Uninformed Search
Chapter 3

(Based on slides by Stuart Russell, Subbarao Kambhampati,
Dan Weld, Oren Etzioni, Henry Kautz, Richard Korf, and
other UW-AI faculty)

Agent’s Knowledge Representation

State representation __|Focus _________

Atomic

Propositional

(aka Factored)

Relational

First-order

States are indivisible;
No internal structure

States are made of state
variables that take values
(Propositional or Multi-
valued or Continuous)

States describe the
objects in the world and
their inter-relations

+functions over objects

Search on atomic states;

Search+inference in
logical (prop logic) and
probabilistic (bayes nets)
representations

Search+Inference in
predicate logic (or
relational prob. Models)

Search+Inference in first
order logic (or first order
probabilistic models)

iilslis
il

WY
hohaha

-
=
=
&
)
)
O
O
=
e
gt
=
-
O
i)
O
S
)
n
S

Atomic Agent

Input:
— Set of states
— Operators [and costs]
— Start state
— Goal state [test]

Output:
* Path: start = a state satisfying goal test
* [May require shortest path]

What is Search?

* Search is a class of techniques for systematically
finding or constructing solutions to problems.

 Example technique: generate-and-test.
 Example problem: Combination lock.

1. Generate a possible solution.
2. Test the solution.

3. If solution found THEN done ELSE return to step
1.

Why is search interesting?

 Many (all?) Al problems can be formulated as
search problems!

 Examples:
e Path planning
e Games
e Natural Language Processing
e Machine learning

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

e states?

e actions?

e goal test?

e path cost?

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Search Tree Example:
Fragment of 8-Puzzle Problem Space

—_
Mo
a2

™
M~

1 3 112(3 1123 1123
8|24 8|4 864 8|4
7/6|5 7|65 7 5 7165
1|3 113 1|2 112(3 1123 1123 2|3 1123
8|24 8|24 8143 415 864 8|64 1184 7184
7|65 7|65 7165 7|6 715 715 7|65 6|5
813 1134 1 2 112(3 1123 1123 2 3 1123
24 8|2 8143 8|45 6|4 8|6 1184 7184
7|65 7|65 7165 7 6 8|75 7154 7|65 6 5

Example: robotic assembly

P

- - R R
- /; /\ﬂ
\u
R

states?: real-valued coordinates of robot joint angles parts of the object to be
assembled

actions?: continuous motions of robot joints

goal test?: complete assembly

path cost?: time to execute

10

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
— be in Bucharest
Formulate problem:
— states: various cities
— actions: drive between cities
Find solution:
— sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

11

Example: N Queens

* |nput:
— Set of states

— Operators [and costs]
— Start state

— Goal state (test)

* Output

12

Implementation: states vs. nodes

 Astateis a (representation of) a physical configuration

 Anode is a data structure constituting part of a search tree includes state, parent
node, action, path cost g(x), depth

parent, action

State || 5 ||| 4 Node depth = 6
g=6
6 1 8
ale
7 3 2 st

 The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.

13

Search strategies

* Asearch strategy is defined by picking the order of node expansion

e Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated

space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?
systematicity: does it visit each state at most once?

 Time and space complexity are measured in terms of

b: maximum branching factor of the search tree

— d: depth of the least-cost solution

— m: maximum depth of the state space (may be <o)

14

Uninformed search strategies

Uninformed search strategies use only the information
available in the problem definition

Breadth-first search
Depth-first search
Depth-limited search

Iterative deepening search

15

Repeated states

* Failure to detect repeated states can turn a
linear problem into an exponential one!

16

Depth First Search

Maintain stack of nodes to visit
Evaluation
_ P
Complete: No

— Time Complexity?

O(b"m)
— Space Complexity? O(bm) }\

AR
@ ©® ® © O

http://www.youtube.com/watch?v=dtoFAvtVE4U

17

http://www.youtube.com/watch?v=dtoFAvtVE4U

Breadth First Search: shortest first

* Maintain queue of nodes to visit

 Evaluation

— Complete? Yes (b is flnl'l'e)
— Time Complexity? O(b~d)
~ Space Complexity? g(p~d) }\

1o @
" P es, if s‘rePC°5"=1/@\ / B
®

@ ® @ @O

18

Uniform Cost Search: cheapest first

* Maintain queue of nodes to visit

 Evaluation

— Complete? yegs (b is finite)
— Time Complexity? O(bl\(c*/e))
— Space Complexity? O(bA(C*/e) 1)
©
%é\(i 1 / M
@ ©® ©® © O

http://www.youtube.com/watch?v=z6lUnb9ktkE

— Optimal?
P Yes

19

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

* Suppose:
2 6Hz CPU

1 6B main memory
100 instructions / expansion
5 bytes / node

200,000 expansions / sec
Memory filled in 100 sec

< 2 minutes

20

ldea 1: Beam Search

* Maintain a constant sized frontier
* Whenever the frontier becomes large

— Prune the worst nodes

Optimal: no
Complete: no

ldea 2: Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

22

Limit=0

Iterative deepening search [=0

20} e

23

Iterative deepening search [=1

24

Iterative deepening search [=2

Limit = +(2)

e

™
i

K@m

P

25

Iterative deepening search [=3

Limit =3 0] @ @
© © (5) G
@ O
@ @
© ©) G 3
§ © B
(D @ ©®

26

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with branching
factor b:

. Nps=bO+ bl + b2+ ... +bd2+ pdl 4+ pd

Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

Nips = (d+1)b% + d b AL + (d-1)bA2 + ... + 3b%2 +2b91 + 1
Asymptotic ratio: (b+1)/(b-1)
Forb=10,d =5,
— Nps=1+10+ 100 + 1,000 + 10,000 + 100,000 = 111,111

— Ny = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead =(123,456-111,111)/111,111 =11%

Iterative deepening search

Complete?
— Yes

Time?
— (d+1)b% +d bl + (d-1)b? + ... + b = O(b?)

Space?
— O(bd)

Optimal?
— Yes, if step cost=1
— Can be modified to explore uniform cost tree (iterative lengthening)

Systematic?

28

Cost of Iterative Deepening

b ratio ID to DLS
2 3
3 2
5 1.5
10 1.2
25 1.08
100 1.02

29

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

BFS: A B,G
DFS: A.,B,C,D,G
IDDFS: (A), (A, B, G)

Note that IDDFS can do fewer
expansions than DFS on a graph

shaped search space.

A
B
C
D

BFS: A B.G
DFS: A,B,A,B,A,B,A,B,AB
IDDFS: (A), (A, B, G)

Note that IDDFS can do fewer
expansions than DFS on a graph

shaped search space.

Search on undirected graphs or directed graphs with cycles...

Cycles galore...

Graph (instead of tree) Search:
Handling repeated nodes

 Repeated expansions is a bigger issue for DFS than for BFS or IDDFS

Trying to remember all previously expanded nodes and comparing the
new nodes with them is infeasible

Space becomes exponential

duplicate checking can also be expensive

« Partial reduction in repeated expansion can be done by

Checking to see if any children of a node n have the same state as the
parent of n

Checking to see if any children of a node n have the same state as any
ancestor of n (at most d ancestors for n—where d is the depth of n)

Forwards vs.

™] Oradea
71
N
£ [
*0\?5 151
(q
Arad
Sibiu Fagaras
118
20
Timisoara Rimnicu Vilcea
[
Hi] Lugoj Pitesti
]
70
] Mehadia
75 138
Dobreta [120

d craiova

Backwards

211

101

Neamt
= 87
] lasi
e
N oy
Vaslui
142
35 78 Hirsova
Urziceni
u 86
Bucharest
90
o Eforie
Giurgiu

35

vs. Bidirectional

QW Sl

eI

When is bidirectional search applicable?
« (Generating predecessors Is easy

 Only 1 (or few) goal states

36

Bidirectional search

e Complete? Yes

e Time?
— O(b¥?)

e Space?
— O(b*2)

e Optimal?
— Yes if uniform cost search used in both directions

37

& chapter03 - GSview - 10| x|
File Edit Options View Orientation Media Help

File: chapterl3 206, 460pt Page: "5 5af B3

Example: Romania

& |1+ [fp 0 | | |

I
-

[] Vashui

] Hrsova

Eforia

Breadth-First goes level by level

&

chapter03 - GSview =0 x|

File Edit Options View Orientation Media Help

File: chapter3 206, 460pt Page: "5 5 of B3

r
=

i — - = . . .

= Visualizing Breadth-First & Uniform Cost S
I

[] Yashi

et TNIS IS alSO @ proof

R chapter03 - GSview .
| I Fle Edit Options View Orientation Media Help
206, 46 'age: 5" 5 of

of

arch

[Example: Romania

N Breadth-First goes level by |el\g

"The problem is, I don’'t feel that I have
any real direction in life."

Problem

* All these methods are slow (blind)

e Solution -2 add guidance (“heuristic estimate”)
- “informed search”

41

