Input: Table Jura stretches across the OBJ{Swiss} cantons
of SUBJ{Basel-Landschaft} and Aargau.
Output: P17; English Surface Form = country

Canonical Fact
Extraction

(Elsahar et al., 2018)

Input: {Table Jura} stretches across the {Swiss} cantons
of Basel-Landschaft and Aargau.
Output: (Q356545; P17; Q39)

English Surface Form = (Table Jura; country; Switzerland)

Multilingual
Fact Linking

Input: टेबल जुरा बेसल-लैंडशाफ्ट और आरगौ के स्वस कैं टन में फैला हुआ है।
(tebal jura baasel-laindshaaft aur aaragau ke svis kaintan
mein phaila hua hai)
Output: F23 = (Q12146; P17; Q39)

English Surface Form = (Landschaft; country; Switzerland)
F52 = (Q11972; P17; Q39)
English Surface Form = (Aargau; country; Switzerland)

Table 7.1: KB linking task examples. Multilingual fact linking involves discovering the subset
of KB facts expressed in a sentence, even when fact labels are available in a different language,
requiring cross-lingual inference (Hindi-English in the above example). Fact-linking systems
only output facts already present in the KB. Canonical fact extraction aims to discover new
canonical facts not present in the KBwhile using the entities and relations defined in the existing
KB schema. In contrast, Open IE extracts open-ended facts that may or may not correspond to
entities, relations, or facts defined in the KB.Q andP represent the entity and property identifiers
in Wikidata. The fact identifiers (e.g., F23) are assigned and are not part of Wikidata.

precision and a 15.2 pts improvement in recall.
To facilitate research on the problem of multilingual fact linking, we curate a new evaluation

dataset, INDICLINK, containing parallel sentences in English and six Indian languages tagged
with the corresponding Wikidata facts expressed in them. The English sentences and facts are
from the relation extraction dataset, WebRED (Ormándi et al., 2021). The test examples are
manually translated into different languages, and automatic translations of sentences are used
for training. We use KB facts from Wikidata and explore different strategies to use their fact
surface forms in English and other languages, wherever available.

In summary, the main contributions of this chapter are as follows:
1. We introduce the task of multilingual fact linking (MFL) to link KB facts with their men-

tions in text, especially when there is a mismatch between the languages of the fact surface
form and text.

2. We present INDICLINK, an evaluation dataset for MFL in English and six widely used
Indian languages that are rarely studied in the NLP community. To the best of our knowl-
edge, this is the first dataset of its kind for these languages.

3. We propose REFCOG, a novel retrieval+constrained-generationmodel for the task ofMFL.
The proposed method significantly outperforms standard retrieval+re-ranking models.
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7.1.1 Related Work
In contrast to Open Information Extraction that represents semi-structured information from
the text in an ontology-independent manner, Closed/Ontological Information Extraction often
involves extracting structured information from the text by linking it to different parts of a KB
with a pre-defined ontology. Linking text to KBs has been traditionally explored in various
settings, such as entity linking, relation classification and extraction, fact extraction, and fact
linking. We list various KB-related tasks and their corresponding inputs and outputs in Table 7.1
and are briefly described below. The entity linking and relation classification tasks are already
discussed in Section 2.6.1.
Fact Extraction: The task involves joint entity and relation extraction (Zhong and Chen, 2021;
Sui et al., 2020) focusing on discovering new facts that are not present in the KB. Whereas fact
linking deals with connecting existing KB facts with text. Therefore, fact-linking models use
KB facts (which may be millions), whereas fact extraction systems do not.
Fact Linking: Existing fact linking/alignment systems such as T-REx (Elsahar et al., 2018)
align English DBPedia abstracts with Wikidata triples and provide a corpus of 11 million high-
quality alignments. They use ad-hoc pipelines of entity linking, coreference resolution, and
string matching-based predicate linkers. Our experiments show that our end-to-end linker, RE-
FCOG outperforms such pipeline systems. In another line of work, multilingual fact retrieval
(Jiang et al., 2020) is used to judge the factual knowledge captured within LM parameters by
predicting masked entities in facts. However, we are only concerned with retrieving the facts
present in the input text.

7.1.2 Multilingual Fact Linking: Problem Overview
Aknowledge graph (KG) contains a list of entities E , relationsR and fact-triples T (also referred
to as facts), where the ith fact links two entities (si, oi ∈ E) with a relation (ri ∈ R) and is defined
as, Fi = (si; ri; oi). Multilingual KGs like Wikidata also contain textual forms of entities and
relations in multiple languages. Given the set L of languages in the KG, for each language l, we
construct the fact surface forms by concatenating the textual form of the entities and relation, if
available. The surface form of Fi in language l ∈ L, F l

i , exists if the entity and relation surface
forms are available in language l, i.e., if sli, rli and oli exist in KG, then, F l

i=(sli;rli;oli).2 For
example, in Table 7.1, (Q12146; P17; Q39) and (Landschaft; country; Switzerland) represent
the fact and its English surface form.

Let Tm be a text in language m. Then, MFL aims to discover the set of linked KG facts,
LinkedFacts(Tm) ⊆ T , that are explicitly expressed in the text. The output set can be formally
defined as,

LinkedFacts(Tm) = {Fi : Fi = (si; ri; oi) ∧ Fi ∈ F ∧ Tm ⇒ Fi}, (7.1)

where Tm ⇒ Fi implies that the fact Fi is expressed by the text Tm. The fact surface forms
available in different languages are used to predict this set.

In Section 7.1.3, we describe the INDICLINK dataset curated for the MFL task, and in Sec-
tion 7.1.4, we discuss the baselines and our proposed methods for the task.
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IndicLink English Hindi Telugu Tamil Urdu Gujarati Assamese Total
(EN) (HI) (TE) (TA) (UR) (GU) (AS)

#Test Examples 1002 889 888 881 1001 881 887 6429
#KG Facts 4.6M 230K 145K 248K 361K 91K 257 4.6M

Table 7.2: The new INDICLINK dataset (Section 7.1.3) contains examples in English and corre-
sponding manually translated test examples in six Indian languages. KG fact surface forms are
always available in English but are only sparsely available in other languages.

7.1.3 INDICLINK: A New Dataset for Fact Linking in Indian Languages
For curating a fact-linking dataset, we need a collection of sentences and the KG facts expressed
in them. We use a subset of Wikidata facts as the oracle KG. Specifically, we consider all facts
that exist between themost popular 1 millionWikipedia entities. Existing entity-linking datasets
provide only the mentioned entities, but we also need the relations between entities. So we re-
purpose a relation classification dataset for fact linking by collecting the entity pair that expresses
the particular relation.

We useWebRED (Ormándi et al., 2021) as it is the largest relation classification dataset cov-
ering over 100 relations. Multiple relations associated with a sentence are kept as separate exam-
ples in WebRED. However, not all examples have associated Wikidata entities. In some cases,
the relation may be expressed between entity mentions that are literals such as dates/numbers,
or refer to entities that do not exist in Wikidata. Therefore, for each sentence in WebRED, we
collect facts if the relation involves valid Wikidata entities. We associate a special NULL fact
for sentences that have no expressed relations.

WebRED contains sentences only in English. We extend it to multiple languages by translat-
ing the test sentences using professional translators. To ensure the high quality of translations,
we use three layers of quality checks: initial automatic translation, review, and proofreading.

To encourage research in Indian languages, which have historically lacked knowledge-linked
resources, we consider six Indian languages – Hindi, Telugu, Tamil, Urdu, Gujarati, and As-
samese – for our multilingual fact linking dataset, INDICLINK. Table 7.2 contains the number
of test examples and KG facts considered. For 6,429 sentences we end up with 11,293 facts
implying an average of 1.7 linked facts per sentence.

We explore automated techniques for getting training examples as it is expected that high-
quality language-specific training data will be unavailable for the vast majority of languages. We
translate 31K WebRED training sentences into the respective Indian languages using Google
Translate. The one exception is Assamese which does not have a translation system available
and hence does not have any training data.

7.1.4 REFCOG: Proposed Method for MFL
The dual encoder - cross encoder architecture is commonly used for tasks such as semantic
search (Reimers and Gurevych, 2019), and more recently for tasks like Entity Linking (Botha
et al., 2020) that require classification over a large target space. It typically involves a pipeline
of dual encoder-based retrieval models and a cross-encoder re-ranking model to get the most
relevant targets for the given input text. The retrieval model returns the top-k targets from the
entire set. Then the re-ranking model scores the top-k targets using a slower model that would
have been intractable to apply on the complete set. Apart from re-ranking cross encoders, we

2For the right to left languages like Urdu, we use (sli;rli;oli) as the fact description.
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Figure 7.2: REFCOG architecture for linking Hindi sentences with KG facts (using their English
surface forms). Fact-Text Dual Encoder scores the text, T, with all the KG facts, Fi, and out-
puts the top-k facts. A generative Seq2Seq model encodes the text T concatenated with top-k
retrieved facts. A constrained decoder is then used to generate the correct fact.

experimented with a Seq2Seq cross encoder. We explain the dual encoder and cross encoders
used below.

7.1.4.1 Fact-Text Dual Encoder for Retrieval

Dual encoders (DE) are generally used for neural retrieval. They independently encode the input
and target text and use the cosine similarity between the embeddings to assess their relevance.
This strategy can be scaled to millions of KG facts as all the facts can be encoded beforehand,
independent of the input text. In the case of MFL, as shown in Figure 7.2, the input text T is
used to retrieve the closest set of facts defined in the KG. The input text and facts are encoded
using the text and fact encoders. We build an approximate nearest neighbors index of the fact
embeddings using FAISS (Johnson et al., 2019), which can be used to retrieve the top-k facts
efficiently for a given text embedding. We initialize both the encoder parameters with LaBSE
(Feng et al., 2020) weights as it is pre-trained for cross-lingual text retrieval over 109 languages.
In Section 7.1.6.3, we explore various choices for choosing the language of fact surface form,
FRet
i , used for retrieval.

7.1.4.2 Cross Encoders for Re-ranking

Since dual encoders encode the source and target independently, they fail to capture fine-grained
interactions between them. Therefore, cross encoders take the input text T and the closest facts
returned by the dual encoder as an input and rescore them to get the final ranked list of facts
present in T. In prior work (Botha et al., 2020), classification-based cross encoders are often
used to re-score the retrieved results. The re-scoring is done by concatenating input text with
each retrieved result, allowing for inter-attention between the input text and fact surface form.
We explore two classification-based based cross encoder architectures (shown in Figure 7.3) for
re-ranking the top-k facts returned by a retrieval model (FT1, FT2..FTk). We further introduce
a novel generation-based cross encoder. The three types of cross encoders are explained below.
Independent Classification (INDCLS): The input text T is concatenated with the textual de-
scriptions of the retrieved facts, [FT i]

Rnk (the language chosen for ranking may be different
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Figure 7.3: Independent and Joint Classification for re-ranking the facts output by the retrieval
model.

from that used for retrieval, [FT i]
Ret) and passed through the cross encoder. An MLP oper-

ates on the pooled embedding to produce a score between 0 and 1, indicating its confidence in
whether the fact is expressed in the text. The scoring function can be expressed as,

INDCLS(FT i) = MLP(CE(T ||FRnk
Ti )) (7.2)

In this case, each fact is considered independently and does not use the dependencies that
may exist among the facts.
Joint Classification (JNTCLS): To score the facts jointly, the score of the ith fact, FT i is com-
puted by concatenating the text T along with all the fact surface forms. The ith fact is specially
marked with a beginning { and ending }, so the model is aware of the fact that must be scored.
This concatenated string is embedded using the cross-encoder. Like the Independent Classifi-
cation case, the MLP scores the pooled embeddings. Since the embeddings are pooled from all
the facts, the model can also capture the dependencies among facts.

JNTCLS(FT i) = MLP(CE(T, FRnk
T1 || . . . ||{FRnk

Ti }|| . . . ||FRnk
Tk )FTi

) (7.3)
Constrained Generation Cross Encoder: Seq2Seq models can be used as cross encoders that
take as input the concatenated text and retrieved facts and use a decoder to generate the most
confident fact. This allows the model to produce facts not returned by DE as well, overcom-
ing the issue of error propagation in re-ranking systems whose performance is limited by the
facts returned by the dual encoder. To ensure that only valid KG facts are generated, following
mGENRE (Cao et al., 2021), we constrain the beam search of the decoder to generate tokens
that follow a trie constructed from the English surface forms of KG facts. All facts considered
have an English surface form available (Table 7.2). To achieve this, at every decoding step, the
vocabulary is restricted to the tokens the trie allows to follow the prefix generated so far. We
note that the current formulation is optimized for generating a single best fact, and we leave it to
future work to extend it to produce a set of facts. For now, we consider the top-k facts resulting
from the beam search as the system output. The architecture is described in the below equation:

COGEN(T ) = TRIE-DEC(ENC(T ||FRnk
T1 . . . ||FRnk

Tk )) (7.4)
COGEN stands for constrained generation, TRIE-DEC stands for Trie-based decoding and ENC

stands for the encoder. We initialize the encoder and decoder weights from the trainedmGENRE
model. For a fair comparison, we also use the same initialization for the cross-encoders in the
classification models.
KG Lookup: We maintain a dictionary of the fact id and corresponding fact surface form (con-
structed from the entity and relation surface forms). We take the predicted fact surface and look
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up this dictionary to get the corresponding fact id. In case constraints are not applied, then the
decoder may generate invalid fact surface forms not present in the dictionary.

We refer to DE+CoGen method as Retrieval based Fact-Constrained Generation (REFCOG).
The method’s schematic is displayed in Figure 7.2, also illustrating the benefits of using the
CoGen model, which can do joint rescoring of facts while understanding and encoding the
dependencies between them. As a coarse-grained embedding model, the dual-encoder may
sometimes retrieve irrelevant facts. For example, besides relevant facts such as (Landschraft;
country; Switzerland) and (Table Jura; country; Switzerland), it may also incorrectly attribute
a high score to (Washington; capital; USA). This may have happened due to incorrect entity
linking between the text T in Hindi and the fact in English. However, when provided with all
these facts, the cross-encoder can discern that the fact (Washington; capital; USA) is out of
context and accordingly assign it a lower score.

7.1.5 Experimental Setting
Dataset: As described in Section 7.1.4, we use the auto-translated examples of WebRED (total
186K examples with 31K in EN, HI, TE, TA, UR, GU and 0 for AS) to train the model and the
manually translated test examples of INDICLINK for evaluation. We randomly choose 5% of the
training examples to be used as validation set for early stopping during model training.
Evaluation Metrics: We compare the facts predicted by the model with the gold set of facts and
report the value of Precision@1 (P@1) and Recall@5 (R@5). P@1 is the fraction of examples
where the most confident fact is contained in the gold set.3 R@5 is the fraction of gold facts
that are present in the top-5 predicted facts. We also compute macroP@1, the macro-average
counterpart to P@1, where the gold facts are divided into relation-specific classes, performance
computed independently in each class and then averaged across all classes.
Implementation: We implement all models in Pytorch framework. We use Sentence Trans-
formers (Reimers andGurevych, 2019) library for training dual encoder models and use GENRE
codebase4 and fairseq (Ott et al., 2019) library for implementing the various cross encoders. We
train the dual encoder and generation models for five epochs each. Total training time is 6 hrs
on A100 GPU.

7.1.6 Experiments
We conduct experiments to address the following three questions:

• How well does REFCOG, a retrieve+generation architecture, work for Multilingual Fact
Linking, especially when compared to retrieve+reranking models for the task? (Section
7.1.6.1)

• What is the effect of different components in generative decoding? (Section 7.1.6.2)

• How to effectively utilize multilingual fact surface forms during retrieval as well as gen-
erative decoding stages of REFCOG? (Section 7.1.6.3)

We note that translation systems may not be available at inference time for certain languages.
For example, Assamese, one of the languages we consider in our experiments, is currently not
supported by Google Translate. Hence, in our experiments, we aim to evaluate multilingual

3NULL is also considered as a separate fact for measuring performance.
4https://github.com/facebookresearch/GENRE
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fact linking by relying on the cross-lingual ability of the trained model rather than test-time
translation.

7.1.6.1 Effectiveness of REFCOG

In Table 7.3, we compare the results of various models trained on INDICLINK. All the cross
encoder models use English fact surface forms and DEALL-Sum for retrieval (which is explained
in detail in Section 7.1.6.3). We notice that the DE models particularly struggle with retriev-
ing NULL fact, as its surface form (“None”) does not have any word overlap with the sentence.
Therefore, in INDCLS-N and JNTCLS-N, we deterministically add NULL to the input, along with
the remaining DE outputs. This is not required for the REFCOG model as it is free to generate
facts even if they are not returned by the retrieval module. REFCOG model outperforms classi-
fication based re-ranking by 10.7, 15.2 pts in P@1, R@5, respectively. Within the re-ranking
models, INDCLS achieves better performance compared to JNTCLS, indicating that providing the
other facts tend to confuse the model.

Model EN HI TE TA UR GU AS Average

P@1 P@1 P@1 P@1 P@1 P@1 P@1 P@1 R@5

DEALL-Sum 37.5 29.7 32.8 27.8 28.7 29.9 13.8 28.6 31.9
+INDCLS 26.3 20.9 23.5 20.3 20.1 22.7 9.6 20.5 31.9
+INDCLS-N 46.2 41.8 44.3 42.5 43.8 40.9 29.5 41.4 36.3
+JNTCLS 13.8 13.8 12.7 13.1 11.9 14.9 5.9 12.3 31.9
+JNTCLS-N 38.5 38.7 39.9 38.4 38.4 38.6 34.0 38.1 36.3

REFCOGALL-Sum, EL 56.4 52.4 53.4 53.2 53.6 52.5 43.1 52.1 51.5
-Constraints 55.9 52.3 53.4 52.8 53.4 52.4 42.3 51.9 49.5
-SRO links 42.0 38.8 38.9 35.8 38.2 36.9 32.4 37.6 21.4
-DE 50.2 48.7 49.1 47.4 47.5 47.7 39.6 47.2 45.6

Table 7.3: Comparison of different models on the INDICLINK dataset. REFCOG with ALL-Sum
dual encoder and EL cross encoder, outperforms independent (INDCLS) and joint (JNTCLS) clas-
sification based re-ranking on top of DEALL-Sum. Ablations indicate the importance of DE and
joint prediction of S, R and O for the REFCOG model. Constraints reduce the P@1, R@5 met-
rics but ensure production of only valid facts. Please see Section 7.1.6.1 and Section 7.1.6.2 for
further details.

7.1.6.2 REFCOG ablations

In Table 7.3, we consider four variants of the REFCOG model: (1) REFCOG w/o Constraints:
after removing the constraints on the decoder beam search, (2) REFCOG w/o SRO links: pre-
dicting the subject (S), relation (R) and object (O) of the fact independent of one another, (3)
REFCOG w/o DE: removing DE facts from Cross Encoder input, and (4) REFCOG w/o DE,
Constraints: removing DE facts and constraints.

Removing constraints leads to generation of incorrect facts in 865/6253 examples and re-
duces performance by 0.2 pts in P@1 and 2 pts R@5, respectively. Instead of predicting the
entire fact jointly, we perform an ablation in which we predict each of the components inde-
pendently. This leads to reduction in performance of 18.1 pts in P@1, showing the importance
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of jointly predicting all the components. Unlike the re-ranking models, REFCOG can generate
facts even in the absence of Dual Encoder retrieved facts. This allows us to evaluate the model
performance without the Dual Encoder. The results indicate that DE facts are responsible for
(4.9, 5.9) pts improvement in P@1, R@5.

7.1.6.3 Effect of Multilingual Fact Surface Forms

We consider fact surface forms in English (EL), the language of input text T — Text Language
(TL), English and TL combined (ETL), and all the languages in IndicLink (ALL).

For the dual encoder, we either form a single embedding for the fact by concatenating the
surface forms in various languages or embed the different language surface forms separately. In
either case, we only consider languages for which the fact has a surface form available. The score
for a factD is computed as the cosine similarity between the text embedding and fact embedding.
If multiple embeddings are associated with a fact, we aggregate their individual scores through
a sum/max operation. The various types of fact surface forms and scoring operations can be
summarized as follows:

• EL (or TL): Using the English (or Text language) surface form of the fact.

• ETL-Concat (or ALL-Concat): Using the concatenated English and Text language surface
form of the fact (or concatenation of all language surface forms available).

• ETL-Max (or ALL-Max): Embed the surface forms in each language in ETL (or ALL)
separately and consider the max of their cosine similarity as the score for the fact.

• ETL-Sum (or ALL-Sum): Use the sum of scores of surface forms in each language in
ETL-Sum (or ALL-Sum).

We find that embedding the fact surface forms separately and adding their individual scores
leads to the best performance across all languages in P@1, R@5.

However, we don’t find similar improvements in concatenating the various language surface
forms for cross encoders. To study this further, we also compute the macroP@1 in Table 7.5.
The results on the Complete test set indicate that using language fact surface forms other than
English does not help in P@1 but results in a modest increase of 3.7 pts in macroP@1 for ETL-
Concat. This indicates that other language fact surface forms can help in facts that involve less-
frequently occurring relations. Also, language fact surface forms are not consistently available
in all languages. So we construct a modified test set that uses only KG facts where fact surface
forms are available in all languages and the test examples that can be answered with these KG
facts. On this subset, ETL-Concat shows an increase of 19.6 pts inmacroP@1 compared to using
only English fact surface forms. This shows that robustly handling the sparse availability of fact
surface forms can improve performance. ALL-Concat does not seem to improve performance
over ETL-Concat, which may be due to larger sequence lengths when all language surface forms
are concatenated.

7.1.6.4 REFCOG Error Analysis

We analyze the errors made by REFCOG and classify them into the following three types:

• Rare relations: The model struggles with facts that contain rare relations, which can be
traced back to WebRED data where the top-10 relations are responsible for 80% of the
examples.
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Model Fact Surface Form EN HI TE TA UR GU AS Average

P@1 P@1 P@1 P@1 P@1 P@1 P@1 P@1 R@5

DE

EL 27.2 19.8 20.8 16 19.1 19.6 8.3 18.9 26
TL 24.3 13.3 14.0 10.2 12.2 12.1 5.1 13.2 20
ETL-Concat 26.6 21.3 25.6 17.5 23.6 22.7 6.9 20.8 28.4
ALL-Concat 28.2 19.9 21.1 19.1 21.2 19 7.5 19.6 27
ETL-Max 27.8 24.1 24.9 20.2 21.9 23.0 5.4 21.2 28.9
ETL-Sum 27.8 25 26.4 20.7 21.2 23.5 6.2 21.6 29.3
ALL-Max 31.1 25.8 25.5 22.2 24.1 24.9 10.1 23.4 26.1
ALL-Sum 37.5 29.7 32.8 27.8 28.7 29.9 13.8 28.6 31.9

REFCOG

EL 56.4 52.4 53.3 53.2 53.6 51.9 43.1 52.1 51.5
TL 55.2 47.2 48.8 47 47.6 47.8 33.3 46.9 43
ETL-Concat 57 49.7 53.5 49.9 51.8 50.2 41 50.6 50
ALL-Concat 57.1 51.5 53.3 50.4 51.1 52.1 40.1 50.9 50

Table 7.4: Multilingual fact surface forms in Retrieval and Generation models (Section 7.1.6.3).
EL, TL, ETL and ALL correspond to descriptions in English, language of input text T, EL+TL and
all languages, respectively. Concat, Max and Sum refer to concatenation, max and sum scoring
operations. For REFCOG, we use ALL-Sum facts for retrieval and experiment with different fact
surface forms for cross-encoder.

Fact Surface Form Complete Subset

P@1 macroP@1 P@1 macroP@1

EL 52.1 12 65.2 35.4
TL 43 6.1 63.7 43
ETL-Concat 50.6 15.7 67.5 55
ALL-Concat 50.9 14.7 64.2 54.8

Table 7.5: P@1, macroP@1 of REFCOG with fact surface forms in various languages at cross
encoder stage. The macroP@1 is evaluated for the Complete test set as well as the Subset
where descriptions are available in all languages. Improvement inmacroP@1, indicates stronger
performance on facts with less-frequently occurring relations.

• NULL fact: In 33% of the examples, the model mistakenly predicts a fact even when the
gold fact is NULL, demonstrating the difficulty in detecting the absence of any facts.

• Issues with Gold: A few examples contain relations that are not explicitly implied by the
sentence but require background world knowledge.

7.1.7 Effectiveness of REFCOG for linking Open IE tuples
In the previous sections, we studied the effectiveness of the REFCOGmodel for linking sentences
to facts inWikiData using the INDICLINK dataset. In this section, we aim to test the effectiveness
of REFCOG for linking Open IE tuples of the format (subject phrase; relation phrase; object
phrase) to facts in WikiData. Considering that we have trained Gen2OIE models (Section 3.2)
for English and two Indic languages, Hindi and Telugu (in Chapter 6), we choose these three
languages for testing the KG linking capabilities.
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We generate extractions from all the sentences of INDICLINK in these three languages using
the Gen2OIE system. The generated extractions are converted into the form of a sentence by
concatenating the subject, relation, and object phrases to form an ext-sentence (Section 6.2.2).
These ext-sentences are passed through the trained REFCOG system to obtain the associated KG
facts for each ext-sentence.

As there is no ground truth available for the KG facts associatedwith each extraction, evaluat-
ing the performance of the task is a challenge. Therefore, we resort to evaluation at the sentence
level, which gives an upper bound of the performance on the actual extraction-level task. We
take the set of facts linked for each of the extractions associated with the original sentence. Each
of the facts is also associated with a score that indicates the confidence of the fact being linked
to the ext-sentence. We aggregate the facts from multiple ext-sentences by summing up their
associated scores when the same fact appears multiple times.

This gives us a ranked set of facts for every sentence. Thus, we now use the standard INDI-
CLINK evaluation mechanisms to evaluate the quality of the set of linked facts. By evaluating
the accuracy at the sentence level, instead of directly at the extraction level, we obtain an upper
bound for the expected performance at the extraction level. The results are reported in Table 7.6.

We observe that the overall performance drops when we used extractions for linking, com-
pared to directly using the sentences, with as much as a 4.1 pts drop in R@5 on the average
of three languages. This is possibly because the Open IE extractions may be missing important
contextual information when viewed independently from the sentence fromwhich it is extracted.
For example, a pronoun may be used in the extraction while the object of the pronoun may not
be present in the extraction but is present only in the sentence. Due to the lack of this contextual
information, the extraction cannot be linked correctly to the KG. Therefore, there is significant
scope for improvement in developing systems that can link Open IE tuples with KG facts and
also make Open IE extractions contextually independent.

REFCOGALL-Sum, EL EN HI TE Average

P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5

Sentence 56.4 69.4 52.4 53.4 53.3 55.8 54.0 59.5
Extraction 56.3 60.8 52.2 50.1 53.4 55.3 53.9 55.4

Table 7.6: Evaluation of KG facts linked to Open IE extractions.

7.2 Open Knowledge Base Completion
In the previous section, we have looked at how to link natural language text or Open IE triples to
existing canonical KBs. This section looks at Open Knowledge Bases (Open KBs), particularly
completing the Open KBs. Open KBs represent one application of Open IE whose extractions
are used to generate these Open KBs. However, like canonical KBs, the Open KBs are also often
found to be incomplete, either because of reliance on the output of imperfect Open IE systems
or the lack of complete information in the base text that is used to generate the Open IE ex-
tractions. Therefore, Open Knowledge Base Completion (OKBC) systems aim to discover new
links between nodes of an Open Knowledge Base constructed using Open IE systems. However,
current OKBC systems score each entity pair independently. This results in missed information
that could be captured by considering interactions among different entities. Therefore, we de-
velop a novel Cross-Entity Aware Reranker (CEAR) model that jointly scores the top-k entities
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obtained from embedding-based KBC models, using cross-entity attention in BERT.5

7.2.1 Related Work
Many Knowledge Graph Embedding (KGE) methods have been proposed for the task of KBC
in the closed KB setting (Bordes et al., 2013; Kazemi and Poole, 2018; Lacroix et al., 2018;
Jain et al., 2018), which use various scoring functions to evaluate the plausibility of triples.
RotatE (Sun et al., 2019) defines relations as rotations from the source entity to the target entity
in a closed vector space. ComplEx (Trouillon et al., 2016) defines embeddings in a complex
vector space and uses a Hermetian dot product to calculate a scalar score for the triple.

With the rise of pre-trained language models in NLP, prior works have also explored the
use of BERT for Knowledge Base Completion (Yu et al., 2020; Kim et al., 2020; Shah et al.,
2020). KG-BERT (Yao et al., 2019) uses BERT to score all possible triples, formed by the
concatenating the input query , either subject/relation or relation/object, with each entity in the
KB. Since each answer entity is scored independently, KG-BERT does not benefit from cross-
entity attention. Pre-train KGE (Zhang et al., 2020a) uses BERT to initialize entity/relation
embeddings used by TransE (Bordes et al., 2013).

Since Open KBs use fact triples generated using Open IE systems, the un-normalized sur-
face forms of entities and relations make link prediction challenging. Open Link Prediction
(Broscheit et al., 2020) provides a benchmark for this task, using OPIEC KB (Gashteovski et al.,
2019), and we perform experiments on the same.

7.2.2 CEAR: Cross-Entity Aware Reranker

Figure 7.4: The two stage architecture. Stage 1 model outputs top-k entities that the Stage 2
model uses to generate contextual entity embeddings. The embeddings are passed through an
MLP to get the final score for each entity.

Notation and Task Description: Recall that, we assume a KB with relationsR, entities E and
an incomplete set of fact-triples T (also referred to as just facts). Each fact in T is represented
as a triple (s; r; o), where the subject entity s ∈ E , is related to the object entity o ∈ E via the
relation r ∈ R. Given a query (s; r; ?) (or (?; r; o)), the task of link prediction (or KBC) is
to find new facts (s; r; o) /∈ T . A KB can be represented as a graph, G, where for each fact (s;
r; o) ∈ T , the nodes representing the entities s and o are connected by a labeled edge r. We
represent an embedding-based model for KBC asM and its scoring function as SM.M learns
embeddings of all the entities and relations such that SM(es,wr, eo) is high whenever (s; r;

5Mayank Chauhan helped with the ideation and implementation of the CEAR architecture and included it as
part of his MTech thesis.
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o) ∈ T . Here es, eo and wr represent the learnt embeddings of the entities s, o and relation r
respectively.

Further, we assume that we are given the surface form (or description) of the entities and
relations in some natural language l, along with a pre-trained language model LM , trained on
some external corpus of text in the language l. As defined in Section 7.1.2, sl and rl represent
the entity and relation surface forms in language l. Let [s] (or [r]) represent the sequence of
words in the English surface form of an entity s ∈ E (or relation r ∈ R).6 The language model
LM takes a sentence, [t], as input and generates a contextual embedding for each token in the
sentence [t].

In the context of an Open KB, we adhere to a similar setting where every unique surface
form is treated as a distinct node or edge in the graph representation of our knowledge base,
irrespective of the fact that multiple surface forms may represent the same real-world entity.
Consider an entity ‘Barack Obama’ with surface forms TPBO = {‘Barack Obama’, ‘B. Obama’,
· · · }. In our formulation, even though these surface forms refer to the same real-world entity,
each form in TPBO is considered a distinct node in the graph. That is the nodes for ‘Barack
Obama’ and ‘B. Obama’ are distinct even though they refer to the same entity.
Motivation: Embedding-based models score all the entities independently for a given query (s;
r; ?), i.e., ∀i ≠ j, the scores SM(es,wr, eoi

) and SM(es,wr, eoj
) of the entities oi and oj

are computed independent of each other. Note that such a model exploits only the structural
information present in the corresponding graph. Further, these models treat the entities and
relations as atomic objects, making their score oblivious to the information present in the surface
forms.

In contrast, using BERT,models such as KG-BERT (Yao et al., 2019) exploit the information
in the surface forms of entities and relations. But, similar to embedding based models, they also
score each entity independently, ignoring the relationship between the entities that may help in
finding the correct entity.

CEAR not only exploits the benefits of both approaches, but it also overcomes their common
shortcoming of scoring entities independently. It follows a two-stage approach, similar to the
Dual Encoder and Cross Encoder pipeline used in Section 7.1.4. It is described below.7
Stage-1: Score using an Embedding modelM
In the first stage, CEAR exploits the structural information present in the graph, G. It trains an
embedding based modelM, to rank all the entities oj ∈ E based on their score SM(es,wr, eoj

)
for a given query (s; r; ?). Once such a model is trained, we pick the top-k answers o(j) for any
query and pass them to Stage-2 (described below) for re-ranking them based on their surface
forms and world knowledge in the pre-trained language model. The value of k depends on the
capacity of the pre-trained language model LM , which usually restricts the maximum number
of tokens in a sentence that it can process.8

For closed KBs, we employ either the ComplEx or RotatE models as the embedding model
M, whereas, for Open KBs, we use their variants that have an LSTM to encode the surface form
of the entity/relation (Broscheit et al., 2020). This is particularly important in Open KBs to gain
information from the surface forms, as uncanonicalized Open KBs have sparse connectivity for
individual nodes. Using the surface forms in the model helps alleviate this issue by allowing
it to learn from other nodes with semantically similar surface forms and possibly represent the
same entity. We refrain from directly depending on entity canonicalization (Vashishth et al.,
2018) due to the current systems’ lack of reliability. Any potential errors stemming from these

6We consider only English for the current task and therefore drop the language notation.
7The code is released at https://github.com/dair-iitd/CEAR/
8BERT has a 512 word-pieces limit
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systems could lead to a cascade of additional errors throughout other parts of the system.
Stage-2: Re-rank using Language Model LM

For a query (s; r; ?)9, the surface form ([o(j)], j = 1 . . . k) of the top-k entities retrieved from
stage 1 are used along with the surface form ([s] and [r]) of the head entity and relation to create a
sentence in the natural languageL. Specifically, [t]= [CLS][s][SPC][r][SEP][o(1)][SEP] . . . [SEP][o(k)],
represents such a sentence, where [CLS] is a special token to mark the beginning of a sentence;
[SPC] is a special token used to separate the subject from the relation; and [SEP] is a special
token separating different answers from each other as well as from the query. Note that the
description of an entity or relation may contain multiple tokens.

The sentence [t] is fed as input to the language model LM , which generates a context-aware
embedding for each token in the sentence. The embeddings of the tokens belonging to a candi-
date entity o(j) are mean pooled to create its final embedding, co(j)

. Such an embedding is aware
of not only the query entity and relation but also the other plausible answers. Such cross-entity
aware embeddings make use of additional context that is helpful to answer the query (s; r; ?).

Finally, co(j)
is passed through an MLPM to generate its final score, ψ(o(j)), i.e., ψ(o(j)) =

M(co(j)
). Thus, the top-k entities from Stage-1 are re-ranked based on their final scores. The

LM is trained by minimizing the standard Binary Cross Entropy (BCE) loss, L([t]) for the
sentence [t], computed using the final scores ψ(o(j)), ∀j = 1 . . . k,

L([t]) = −
k∑

j=1

(Lj
p + Lj

n) (7.5)

where Lj
p = Ind{⟨s, r, o(j)⟩ ∈ T } log(σ(ψ(o(j)))) and Lj

n = Ind{⟨s, r, o(j)⟩ /∈ T } log(1 −
σ(ψ(o(j)))), Ind is the indicator function and σ is the standard sigmoid function.

7.2.3 Experimental Setting
Datasets: We consider the open link prediction dataset, OLPBENCH. OLPBENCH proposes
multiple train sets based on test set leakage removal. We use the most difficult train data set
called thorough train dataset, which contains the harshest test evidence removal. Table 7.7
contains the various statistics associated with the dataset.

Dataset Entities Relations Train Valid Test

OLPBENCH 2.47M 961K 30.6M 10K 10K

Table 7.7: Statistics of the dataset used.

Evaluation: Link prediction performance is the average of head entity and tail entity prediction.
Evaluation is done under filtered settings where the model is not penalized for ranking entities
appearing with query in train and val sets higher than the gold entity. We report MRR, HITS@N
metrics.
Baselines: ForOLPBENCH,we comparewith the state-of-the-art ComplEx-LSTM,which uses
LSTM embeddings in a ComplEx model (Broscheit et al., 2020). Considering the large number
of target entities in OLPBENCH, we also experiment with ExtremeText (Wydmuch et al., 2018),
an extreme classification model, which builds a hierarchical softmax tree (Morin and Bengio,
2005) over FastText (Joulin et al., 2016) embeddings. While training ExtremeText, we enriched
the query by appending it with the top-5 most frequent entities seen with the relation in training
data. We use ExtremeText and Complex-LSTM as Stage-1 in REFCOG.

9Similar formulation holds for head-entity prediction
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Method H1 H10 H50

ComplEx-LSTM 2.1 7.0 14.6
ExtremeText 6.4 16.3 26.0
CEAR (ComplEx-LSTM) 3.8 9.1 14.6
CEAR (ExtremeText) 7.4 17.9 26.0

Table 7.8: Link Prediction performance on OLPBENCH.

Model Dataset k=10 20 30 40

CEAR (ExtremeText) OLPBENCH 6.9 7.1 7.4 6.8

Table 7.9: H@1 with increasing top-k Stage-1 samples.

7.2.4 Experiments
In Table 7.8, we evaluate the link prediction performance on OLPBENCH using different meth-
ods. We find that ExtremeText performs 4.3 HITS@1 higher than the previous state of art model,
LSTM-ComplEx. This demonstrates the effectiveness of modeling the task as an extreme classi-
fication problem over the 2.47 million entities. We observe consistent gains by applying Stage-2
BERT on top of both LSTM-Complex (+1 HITS@1) and ExtremeText (+1 HITS@1). Thus our
final model CEAR(ExtremeText) represents a 5.3 HITS@1 gain over the current state of art
model, LSTM-ComplEx. We trained the Stage-2 model with only a fraction of the training data
(1M out of 30M available) as we didn’t observe much performance gains on adding more exam-
ples. Note that we train the Stage-2 model with only a fraction of the training data (1M out of
30M) due to the computational costs associated with training BERT.
Ablation: In Table 7.10, we compute the performance of CEAR(ExtremeText) by (1) replacing
pretrained BERT parameters with random initialization, (2) scoring each Stage-1 entity indepen-
dently (similar to KG-BERT applied only on Stage-1 entities), and (3) randomly shuffling top-k
Stage-1 entities before passing them to Stage-2. We find that all three components of CEAR are
essential for achieving the final model performance. Apart from pretrained knowledge, knowing
all the top-k Stage-1 entities (in ranked order) is crucial for the model performance.

7.3 Conclusion
In this chapter, we look at the connection between Open IE and Knowledge Bases. We introduce
the task of multilingual fact linking for connecting natural language text or Open IE triples to

Model OLPBench

H1 H10

CEAR (ExtremeText) 7.4 17.9
- Pretraining 6.0 15.6
- CE Attention 5.0 16.3
- Stage1 Ranks 6.2 16.8

Table 7.10: Ablation of the best CEARmodel, which shows the importance of BERT pretrained
knowledge, Cross-Entity Attention and Stage-1 Entity Ranks.
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KBs and present a new evaluation dataset INDICLINK containing examples in English and six
Indian languages. We explore various dual encoder and cross encoder architectures and find that
the proposed Retrieval+Generation model, REFCOG, outperforms classification-based rerank-
ing systems by 10.2 pts in P@1. We also presented a novel Open KBC model, CEAR, that uses
the pretrained parameters in BERT and global view of competing entities (using cross-entity
attention) to achieve a new state-of-the-art performance for link prediction on the OLPBench
Open KBC dataset.
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Chapter 8

Conclusion and Future Work

Open Information Extraction, paralleling the broader development in the field of NLP, has gone
through a paradigm shift in the last few years, moving from primarily rule-based or statistical
systems to deep learning-based systems. The move to deep learning has opened up a wide
range of possibilities to develop more robust systems that can support multiple languages and
additional features. It also presents exciting challenges to use the generated Open IE triples in
conjunction with other neural models developed to use them in downstream applications.

In this dissertation, we have addressed multiple aspects of extending Open IE systems to
use the latest advances in deep learning for developing monolingual and multilingual models.
In particular, we have considered techniques for (1) building stronger neural models (IMoJIE,
Gen2OIE in Chapter 3, CIGL in Chapter 4), (2) adding support for linguistic phenomena (co-
ordination analyzer, proper noun compound interpretation in Chapter 5), (3) curating training
data in multiple languages (AACTrans in Chapter 6), and (4) extending it for KB applications
(MFL, CEAR in Chapter 7). We also release a new software package OpenIE-6.2.1

However, this dissertation only serves as an initial step toward realizing the full potential of
deep learning for Open IE. It opens up a broad set of problems for the research community to
tackle for realizing the next generation of Open IE systems. Broadly, the potential improvements
can be categorised into three classes:

1. Improving the existing neural frameworks used for Open IE:

• Building non-autoregressive models for Open IE that can be faster.
• Extending multilingual support for hundreds of languages.
• Designing better evaluation metrics to test the quality of generated triples.

2. Extending the task of Open IE to novel settings:

• Adding support for implicit relations that have to be inferred from the sentences.
• Canonicalizing triples in a task-based fashion can help reduce sparsity.

3. Applying Open IE extractions in service of downstream tasks:

• Applying to knowledge-seeking applications like Question-Answering.
• Designing for user-facing tasks to achieve maximum utility.
• Developing customizable Open IE solutions that can support generating extractions
based on templatized patterns.

1https://github.com/dair-iitd/openie6
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We briefly describe the scope for each of the above categories.

8.1 Non-Autoregressive models
Autoregressive models are fundamentally bottlenecked by their sequential decoding, reducing
their inference speed significantly. In comparison, the labeling models are much faster. Still,
they are limited by their ability to use only words in the sentence and always have to follow
the same order as they appear in the input sentence. Non-Autoregressive models (NAR) (Ren
et al., 2020) offer a promising alternative using parallelizable techniques to generate the output
sequence. Models like Felix (Mallinson et al., 2020) tag the sequence of tokens that have to
be present in the output along with the order in which they have to be present and the points at
which new tokens have to be predicted. These models are particularly suitable for the task of
Open IE as the extractions are generally biased to include words in the original sentence with
a similar order. Since only a limited set of cases need changes in the word order or new words
to be introduced, NAR models can potentially allow faster models while maintaining the same
levels of accuracy as generative models.

However, some changes in the model are needed to allow the prediction of multiple extrac-
tions. Since Open IE involves generating a set of extractions, the set nature of the problem needs
to be carefully handled as there is often a tradeoff involved in introducing dependence among
the extractions and ensuring fast inference. Solutions from other problems where similar issues
with set generation are encountered can help resolve this challenge. For example, image cap-
tioning (Vijayakumar et al., 2018) also requires generating a set of textual captions for an image
dissimilar to each other.

8.2 Large-scale multilingual support
Developing Open IE support for a broad range of languages is critical for supporting a diverse
set of users around the globe. The technique suggested in Chapter 6 provides a good initial
solution but cannot be scaled to the size of 100+ languages. This is due to dependence on
language-specific resources such as a translation system and the challenges of maintaining a
separate model for each language. A good solution to this problem can be found in zero-shot
multilingual models already pre-trained to include knowledge of 100+ languages (Xue et al.,
2020). Training these models with representatives of various language families can enable gen-
eralization to the remaining languages, even without any training data (zero-shot). This will
also align with how multilingual support is being embraced for other NLP problems (Kim et al.,
2021). However, the challenge remains in managing the linguistic transfer to low-resource lan-
guages while maintaining the performance of high-resource languages. Multilingual adapters
(Baziotis et al., 2022) can give insights into resolving this inherent tradeoff commonly encoun-
tered with multilingual models.

8.3 Evaluation metrics
In the past few years, various evaluation metrics have been proposed for the task of Open IE,
which has been summarized in Section 2.2. However, they all need gold standard Open IE
triples for comparison, which fundamentally limits the scope and domain of evaluation to a
few hundred sentences picked from their respective sources. Moreover, Open IE is a broadly
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defined task with independent research groups focussing on varied styles of extractions. Often,
their individual biases about what is a good extraction creep in during the creation of gold
extractions.

To overcome both of the above challenges, an extrinsic evaluation of Open IE should be
adopted to ensure that the extraction quality is determined by an independent measure in a
large-scale fashion. For example, the quality of an open-domain question-answering system
with the given Open IE extractions as the source can give information about the knowledge
contained in the extracted tuples. This also gives the value of distilling these open triples from
the corpus instead of the QA retrieval module that makes direct use of the corpus at the query
time. Similarly, training a language model on the sentence form of Open IE triples and testing
its language perplexity can give information about the grammaticality of the generated tuples.

8.4 Downstream Applications
The initial versions of Open IE had been shown to help downstream applications such as Ques-
tion Answering (Fader et al., 2013) by providing a large corpus of knowledge to help answer
user queries. However, current deep learning-based end-to-end question-answering systems use
the raw text as the source of factual knowledge (Borgeaud et al., 2022). The neural models can
directly operate on the input text and use only the information required. Hence, Open IE has not
been shown to benefit current neural models, and this remains true for other intermediate lin-
guistic tasks such as SRL, pos tagging, dependency parsing or constituency parsing, which find
limited to no presence in the current state-of-the-art systems for applications such as questions
answering, summarization or dialogue generation. Therefore, it remains a challenge to show
the downstream applicability of Open IE in the current neural era.

However, Open IE does show promise in addressing specific challenges that neural models
face, like handling longer texts such as multiple documents or aiding in interpretability. The ca-
pability of Open IE to extract triples and automatically construct dynamic graphs from multiple
documents has been shown to help multi-document summarization (Fan et al., 2019a). Since
graphs are a compact way of expressing inter-connected information, they are helpful in tasks
like summarization which needs access to all the information in the text. This needs to be fur-
ther developed for question answering over multiple documents because QA requires narrowing
down the important information to answer the query. Since all the information in the text is not
required for the task, current retrieval-based neural models have reasonable performance. More-
over, QA benchmarks with different characteristics may further necessitate the importance of
Open IE. For example, questions that need to aggregate information from multiple factual state-
ments can potentially benefit from Open IE.

Similarly, neural models for the question-answering struggle to generate explanations for
their predictions. Attention-based interpretability methods rely on assigning scores to individ-
ual input tokens. However, such attribution methods fail to convey which facts in the input
sentences are responsible for the final output. Breaking the input into simple extractions can aid
in assigning responsibility to the particular aspects of the sentence that have to lead to the final
result.

8.5 Implicit Relations
Relations not explicitly present in the sentence but must be inferred semantically are important
for deriving more value from Open IE. For example, the phrase, “Indian Prime Minister Naren-
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draModi” can have an implicit extraction (NarendraModi; has nationality; Indian) or the phrase,
“Gopal’s sister is married to Arjun ” can have an implicit extraction (Gopal; is the brother-in-
law of; Arjun). Chapter 5 provides a solution for noun compounds, but many unaddressed
phenomena remain. Either identifying specific cases where implicit relations are possible and
developing solutions for them or developing a generic solution that can automatically handle
varied types of implicit relations is necessary. Improving the generation of implicit relations
would also provide value over existing end-to-end neural solutions for understanding the text as
they keep the knowledge implicitly in the parameters without exposing it to users.

8.6 Entity and Relation Canonicalization
There are many ways to express the same subject, relation or object phrase. For example,
“Barack”, “Barack Obama” or “Barack H. Obama” represent the same entity while simulta-
neously being valid entity (subject or object) phrases. As a result, several extractions express
similar information. Existing canonicalization schemes rely on clustering either the entities or
relations (Vashishth et al., 2018; Krishnamurthy and Mitchell, 2011), but these operate task-
independently. They work well for short relation phrases. For example, the relations “was born
in” and “took birth at” are easily clustered together by these schemes. However, in the case of
complex relations, it may be challenging to assign a unique cluster to them. For example, the
relation phrase, “cook and bake,” can belong to the cluster for cooking or the cluster for baking.
Thus, existing schemes lead to canonicalizations that may be either too big or small and may
not be ideal for all tasks. Developing a scheme for jointly canonicalizing both entities and rela-
tions in a task-specific manner can lead to the generation of canonical triples which are dense
in relevant information content.

8.7 User-Facing tasks
Open IE in its current form has significant benefits as a tool to organize information from a large
corpus of text and present it in an easily understandable manner.2 In general, neural QA systems
need to be provided with specific queries that assume a certain level of knowledge about what
is present in the corpus. This may not always be possible when domain-specific knowledge is
required, such as when searching bio-medical corpora.

Compared to such guided information-seeking systems, Open IE provides a way to explore
a corpus in a completely unguided fashion. It can display the common entities and relations in
the corpus, which enables one to gain knowledge of the domain quickly and provides a good
starting point for exploration. Although Open IE has these benefits, current systems have not
been designed explicitly for such unguided explorations. Using HCI techniques, progress needs
to be made to understand the best way to present the corpus information to help the end-user
gain insights efficiently.

8.8 Customizability
The current version of neural Open IE systems is often biased to generate extractions similar to
those seen in training. However, specific patterns in corporamay express information in different
styles, which would be missed by the Open IE system (Soderland et al., 2010; Krishnamurthy

2https://github.com/knowitall/openie-demo
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andMitchell, 2011). For example, Wikipedia articles usually start with “Name-of-Person (Date-
of-Birth to Date-of-Death)” for deceased persons. In the case of “Shinzo Abe (21 September
1954 – 8 July 2022)”, generating tuples of the form (Shinzo Abe; date of birth; 21 September
1954) and (Shinzo Abe; date of death; 8 July 2022) would be useful extractions but are missed
by current Open IE systems.

Providing solutions that can use user-provided templates to change the generated extractions
dynamically would help solve this challenge. The example template for the above case would be
“Name-of-Person (Date-of-Birth to Date-of-Death)” –> (Name-of-Person; date of birth; Date-
of-Birth), (Name-of-Person; date of death; Date-of-Death). However, treating them as soft tem-
plates will allow the potential to use the power of neural generalization. This will allow proper
handling of near matches, such as when the input becomes “Shinzo Abe (Japanese, 21 Septem-
ber 1954 – 8 July 2022)”. Allowing such on-the-fly customizations to Open IE extractions will
enable wider utility.
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