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Overview:

e Knowledge Distillation(in general)

o Distilling the Knowledge in a Neural Network
e Knowledge Distillation(in NLP)

o Sequence Level Knowledge Distillation

o Lifelong Language Knowledge Distillation

o Patient Knowledge Distillation for BERT Model Compression
e The Lottery Ticket Hypothesis

o LTH for Pre-trained BERT Networks



What is Knowledge Distillation(KD)?

e Current DL models are too large to be deployed.
e KD: Transferring knowledge from a large model to a small model
that is more suitable for deployment.



Distilling the Knowledge in a Neural Network
Hinton et. al, NeurlPS 14 Deep Learning Workshop

e Consider alarge pre-trained model and a smaller model.
e How to train smaller model?

a. Trainon gold labels of the training data

b. Train on output of the large pre-trained model.



The idea of “Dark Knowledge”

e ABMW is much closer to a garbage truck thanit is to a carrot.
e Training on probabilities as “soft targets” much better:
o More informative.
o Lessvariancein gradients, leads to faster training since
learning rate can be increased.
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Demonstration

e Trainingon MNIST:

o Large Network ( 2 hidden layers, 1200 ReLU)
o Small Network (2 hidden layers, 800 ReLU)

Targets of Large Model

Setting Number of errors
Large Model 67
Small Model 146
Small Model trained on Soft 74




Sequence Level Knowledge Distillation
Kim et. al, EMNLP 16

e Word Level KD
e Sequence Level KD
e Sequence Level Interpolation

*Next few slides have been borrowed from
https://nlp.seas.harvard.edu/slides/emnlp16_se
gkd.pdf



Word Level Knowledge Distillation
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Word-Level Knowledge Distillation

Hard targets
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Word Level Knowledge Distillation

English — German (WMT 2014)

Model BLEU

4 x 1000 Teacher 19.5

2 x 500 Baseline (No-KD) 17.6
2 x 500 Student (Word-KD)  17.7

2 x 300 Baseline (No-KD) 16.9
2 x 300 Student (Word-KD)  17.6




Sequence Level Knowledge Distillation
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' Sequence-Level Knowledge Distillation

Increase the probability of the sentence

selected using Beam search.

y &~ arg max q(w | x)
w

‘CSEQ-KD = —logp(t = 9|s)



Sequence Level Interpolation
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Model BLEUg_; Ag-; BLEUx_s Agx_s PPL  p(¥)

4 x 1000

Teacher g = 19.5 it 6.7 1.3%

2 3500

Student 14.7 = 17.6 = 8.2  0.9%
Word-KD 154 +0.7 T +0.1 8.0 1.0%
Seq-KD 18.9 +4.2 19.0 +14 22.7 16.9%
Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%




Applications:

e Multilingual NMT with KD - ICLR 19
e Attention-Guided Answer Distillation for Machine Reading
Comprehension - EMNLP ‘19



Lifelong Language Knowledge Distillation

Chuang et. al, EMNLP ‘20
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Figure 1: Left: After learning Task 2, the learner has already forgetten how to solve Task 1. This
is “catastrophic forgetting”. Middle: The basic idea of the data-based LLL approach. A generator
is learned to generate examples it has seen before. Using the generator, the learner also learns
from examples from the previous task to prevent it from forgetting. Right: A language model that

simultaneously takes on the roles of learner and generator.

Image from LAMOL, Sun et. al, ICLR ‘20




LAMOL learns on gold
labels from the dataset
Why don’t we apply
tricks from KD?
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Setting

Assume that we have been trained on tasks {Dr D,..., Dm}
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(a) Learning to solve target tasks (QA).
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(b) Learning to generate pseudo-data (LM).

Figure 2: Illustration of learning QA and LM in
LAMOL.



Given a training sample X%, = {z1,z2,..., 27} € D),

we minimize

Ere( X st ) = L2 + £ e
LB = Lovordxp(X™;0s; 0Pt = a1)

Eﬁg}v o EWord-KD(sz§ Os; 957}7 to = O),



What to do with previous tasks?

We don'’t have hard labels or a teacher for the previous task.

So, just use NLL loss based on the output of the generators.

L:prev (X,frev;HS) — LQA + ELM

prev prev
A _ prev, g
El?rev = Lanin(X; 5 0s; o

LM rev
L= LanidXs 5055 t0
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Final objective:

0 :argr%in( Z Lnew + Z Lorev)

S r\\f
XZHED‘HI XSL EDprcv



Algorithm 1 L2KD: Lifelong Language Knowl-
edge Distillation

Input: current task dataset D,,,, teacher model with param-
eters O, knowledge distillation loss function Lgp, pseudo-
data sample rate ~.
Output: LLL model parameters 5.
Optimize teacher model on D,,, to get parameters 6.
Sample v - | Dy, | pseudo-data from #s to form Dpyey.
for all training samples{ X;" };"; € D,, do
for: =1tondo
update fs to minimize Lxp(X.";0s;607)
end for ,
Sample n’ = yn samples { X7 }7_; from Dprey
for j = 1ton' do
update fs to minimize ENLL(X}’M; Os)
end for
end for




Results:

Lifelong Methods (averaged over six orders)

(a) | Finetune 289 195 21.7 (234
(b) | LAMOL 7717 27.0 60.0 [54.9
(c)|(b) + Word-KD 819 27.0 619 [57.0
(d) [(b) + Seq-KDyory  82.6 269 61.7 |57.1
(e) | (b) + Seq-KD 809 28.0 60.6 [56.5




66

* Word-KD = Seq-KD(soft) * Seq-KD + LAMOL = finetune

Bz s S
woz 9 SQL — 18 CNN 27
(a) Learning curve of WOZ.

* Word-KD = Seq-KD(soft) * Seq-KD 4 LAMOL -~ finetune

WOz 9 sSQL 18 CNN 27

(b) Learning curve of SQL.
* Word-KD = Seq-KD(soft) + Seq-KD « LAMOL = finetune

woz 9 sSQL 18 CNN 27

(c) Learning curve of CNN.

Figure 3: The learning curves of different LLL methods
in the order of WOZ — SQL — CNN.



Are we copying everything from the teacher?

Split entire datainto 2 parts A, and B.

A consists of all classification tasks where teacher is correct

B consists of all classification tasks where teacher is incorrect.
What does the model do after training is over?



Ace Accin(A) Accin (B)
Teacher 76.73 100.00 0.00
LAMOL 75.48 88.15 33.69

+ Word-KD 77.11 90.26 (+2.11) 33.75 (+0.06)
+ Seq-KDgoie 76.42 89.42 (+1.27) 33.52(-0.17)
+ Seq-KD  76.56 89.56 (+!.41) 33.69 (+0.00)

Table 6: The accuracy in the group (A) and (B) av-
eraged over five classification datasets. The teacher
scores are from five single-task models.

Clearly, the model
isn't copying the
teacher
Canintegrate
knowledge from
other tasks and
avoid false
knowledge.



Everything good about this paper..

e First attempt at using KD for LLL.

e Beats LAMOL on accuracy and std.
deviation across different task
permutations.

e Thelast experiment is very insightful.
Proves that model isn’t copying from the
teachers.



Weaknesses of the paper

Unable to perform at par with multi-task baseline - Rohit

Resources need to be spent on a disposable teacher model - Rocktim, Jai, Shreya
Not enough tasks(at most 5) - Jai, Seshank, Harman, Shreya

Datasets are severely under-sampled which reduces noise making it easy for
student to learn - Vishal [Not clear to me]

e Real world data may not have data boundaries, or sudden shifts in distribution -
Harman



Extensions

e Multimodal data - Harman, Shivangi
Multilingual data - Rocktim

e Equal weightage given to new and previous loss; Experiment with multiple loss
functions - Rohit [needs clarification]






Patient Knowledge Distillation for BERT Model Compression
-Sun et, al, EMNLP ‘19

e Knowledge also exists in intermediate layer outputs of a model[CLS emb. here].
e Why just use final output predictions?
e Minimize MSE between output of intermediate layers

o  Which layers to minimize error on?

o PKD-Skip & PKD-Last



Patient Knowledge Distillation for BERT Model Compression
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Model SST-2 MRPC QQP  MNLI-m MNLI-mm QNLI RTE
67x)  (3.7k)  (364k)  (393Kk) (393k)  (105k) (2.5k)

BERT;> (Google) 93.5 88.9/84.8 71.2/892 846 83.4 90.5  66.4
BERT;» (Teacher) 94.3  89.2/85.2 70.9/89.0  83.7 82.8 90.4  69.1
BERTG-FT 90.7 85.9/80.2 69.2/882 804 79.7 86.7  63.6

BERTg-KD 91.5 86.2/80.6 70.1/88.8  80.2 79.8 888 A7

BERT4-PKD 92.0 85.0/79.9 70.7/88.9  81.5 81.0 89.0  65.5

BERT;-FT 864 80.5/72.6 65.8/869  74.8 74.3 843 552

BERT;-KD 86.9 79.5/71.1 67.3/87.6  75.4 74.8 840 562

BERT;-PKD 87.5 80.7/72.5 68.1/87.8  76.7 76.3 847 582

*PKD-Skip has been used here




Model SST-2  MRPC QQP MNLI-m MNLI-mm QNLI RTE

BERTg (PKD-Last) 919  85.1/79.5 70.5/88.9 80.9 81.0 88.2 65.0
BERTg (PKD-Skip) 92.0  85.0/79.9 70.7/88.9 81.5 81.0 89.0 655

Table: Comparing PKD-Last and PKD-Skip

e Skip probably works better since it “captures more diverse representations of
richer semantics from low-level to high-level”




Pushing it even further..

e TinyBERT - Jiao et. al, EMNLP Findings ‘20
° TinyBERT4 achieves 96.8% performance on GLUE, and is 7.5x smaller, and 9.4x
faster.

e TinyBERT, performs as good as BERT, .



Some interesting questions

e Candistillation achieve performance at
par with original teacher model?

e Doesreductioninsize, always lead to
worse results?



The Lottery Ticket Hypothesis: Finding Sparse,

_— Trainable Neural Networks
Frankle et. al, ICLR 19

e Deep Neural Networks are very over-parameterized.
e Canwereduce size without reducing performance?



“A randomly-initialized, dense neural network
contains a subnetwork that is initialized such
that—when trained in isolation—it can match the
test accuracy of the original network after training
for at most the same number of iterations. ”



How to find such subnetworks?

Iterative Magnitude Pruning(IMP)

1. Randomly initialize a neural network f(z;6) (where 6y ~ Dy).
2. Train the network for j iterations, arriving at parameters 6;.
3. Prune p% of the parameters in #;, creating a mask m.

4. Reset the remaining parameters to their values in 6, creating the winning ticket f(z;m®#fp).
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Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average
of five trials. Labels are P,,,—the fraction of weights remaining in the network after pruning. Error
bars are the minimum and maximum of any trial.



Able to successfully find tickets which are 10-20% size of the original network.
These networks have at-least as high test accuracies as the original networks.
These networks converge in comparable number of iterations.
When initialized randomly, perform far worse.

o Therefore, initialization is also as important.
When trained on random structure, perform far worse

o Therefore, structure is also important
Verified on ResNet-18, VGG-19, LeNet



Does BERT win the lottery?




The Lottery Ticket Hypothesis for

_— Pre-trained BERT Networks

Chen et. al, NeurlPS 20

Consider the BERT model which has already been pre-trained.

This is the initialization.

Are there winning tickets for downstream tasks?

Can the winning ticket for task 1 be used for task 2 as well?[transferability]



Dataset | MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MLM

Sparsity |  70% 90% 50% 90% 70% 50% 60% 60% 50% 40% | 70%

Full BERTgaseg | 824+£0.5 902+0.5 88.4+0.3 5494+ 1.2 89.1 £1.0 85.2+0.1 66.2+3.6 92.1 £0.1 545+ 0.4 88.1 £0.6 | 63.5+ 0.1

flx,mpp ©0p) | 826+0.2 900+ 0.2 882+02 549+1.2 889+04 849+04 66.0+24 91.9+05 53.8+09 87.7+05]| 63.2+0.3



Do winning tickets transfer?

Some important considerations:

e At what sparsity should we evaluate the subnetworks?
o A network with 40% sparsity might outperform another with 90% just
because of higher number of parameters
o Maintain same sparsity for all settings(70% in the paper)



Setting

Find a subnetwork using IMP on source taskS.
Use this subnetwork to train on another task T, using a new randomly initialized

classification layer.
This performance is TRANSFER(S, T).
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Figure 3: Transfer vs. Same-Task. The performance of transferring IMP subnetworks between tasks.
Each row is a source task S. Each column is a target task 7. Each cell is TRANSFER(S,7T) —
TRANSFER(7, T): the transfer performance at 70% sparsity minus the same-task performance at
70% sparsity (averaged over three runs). Dark cells mean the IMP subnetwork found on task S
performs at least as well on task 7 as the subnetwork found on task 7.



Observations:

e MLM subnetworks have the best transfer performance
e Thisisobvious since MLM was used for creating the initialization.
e Better transferis seen where source task datasets are large in size



Conclusion

Knowledge Distillation

Standard Methods for KD in NLP
Applications(LLL)

Lottery Ticket Hypothesis

LTH for pre-trained BERT networks



Thank you!
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