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Abstract
This paper analyzes the varied performance of Ma-
trix Factorization (MF) on the related tasks of
relation extraction and knowledge-base comple-
tion, which have been unified recently into a sin-
gle framework of knowledge-base inference (KBI)
[Toutanova et al., 2015]. We first propose a new
evaluation protocol that makes comparisons be-
tween MF and Tensor Factorization (TF) models
fair. We find that this results in a steep drop in MF
performance. Our analysis attributes this to the high
out-of-vocabulary (OOV) rate of entity pairs in test
folds of commonly-used datasets. To alleviate this
issue, we propose three extensions to MF. Our best
model is a TF-augmented MF model. This hybrid
model is robust and obtains strong results across
various KBI datasets.

1 Introduction
Inference over knowledge bases (KBs) has received signifi-
cant attention in the last decade. Most early works focus on
adapting probabilistic formalisms such as Markov Logic Net-
works and Bayesian Logic Programs for inferring new KB
facts [Schoenmackers et al., 2008; Niu et al., 2012; Ragha-
van et al., 2012].These require a set of inference rules, which
can be harvested automatically using statistical regularities
in KBs [Schoenmackers et al., 2010; Berant et al., 2011;
Nakashole et al., 2012; Jain and Mausam, 2016].

Recent research has integrated both rule learning and fact
inference into a joint deep learning framework. This eschews
explicit representation and learning of inference rules, and
instead employs a way to score a (possibly new) KB fact
(e1, r, e2) directly. Various algorithms differ in their scoring
functions, by using different model assumptions.

This line of research can be further subdivided into two
broad categories: matrix factorization and tensor factoriza-
tion. In both cases the models learn one or more embeddings
of the relation r, however, they differ in their treatment of en-
tities e1 and e2. TF approaches (e.g., E [Riedel et al., 2013],
TransE [Bordes et al., 2013], DistMult [Yang et al., 2015],
ComplEx [Trouillon et al., 2016], TypedComplEx [Jain et al.,
∗First two authors contributed equally to the paper

2018], Rescal [Nickel et al., 2011] models) learn separate em-
beddings for e1 and e2, whereas MF methods (e.g., F [Riedel
et al., 2013] and extensions [McCallum et al., 2017b]) learn
an embedding per entity-pair (e1, e2).

MF is considered as the leading technique for Relation Ex-
traction (RE), problems where textual relations are available;
whereas TF is the model of choice for Knowledge-Base Com-
pletion (KBC). Recent work by Toutanova et al. [2015] uni-
fied the two tasks of RE and KBC into a single framework,
which we call Knowledge-Base Inference (KBI). This makes
MF applicable to all KBI datasets. They applied MF to one
dataset for KBC (FB15K-237), where it could not obtain re-
sults competitive with the state of the art.

Contributions: The main goal of this paper is to study
MF’s effectiveness for the general task of KBI and answer
three key questions.
(1) Does MF perform well for KBI? Our extensive evaluation
reveals that MF has an unusually varied performance across
various KBI datasets, achieving MRR scores as high as 74%
but also as low as zero.
(2) What makes MF performance so sensitive? We find that
MF’s performance can be explained by dataset sparsity, in the
form of the fraction of entity-pairs that are outside the training
vocabulary (OOV).
(3) Can we improve MF performance to obtain respectable
scores in spite of high OOV rates? The original F model has a
rather ad hoc way of handling OOVs — each OOV entity pair
gets a random embedding. We propose three enhancements.

Our first model learns a single OOV vector. This ignores
signals from the constituent entities, as it uses the same vector
for all OOV entity pairs. Our second model generates entity
pair vectors from the constituent entity embeddings, on the
fly, using a generator layer that is trained to output “MF-like”
embeddings. While the second model has better performance
on OOV test examples, it degrades drastically on test facts
where the gold entity pair is seen – rendering it far inferior to
a TF model like ComplEx. In response, we propose a hybrid
TF-MF model (inspired by [Singh et al., 2015]). This model
is robust and obtains strong results across all datasets.

We recognize that number of parameters in an MF model
is much larger compared to TF models. When a joint model
is trained naively (as proposed in [Singh et al., 2015]), this
imbalance causes TF models to not train properly. Our final



hybrid model allows a more controlled flow of information
across the constituent models, achieving much better results.

Additionally, we recognize that special care is needed to
handle OOV entity-pairs when evaluating MF against TF.
Otherwise an MF algorithm may erroneously appear to per-
form better than it really does, as in the case of F’s perfor-
mance on FB15K-237 [Toutanova et al., 2015]. We describe
the first unified KBI evaluation protocol that can meaning-
fully compare MF and TF approaches for KBI.

We contribute open-source implementations1 of all models
and testing protocols for further research.

2 Background and Experimental Setup
Toutanova et al. [2015] proposed a framework that unifies
several closely related tasks: knowledge base completion
(KBC), link prediction, and relation extraction (RE). We call
this the task of Knowledge Base Inference (KBI). In this sec-
tion, we describe key data sets, existing methods, loss func-
tions, and evaluation protocol and its limitations.

2.1 Datasets
Most KB inference systems have used one or more of four
popular KBs for evaluation. These include WN18 (eighteen
Wordnet relations [Bordes et al., 2013]) and three datasets
over Freebase (FB) – (1) FB15K [Bordes et al., 2013] that has
1,345 relations; (2) FB15K-237, which is a subset of FB15K
comprising 237 relations that seldom overlap in terms of en-
tity pairs [Toutanova et al., 2015]; (3) NYT+FB, which, along
with FB triples, also includes dependency path-based textual
relations from New York Times between entity mentions that
are aligned with entities in Freebase [Riedel et al., 2013].

Our literature search reveals that no model has been tested
on all datasets. To the best of our knowledge, no paper re-
ports results of E & F models on WN18 or FB15K, TransE on
FB15K-237 or NYT+FB, and DM & ComplEx on NYT+FB.
To better understand the strengths and weaknesses of each
model, we compare all models on all datasets. We also re-
lease their open source implementations for further research.

2.2 Previous Approaches
We are given a KB with a set of entities E and relations R
which may include canonical and (“open”) textual relations.
The KB also contains T , a set of known valid tuples t ∈ T . A
tuple t = 〈e1, r, e2〉 consists of a subject entity e1 ∈ E , object
entity e2 ∈ E , and relation r ∈ R. We use a shorthand ep12
to refer to entity pair (e1, e2). The goal in KBI is to predict
the validity of a tuple 〈e1, r, e2〉 not known to be in the KB.
Previous approaches fit continuous representations (loosely,
“embeddings”) to entities and relation, so that the belief in
the veracity of 〈e1, r, e2〉 can be estimated as an algebraic ex-
pression (called a scoring function φ) involving those embed-
dings. The scoring functions for the models considered in this
work are outlined in Table-1.

Our choice of these models is guided by the fact that
these algorithms either form the basis of several recent pa-
pers on KB inference or are popular baselines for compari-
son studies (Toutanova et al. [2015], Trouillon et al. [2016],

1https://github.com/dair-iitd/KBI

Model (M ) Scoring function (φM )
F [Riedel et al., 2013] ~r> · −−→ep12
TransE [Bordes et al., 2013] −‖~e1 + ~r − ~e2‖2
E [Riedel et al., 2013] (~e1

> · ~rs) + (~e2
> · ~ro)

DistMult [Yang et al., 2015] ~r> · (~e1 • ~e2)

ComplEx [Trouillon et al., 2016] Re〈~r> · (~e1 • ~e?2)〉

Table 1: Scoring functions for MF (row 1) and TF models (row 2
onwards). Larger value implies more confidence in the validity of
the triple. ‘·’ denotes dot product, ‘•’ denotes element-wise multi-
plication and ? denotes the complex conjugate. Re refers to the real
part of the complex valued score returned by the ComplEx model.

Demeester et al. [2016], Rocktaschel et al. [2015], Verga
et al. [2017b], Verga et al. [2016], Singh et al. [2015],
Nguyen et al. [2016], Xie et al. [2017]). Some models learn
matrix embeddings instead of vectors [Nickel et al., 2011;
Socher et al., 2013]. We don’t study these, as they are typi-
cally outperformed by the models implemented in this paper.

Note that some approaches (called tensor factorization or
TF) embed each entity individually, whereas others (called
matrix factorization or MF) embed pairs of entities. F is an
MF model, since it uses the −−→ep12 embeddings, while the oth-
ers are TF models.
Loss functions: The models are trained such that tuples
observed in the KB have higher scores than unobserved
ones. Several loss functions have been proposed; we im-
plement three common ones in this work: log-likelihood
based loss [Toutanova et al., 2015], max margin loss [Bor-
des et al., 2013], and negative loglikelihood of the logistic
model [Trouillon et al., 2016]. All three loss functions sam-
ple a negative set Neg(e1, r) for every tuple, computed as
{〈e1, r, e′2〉|e′2 ∈ E ∧ 〈e1, r, e′2〉 /∈ T }, i.e., tuples formed by
uniformly sampling entities that are not apriori known to be
valid. Similarly, the set Neg(r, e2) is sampled.

Note that since MF models operate over entity pairs, they
do not need two Neg sets. They use one set where new entity
pairs (e′1, e

′
2) are sampled such that 〈e′1, r, e′2〉 /∈ T . These

negative entity pairs are sampled only from the entity pairs
found in T , since embeddings for only those pairs get learned.
We tried all the losses with all models on all datasets and
report the best scores in the paper.

2.3 Standard Evaluation Protocol
To run the experiments at scale, we follow the most com-
mon automatic evaluation protocol for KBI systems. In this
method the KB is split into train (Ttr) and test tuples (Tts).
The system can access only Ttr during training. For each test
tuple, 〈e∗1, r∗, e∗2〉 ∈ Tts, a query 〈e∗1, r∗, ?〉 is issued to the
trained model M . The model then ranks all entities e2 ∈ E
by decreasing φM (e∗1, r

∗, e2). A higher rank of e∗2 in this list
suggests a better performance of the model. Common metrics
used to compare algorithms are mean reciprocal rank (MRR)
and the percentage of e∗2s obtained in top 1 (HITS@1) and 10
(HITS@10) results.

The testing procedure is typically run with two modifica-
tions. First, it is possible that the test fold is not complete:
some of the e2s ranked higher than e∗2 yield known tuples
〈e∗1, r∗, e2〉. It is unfair to penalize the model for predicting

https://github.com/dair-iitd/KBI


Model FB15K FB15K-237 WN18 NYT+FB
MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10

1 ComplEx 66.97 55.21 85.60 37.46 27.97 55.95 93.84 93.32 94.54 69.43 64.84 76.55
2 DistMult 60.82 46.51 84.78 37.21 27.43 56.12 80.42 68.5 94.2 62.48 56.40 72.17
3 E 22.86 16.4 35.04 30.87 23.63 45.38 2.74 1.48 5.38 8.83 3.67 19.74
4 TransE 43.11 24.99 71.97 3.57 0.4 1.48 37.15 4.22 84.96 13.57 8.79 39.63
5 F (Old eval) 33.62 22.27 60.20 28.01 13.21 64.76 82.95 71.76 98.84 89.28 83.48 97.84
6 F (KBI eval) 13.35 9.45 17.03 0.0 0.0 0.0 0.14 0.04 0.20 74.34 68.96 80.01
7 MFreq(e2|r∗) 24.91 18.84 36.03 33.05 25.45 47.60 3.10 1.92 5.28 11.42 6.23 20.39
8 MFreq(e2|e∗1) 8.22 15.61 15.61 0.01 0.0 0.0 0.17 0.38 0.38 79.34 94.93 94.93

Table 2: The first five rows compare 5 models on 4 datasets using the standard evaluation protocol. The 6th row shows F’s performance using
our proposed KBI evaluation protocol. The last 2 rows report results of 2 most-frequent sanity-check baselines.

these. The filtered metrics remove the set {e2|〈e∗1, r∗, e2〉 ∈
Ttr ∪ Tts} from the ranked list [Bordes et al., 2013].

The second modification applies primarily to MF models.
In MF, an embedding is learned only for entity pairs that ap-
pear in Ttr. Therefore, it is futile to score every 〈e∗1, r∗, e2〉
over a large range of e2s, for most of which, ~ep12 is not even
known. Instead, only those e2s in a smaller set

E2 = {e2|∃r : 〈e∗1, r, e2〉 ∈ Ttr ∪ Tts} (1)

are considered as candidates for ranking [Toutanova et al.,
2015; McCallum et al., 2017b]. If entity pair (e∗1, e2) is not
trained then a random vector is assumed for −−→ep12.

3 Comparison under Standard and Sanitized
KBI Evaluation Protocol

In this section, we first present a detailed study of previous ap-
proaches under standard evaluation protocols, which exposes
the limitations of existing evaluation protocols. We then pro-
pose a sanitized protocol which evaluates KBI models more
accurately. We further add a few baselines overlooked in prior
work, and present results adjusted for KBI evaluation.
Implementation details: We implement all algorithms in
a common framework written using Keras/Theano [Chollet,
2015]. We use embeddings in R100 throughout, trained using
Adagrad. 200 random negative samples are drawn per posi-
tive tuple. Margin γ is 1 for max margin methods. Entity and
entity-pair vectors are re-normalized to unit norm after each
batch update [Yang et al., 2015]. Batch size is 20,000. Mod-
els are trained up to 200 epochs, but with early stopping on a
validation set to prevent from overfitting. We train each model
on each dataset using log-likelihood (LL), max-margin (MM)
and logistic (L) loss functions and pick the best loss function
(according to dev performance) for every setting. In particu-
lar, we find that TransE performs much better with MM loss.
LL loss works better or at par in all other models except that
MM outperforms LL for DistMult on WN18 dataset. L works
best for ComplEx.

We follow the train-dev-test splits used in previous exper-
iments for FB15K, WN18, and FB15K-237. The testsets Tts
are 3–10% random samples from T . For NYT+FB, previous
works had experimented on a test fold with only 80 correct tu-
ples [Riedel et al., 2013]. Since such a test set is rather small,
and in keeping with our other data sets, we create our own
train-test splits by randomly sampling about 2% tuples from
T . Only tuples with FB relations are used in the test set simi-
lar to previous experiments on this dataset.

Model performance with Standard protocol: The first
five rows of Table 2 report standard protocol performance
of all the models across the datasets. E has good perfor-
mance on FB15K-237, whereas TransE gets good scores on
FB15K, however ComplEx emerges the most robust. For TF
models on three datasets (FB15K, FB15K-237, WN18) our
experiments are able to replicate (or improve upon) most
reported results [Yang et al., 2015; Bordes et al., 2013;
Toutanova et al., 2015].2 Since NYT+FB uses a new test fold,
and F hasn’t been tested on other datasets, those results can-
not be directly compared against previous work.

We find that F outperforms ComplEx on NYT-FB dataset
by wide margins and does not perform as well as ComplEx on
the rest. It appears that a qualitative analysis of ComplEx vs
F will shed light on their relative strengths and weaknesses.
Our analysis reveals a limitation in the standard evaluation
protocol that can inflate F’s performance scores for OOV en-
tity pairs.
The problem with the standard protocol: Recall the sec-
ond modification from standard protocol. When ranking pos-
sible entities e2 using the score φ(e∗1, r

∗, e2) from MF mod-
els, the standard protocol considers a subset E2, instead of
all entities in E . This is because many entity pair embeddings
(e∗1, e2) are not even trained in the model, and hence their
scores will be meaningless. We call these OOV entity pairs.
E2 contains all entities for which the entity pair (e∗1, e2) is
trained. Additionally, all such e∗2s that are gold entities for
some test query 〈e∗1, r∗, ?〉 are also added to E2. If these are
not trained, a random vector is assumed for them.

Table 3(a) illustrates an extreme case where the gold en-
tity pair (Bill Gates, Medina) is not seen in training, and only
one e2 (Seattle) is seen with e∗1. Here, MRR for F model
will be computed as 0.5 — a gross overestimation. Implicitly,
(e∗1, e

∗
2) is getting ranked higher than all other OOV (e∗1, e2)s,

whereas they should all be equal. In other words, the mere
presence of Tts in Eqn (1) leaks information.
Proposed sanitized protocol: A correct KBI evaluation
protocol must assume all OOV entities at the same rank, and
output the average value over all possible rankings for them.
In our sanitized protocol, we assume one random OOV en-
tity pair (e∗1, eoov), identify all e2 ∈ E that are OOV, assign
them all the same score from the model and compute aggre-

2Since we use 100 dimensional embeddings throughout, we ob-
tain slightly lower scores than [Trouillon et al., 2016] for ComplEx,
which uses 200 dimensional embeddings.



a.

〈 Bill Gates, lives in, ?〉 F (old) F (new)
(Bill Gates, lives in, Seattle) 5.34 5.34
(Bill Gates, lives in, Medina) 0.04 -1.4
(Bill Gates, lives in, New York) ? -1.4

...
...

... ? -1.4
Reciprocal rank 0.5 ∼0.0

b.

〈 Tina Fey, lives in, ?〉 F (old) F (new)
(Tina Fey, lives in, New York) 2.30 2.30
(Tina Fey, lives in, Seattle) 1.1 1.1
(Tina Fey, lives in, Medina) ? -2.12

...
...

... ? -2.12
Reciprocal rank 1 1

Table 3: Original F with old evaluation protocol vs. F (trained OOV
vector) with KBI evaluation protocol. Gold tuple in bold, and italics
means that entity-pair was not seen during training. (a) Bill Gates is
seen with one e2 in training — not the gold answer; (b) Tina Fey is
seen with two e2s including the gold answer.

gate scores based on all possible rankings of OOV candidates.
In Table 3(a), the MRR should be computed as the average of
1
2 ,

1
3 ,. . . , which is very small.
We note that most existing MF models have used test

folds in which none of the gold entity pairs are OOV (except
FB15k-237). Hence, the results reported in most previous
papers are not affected by our proposed fix. Also, if variants
of MF models are being compared among themselves, while
they may overestimate performance somewhat, the relative
ordering of various models may not be affected. On the
other hand, OOVs become a central issue when MF models
are compared against or combined with TF models, since
realistic levels of sparsity are very different in the two models.
Model performance with Sanitized protocol: When the
sanitized protocol is used (Table 2 line 6), F’s performance on
all datasets drops drastically, to the extent that its performance
is practically zero on two datasets, and extremely weak on the
third. Also, its performance is worse that a simple baseline of
MFreq(e2|r∗) (discussed in next paragraph) in all datasets.
However, it continues to have the best numbers (among all
trained models) for NYT+FB.

Why such a significant drop? The answer lies in entity pair
OOV rates, i.e., the percentage of tuples in the test fold whose
entity pairs were not seen while training. Table 4 reports
some statistics about the datasets as well as their test sets. We
notice that FB15K, FB15K-237 and WN18 all have a very
high OOV rate, which is strongly correlated with poor per-
formance of F. NYT+FB has a tiny OOV rate and F performs
well on it. Because single entity OOVs are infrequent com-
pared to entity pair OOVs, we expect TF methods to shine in
large pair OOV regimes. Singh et al. [2015] highlight some
theoretical difference between MF and TF models. Our data-
driven analysis adds to that understanding. We believe that
OOVs, and more generally, data sparsity, offer a more practi-
cal insight into differences between two model classes.
Most-frequent baselines: To improve our understanding
of the difficulty of each dataset and the quality of each model
beyond trivial choices, we introduce two baselines for our
task. Given a query, 〈e∗1, r∗, ?〉 our first baseline ranks all
entities based on the frequency of their occurrence with re-
lation r∗, i.e., it orders each entity e2 based on the cardi-

nality of the set {t|t = 〈e1, r∗, e2〉 ∧ t ∈ Ttr}. A sim-
ilar baseline orders each entity e2 based on its frequency
of occurence with e∗1, i.e., based on cardinality of the set
{t|t = 〈e∗1, r, e2〉 ∧ t ∈ Ttr}. We name these baselines
MFreq(e2|r∗) and MFreq(e2|e∗1) respectively.

The last two rows of Table 2 report the performance
of these baselines. It is satisfying to see that for FB15K
and WN18 datasets, ComplEx outperforms the baselines by
large margins. However, for FB15K-237, ComplEx is only
marginally better than MFreq(e2|r∗). A closer analysis re-
veals that this dataset is constructed so that there is minimal
entity-pair overlap between relations. How would any model,
then, predict the best e2 for a query 〈e∗1, r∗, ?〉? If entity pairs
have not been repeated much, a natural approach may just
find the most frequent entities seen with the relation and order
based on frequency. We checked some high MRR predictions
made by ComplEx and found that often questions, like, what
is the language of a specific website, were answered correctly
as English. This is likely not because ComplEx figured out
the language of each website, but because English was the
most frequent one in the dataset.

We also observe that E’s performance remains broadly sim-
ilar to the performance of MFreq(e2|r∗). We attribute this to
E’s scoring function, since given e∗1 and r∗, the only term
relevant for ranking e2s is ~e2

T · ~ro, i.e., the model looks for
compatibility with r∗ and ignores e∗1 completely.

Finally, for NYT+FB, under the sanitized protocol,
MFreq(e2|e∗1) beats F model significantly suggesting that
while F is the best model on that dataset, it is not good
enough. We explore this further in the next section.

Dataset |E| |R| ep OOV (%)
FB15K 14,951 1,345 68.70
FB15K-237 14,541 237 100.00
WN18 40,943 18 99.52
NYT+FB 24,528 4,111 0.75

Table 4: No. of distinct entities, no. of relations and entity pair OOV
rate, i.e., percentage of tuples in test set, whose entity pairs (ep)
weren’t seen while training.

4 Toward a Robust MF Model
The previous section highlights the importance of OOV
entity-pairs in the performance of MF models. We now
present a series of models to gracefully handle entity pair
OOVs within MF.

4.1 MF with a Trained OOV Vector (FvecOOV )
A natural extension to F is to explicitly model an OOV entity-
pair vector. In particular, we represent a vector epoov for F
and eoov for TF. 3This modification means that all facts with
an OOV entity-pair will have the same score.

OOV vectors can be trained in many ways. We develop
two baselines that don’t train the vectors explicitly. The first

3The choice of parameterizing a single OOV vector is empiri-
cally motivated. We experimented with backoff-based parameteriza-
tion, which learn a distinct OOV vector corresponding to each entity,
but we did not observe any improvement likely due to overfitting.



Model FB15K WN18 NYT+FB
MRR HITS@10 MRR HITS@10 MRR HITS@10

F (random) 13.35 17.03 0.14 0.20 74.34 80.01
F (average) 18.27 24.62 0.13 0.16 71.65 76.80
F (trained) 20.21 27.42 0.27 0.38 81.51 93.67
F (generated) 13.51 22.67 0.80 1.22 0.20 0.10

Table 5: Results on F model after explicitly modeling OOV vectors.
OOV training outperforms other baselines, especially for NYT+FB.
Results on FB15k-237 not reported, due to 100% OOV rate.

Model OOV Non-OOV
MRR HITS MRR HITS

FvecOOV 0.01 0 57.33 75.98
FgenEP 11.19 21.58 18.59 25.04

DM 55.34 80.13 72.87 94.99
ComplEx 61.22 80.76 79.58 96.22
F+ComplEx (AS) 1.12 1.23 51.37 81.74
F+ComplEx (RAL) 61.37 80.95 80.82 96.45

Table 6: Performance segregated by OOV and non-OOV test queries
on FB15k. F+C (RAL) performs best on both OOV and non-OOV.

baseline (Table 5 line 1) assigns a random value to epoov . The
second one called the average baseline computes epoov as the
average of all (e1, e2) pairs that occur only once in training
(Table 5 line 2).

We also propose a procedure to train epoov (Table 5 line 3).
The broad motivation is to score a known tuple higher than a
tuple with an OOV. To ensure this, we add epoov in the Neg
set for each train tuple. This encourages the model to learn
embeddings such that φF (r, ep12) > φF (r, epoov). Thus, we
ensure that the performance of F is maintained when a gold
test entity pair is seen during training. Table 3(b) illustrates
an example where the correct answer (New York) is seen with
Tina Fey and OOV training doesn’t displace its position.

To assess the effectiveness of the FvecOOV model, we
breakdown its performance on subset of test queries that have
OOVs and non-OOV gold entity pairs. This analysis is mean-
ingful only for FB15k, since other datasets have extreme
entity-pair OOV rate (see Table 4). Clearly, as Table 6 shows,
while FvecOOV has extremely poor performance on OOVs
(and thus weak performance overall), it performs decently on
non-OOVs. We attribute this to the fact that the FvecOOV is
designed with the inductive bias that facts with OOV embed-
dings are worse than facts with seen entity-pair embeddings.
Another shortcoming of this model is that it ignores all infor-
mation present in constituent entities of an OOV entity pair.

4.2 Generate OOV Entity Pair Vectors (FgenEP )
To fix the above shortcomings, we propose an enhancement to
aid F in performing well on facts with OOV entity pairs. The
main insight is to generate an informed OOV entity pair em-
bedding by leveraging the information in the constituent enti-
ties. We would like these generated entity pair embeddings to
be similar to what MF would have produced had these entity
pairs been observed. To this end, we train a generator layer
that is applied on the concatenation of an entity pair’s con-
stituent entities’ vectors to produce entity pair embeddings.

We obtain such a generator layer as a by product of
training a model with loss function L( ~ep12, ~r, ~e1, ~e2) =

LF ( ~ep12, ~r) + LC( ~ep12, ~e1, ~e2)). Here LF is the loss of the
vanilla F model andLC = ‖ep12 − epg12‖2, is regression loss,
which we use to guide the generator layer to generate F like
embeddings. We define epg12 = f (P ·[e1, e2]), where the gen-
erator layer P ∈ R2d×d and f can be any activation function.
At test time, we concatenate the trained embeddings of con-
stituent entities and use the learnt generator layer to obtain
an embedding for an entity pair. Note that use generated en-
tity pair embedding only for OOV entity-pairs, and use the
trained embeddings of seen entity pairs from MF model.

At train time, we initialize the model with trained MF en-
tity pair embeddings, MF relation embeddings and DistMult
entity embeddings. We do not use any activation function (f )
as it led to a slight decrease in performance. Table 6 shows
that FgenOOV indeed has improved performance on OOV test
facts. However, the performance on seen test facts drops sig-
nificantly, leading to a weak overall performance.

4.3 Using TF to Guide MF
We now extend MF (from Section 4.1) based on the follow-
ing two observations — (1) TF models like ComplEx perform
robustly on both OOV and non-OOV test facts (see Table 6).
(2) Singh et al. [2015] show that MF and TF models have
complimentary strengths. Could we use a TF model (such as
ComplEx) to guide MF to perform better on OOV test facts?
Background on TF augmented MF Models: Recall that
Singh et al. [2015] find that the two models have complimen-
tary strengths. In response, they developed a TF augmented
MF model which outperforms all other models on artificial
datasets and NYT+FB. Their best model (F+E) uses the scor-
ing function φE+F = σ(φE + φF ), where σ is the sigmoid
function. We call this model an additive score (AS) model,
since the scores (φ) of two models are added. Early works of
Reidel et al. [2013] also experiment with a similar model for
NYT+FB. Later, Toutanova et al. [2015] implement an AS
F+E+DM model and tested it on FB15K-237.

We are motivated to develop an extension to MF that lever-
ages TF to perform gracefully on both OOV and non-OOV
test facts. For brevity, we refer to these MF extensions as
joint MF-TF models, since they involve a TF model to guide
the training of MF. Does an Additive Score model meet this
requirement?
Additive loss (AL) joint model: Preliminary investigations
(Table 6) reveal that additive score models can suffer sub-
stantial loss in performance for both OOV and non-OOV test
facts. Table 8 shows drop in performance in the ComplEx
component when trained jointly in additive score F+ComplEx
model. It clearly shows that ComplEx’s performance can re-
duce drastically due to joint training. A primary reason is that
F scores overshadow ComplEx scores, since the scoring func-
tion in F involves a product of 2 small numbers and Com-
plEx involves a product of 3 small numbers.4 Moreover, the

4To calibrate them, we tried standardizing scores obtained from
pre-trained models. We also tried to learn a linear function to push
ComplEx and F model scores to the same range simultaneously. We
also tried sharing of relation parameters to allow information to flow
from ComplEx to MF. Unfortunately, none of the approaches were
robust across datasets.



Model FB15K FB15K-237 WN18 NYT+FB
MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10

1 F 20.21 16.26 27.42 0.01 0.0 0.0 0.27 0.2 0.38 81.51 74.74 95.67
2 DM 60.82 46.51 84.78 37.21 27.43 56.12 80.42 68.58 94.20 62.48 56.40 72.17
2 ComplEx 66.97 55.21 85.60 37.46 27.97 55.95 93.84 93.32 94.54 69.43 64.84 76.55
3 F+E (AS) 26.24 20.59 37.35 29.71 22.15 44.39 1.60 0.07 4.04 82.46 75.99 92.21
4 F+ComplEx (AS) 16.84 11.48 26.42 32.90 24.18 50.25 90.02 88.94 91.54 79.41 72.78 89.70
5 F+E+DM (AS) 29.89 23.42 42.00 33.65 24.04 49.26 22.92 14.54 39.26 81.41 74.37 91.41
6 F+ComplEx (AL) 59.61 49.39 78.77 11.21 4.16 25.96 79.90 68.7 93.82 25.92 20.94 35.56
7 F+ComplEx (RAL) 67.46 56.00 85.80 37.93 28.03 57.46 93.99 93.64 94.48 84.21 77.25 95.63
8 F+ComplEx (Oracle) 69.02 58.80 84.99 37.46 27.97 55.95 98.71 98.39 99.15 89.79 81.97 96.69

Table 7: Performance of joint models. AL = additive loss. AS = additive score. F+ComplEx combined with regularized additive loss (RAL)
is the highest scorer as well as most robust across all datasets.

number of parameters in MF models (vectors for entity pairs)
significantly outnumber those in TF models (vectors for enti-
ties). This can lead to significant overfitting.

In response, we develop a different class of joint models
in which instead of adding the scores (φs), we add their loss
functions:LMF+TF = LMF +LTF . We name these additive
loss joint models (AL). We expect this to be more resilient to
overshadowing, since the joint loss expects each model’s in-
dividual loss to decrease as much as possible. One may note
that AL style of training is equivalent to training the mod-
els separately. However, joint training makes other extensions
possible, such as regularization.
Regularized additive loss (RAL): We extend the vanilla
AL joint model to a regularized joint model in which the pa-
rameters of MF model are L2-regularized. We expect this reg-
ularization to encourage a reduction in overfitting caused due
to the large number of MF parameters. Overall, our final joint
model has the loss function:

LMF+TF (θMF , θTF ) = LMF (θMF ) + LTF (θTF ) + λ
∥∥∥θMF

∥∥∥
2

At test time, for a query 〈e∗1, r∗, ?〉 an AL model cannot sim-
ply add the scores, since some entity-pairs may be OOVs.
We develop various backoff cases, reminiscent of traditional
backoff in language models [Manning and Schütze, 2001].
For every e2:

• Case 1: (e∗1, e2) ∈ Ttr. Score of tuple is
φTF (e∗1, r

∗, e2) + φMF (e∗1, r
∗, e2).

• Case 2: (e∗1, e2) /∈ Ttr, but e2 is seen in training. Score
of tuple is φTF (e∗1, r

∗, e2) + φMF (eoov, r
∗, eoov).

• Case 3: e2 is not seen in training. Score of tuple is
φTF (e∗1, r

∗, eoov) + φMF (eoov, r
∗, eoov).

Results: Table 6 shows that RAL F+ComplEx performs well
on OOV and non-OOV test queries. Regularization penalty λ
is tuned over a small devset from within the training set.
Robustness: RAL F+ComplEx performs well for OOV &
Non-OOV test cases, hence is robust to all testing conditions.
To validate the hypothesis we evaluate the model on all the
datasets in background section. Table 7 compares its perfor-
mance with individual models as well as other joint models.

We find that different additive score models (rows 3–5) per-
form well on some datasets, but are not robust across them.
For example, in FB15K none of these are able to match up
to ComplEx’s performance. We attribute this to overfitting by
F, which makes the model believe that φF is predicting the
tuple very well. This lets F override TF and reduces the joint

model’s need to learn the best TF model(s). Note that row 3
and row 5 are the models reported in (Singh et al. [2015]) and
[Toutanova et al., 2015], respectively.

Rows 6 and 7 report the results of additive loss F+ComplEx
models, both without and with regularization. As anticipated,
adding the losses improves performance since both models
get trained well. Moreover, regularization also helps consid-
erably since now the model is not overwhelmed by too many
F parameters. RAL version of F+ComplEx achieves the best
scores in all datasets, and is the state-of-the-art among all re-
ported numbers for FB15k-237.

Row 8 of Table 7 also shows the accuracy of an oracle
model that, for every test query, post-facto selects the model
with the more accurate score (between ComplEx and F). This
upper bounds the performance expected from a perfect joint
ComplEx+F model, fixing the constituents. We find that the
oracle is only 4-5 MRR percentage points better than our best
model for two datasets, and the differences are much less
for the other two. Overall, it suggests that our proposed joint
model obtains a strong robust performance.

5 Other Related Work
The original F model has been extended to incorporate
first order logic rules (Rocktaschel et al. [2015]; Deemester
et al. [2016]), to predict for relations not seen at training time
[Verga et al., 2016; McCallum et al., 2017a], etc. It has also
been extended to generate embedding of a new entity-pair on
the fly (Verga et al. [2017b]). However their work is different
from ours, since, at test time, they expect knowledge of sev-
eral tuples between the same entity pair. Similarly, other TF
models also exist, for example, Parafac [Harshman, 1970],
Rescal (Nickel et al. [2011]) and NTN [Socher et al., 2013].
These are older models which have been outperformed by
models evaluated in this paper. More recent models have also
been introduced such as a model using holographic embed-
dings (Nickel et al. [2016]). ComplEx model is shown to be
equivalent to the holographic models [Wang et al., 2017]. The
joint model formulation can incorporate new models seam-

Dataset ∆ MRR ∆ HITS@10
FB15K-237 -4.09 -5.32
FB15K -62.18 -75.67
NYT+FB -69.03 -76.0
WN18 -4.62 -14.36

Table 8: Change in performance of ComplEx initialized with corre-
sponding embeddings extracted from ComplEx+F (AS).



lessly and improve even further. The learned embeddings can
use additional information such as typing [Chang et al., 2014;
Jain et al., 2018], can be used to mine logical rules [Yang et
al., 2015] and induce schemas [Nimishakavi et al., 2016].

6 Discussion and Future Work
We now list two observations that suggest important direc-
tions for future research in KB inference.
Dataset Characteristics: Our work subjects datasets to
natural sanity checks. First, we introduce two most frequent
baselines (Table 2) to understand the nature of the KBs. Sec-
ond, we compute entity-pair OOV rates (Table 4) as a rough
predictor of the relative success of the TF and MF families.
Finally, in Table 9, we report the singleton and doubleton per-
centages (for entity pairs). A singleton is an entity-pair occur-
ring only once in the data (Ttr ∪ Tts) and a doubleton is an
entity pair that occurs exactly twice. Doubletons have a strong
effect in the scenario painted in Table 3.

We find that most datasets have an idiosyncrasy, which
raises the question whether they are good representatives for
naturally occurring KBs. In particular, WN18 and FB15K-
237 have near 100% entity-pair OOV rates, unlikely to be the
case in real KBs. In FB15K-237 the best models are not much
better than MFreq(e2|r∗) baseline. This is because the dataset
is artificially constructed to avoid relations with entity-pair
overlap. But, this reduces its ability to make many interesting
inferences. For NYT+FB, MFreq(e2|e∗1) performance has a
strong performance with 95% score on HITS@10. Moreover,
learned models are able to improve its MRR by only about
four percentage points. Statistics in Table 9 reveal that this
could be because the dataset has an unusually high number of
entity-pair doubletons: it is the only data set where doubletons
by far outnumber singletons. It is unlikely that such a distribu-
tion occurs in a naturally occurring dataset. FB15K appears to
pass our sanity tests. We believe that focus on better datasets
will likely help us in better progress on KB inference.
Path based inference: In KBs, a common type of in-
ference is based on relation paths (or Horn-clauses), e.g.,
(Michael Jordan, teaches at, Berkeley) and (Berkeley, is lo-
cated in, California) implies (Michael Jordan, teaches in, Cal-
ifornia). To assess the ability of inference models to auto-
matically learn such relation paths, we tested them on arti-
ficial datasets, where we provided many instances of two-hop
paths with relations r1 and r2 implying a third relation r3.
We find that none of the four models are effective at predict-
ing such relations. A study similar to ours comparing the lat-
est models that train over relation paths [Guu et al., 2015;
Garcı́a-Durán et al., 2015; Toutanova et al., 2016] will bene-
fit our understanding of path-based inference.

Dataset Singleton Rate Doubleton Rate
FB15K 83.83% 12.19%
FB15K-237 90.52% 8.64%
WN18 99.80% 0.20%
NYT+FB 8.06% 59.04%

Table 9: The fraction of entity-pairs occurring exactly once and ex-
actly twice. NYT+FB has an unusual distribution.

7 Conclusion
We present the first study on the effectiveness of MF for
KBI, which unifies Relation Extraction and Knowledge Base
Completion. After replacing the standard evaluation protocol
with our sanitized proposal, we find that MF’s performance
is highly varied — it obtains MRR scores from 0 to 74%
on different datasets. We also propose two simple frequency
baselines, and are surprised to find that MF’s performance is
worse than than the better baseline in all domains! Further
analysis reveals that MF performs poorly at high-OOV rates.
We develop a series of extensions aimed at mitigating the ef-
fect of OOVs in MF. MF’s performance improves by training
OOV embeddings. Our most successful model uses ComplEx
to augment our improved version of MF via a regularized ad-
ditive loss. This hybrid model is highly robust and has the
best performance on all datasets. Note that a basic MF added
to TF isn’t robust – only an “OOV trained” MF, when inte-
grated with TF, attains good performance.

We release our code for all models and evaluation protocols
for further use by research community.5
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