Goal Oriented Dialogue Systems

Saley Vishal Vivek

Indian Institute of Technology, Delhi

csz208845@cse.iitd.ac.in

March 4, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1 A Brief Introduction to Task-Oriented Dialogue Systems

2 Transformer based models for Modular TODS SimpleTOD SOLOIST

3 Chit-chat and Task-Oriented Dialogue ACCENTOR

Modular Design for TOD

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

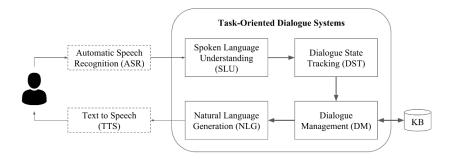


Figure: Image credits: [Wu19]

An Annotated Example (NLU)

U: i'm looking for an expensive restaurant in the center of town.

S: there are 33 restaurants [...]. would you like to narrow your search by type of food?

U: i do not care about food. surprise me.

S: fitzbillies restaurant serves british food, [...]. would you like to hear about any others? [...].

U: that sounds fine, can you book it please and get me the reference number?

S: sure , what day and time would you like and how many people ? U: i would like a table for **5** at **11:30** on **tuesday**[...]

S: okay, the booking was successful. [...], is there anything else i can help you with? U: i'm also looking for a place to stay, it needs [...] **free wiff** and [be] in the same area as the restaurant.

Turn	Domain-slot pair	Value	Туре	Coreference
0	restaurant-pricerange	expensive	span	
0	restaurant-area	center	span	
1	restaurant-food	<dontcare></dontcare>	(dontcare)	
2	restaurant-name	fitzbillies	informed	
3	restaurant-people	5	span	
3	restaurant-book_time	11:30	span	
3	restaurant-book_day	tuesday	span	
4	hotel-internet	<true></true>	(bool)	
5	hotel-area	center	coreference (multiturn)	restaurant-area

Figure: Image credits: [HvNL⁺20]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An Annotated Example (DST)

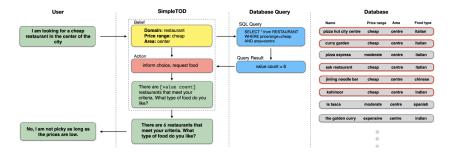


Figure: Image credits: [HAMW⁺20]

Tasks within TODS and Evaluation metrics

Traditionally, each sub-module is developed independently and thus has it's own evaluation metrics.

Automatic Evaluations

- For NLU, accuracy is used for intent identification and F1 for slot filling.
- For DST, joint accuracy is used.
- For DM/NLG, inform and success rates, BLEU and Combined = (Inform + Success) \times 0.5 + BLEU

Manual Evaluations

- Appropriateness: how useful are the responses for the given dialog context
- Naturalness: how human-like are the predicted responses.

Manual evaluation is time-consuming and is subjective but is critical for TODS.

Challenges in Modular approach and End-to-end TOD systems

Modular approach is popular for commercial deployments but faces following challenges[CLYT17]

- Requires very fine-grained hand-crafted labels and faces difficulties adapting to new domain.
- Information is not/wrongly propagated from one module to another.
- Updating one module may require updating all (inter-dependencies)

An alternate approach is an end-to-end system where model directly interacts with user utterance, database and produces response without using fine-grained labels.

Encoder-Decoder Design for TOD

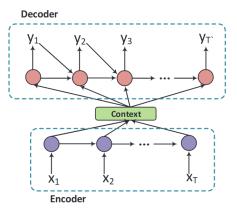


Figure: Image credits: [CLYT17]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Note on "End-to-End"

"End-to-end" can have different interpretations

- A modular TOD system can be trained in end-to-end manner where signals propagate through all the modules
- A modular TOD system can be evaluated in end-to-end manner where each module consumes output from previous one during evaluations
- A TOD system can be trained end-to-end fashion without fine-grained annotations

We will clarify this point when we discuss some models.

A Simple Language Model for Task-Oriented Dialogue

Ehsan Hosseini-Asl ehosseiniasl@salesforce.com Salesforce Research Bryan McCann bmccann@salesforce.com Salesforce Research

Chien-Sheng Wu

wu.jason@salesforce.com Salesforce Research Semih Yavuz syavuz@salesforce.com Salesforce Research Richard Socher rsocher@salesforce.com Salesforce Research

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Goals

SimpleTOD[HAMW⁺20] focuses on following areas

- Train modules in TODS (dialog state tracking, dialog policy and response generation) in unified manner
- Leverage capabilities of pre-trained language models for TODS

Following slides taken from

https://neurips.cc/virtual/2020/protected/poster_ e946209592563be0f01c844ab2170f0c.html

SimpleTOD - Input Representation

- · We propose recasting task-oriented dialogue as a simple, causal (unidirectional) language modeling task
- · We show that such an approach can solve all the sub-tasks in a unified way using multi-task maximum likelihood training
- Dialogue context comprises all previous user/system responses context, C_t = [U₀, S₀, ..., U_t]
- A single training sequence consists of the concatenation of context C_t, belief states B_t, database search results D_t, action decisions A_t, and system response S_t
- · A schematic overview of each segment is shown below together with special tokens marking transition points.

$$x^t = [C_t; B_t; D_t; A_t; S_t]$$

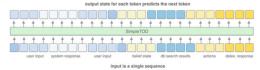
salesforce

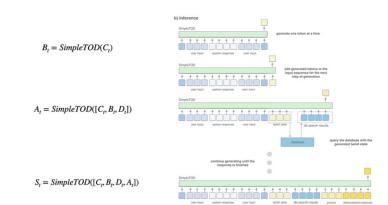
SimpleTOD (Training)

- A single training sequence consists of the concatenation $x^{t} = [C_{t}; B_{t}; D_{t}; A_{t}; S_{t}]$
- This allows us to model the joint probability p(x) over the sequence x^t
- · SimpleTOD is optimized by minimizing the negative log likelihood over the joint sequence

$$p(x) = \prod_{i=1}^{n} p(x_i | x_{< i}) \qquad \qquad \mathscr{L}(D) = -\sum_{t=1}^{|D|} \sum_{i=1}^{n_t} \log p_{\theta}(x_i^t | x_{< i}^t)$$

a) training





SimpleTOD (Inference)

Dialogue State Tracking (DST)

Evaluation of Dialogue State Tracking (DST) on MultiWOZ 2.1 using joint accuracy metric.

- * TRADE proposes test label cleaning and recommended by MultiWOZ authors
- · † TripPy uses label normalization and equivalent matching
- . ** DSTQA uses the cleaning of TRADE model plus additional accounting for label variants
- · SimpleTPDo no label-cleaning
- SimpleTOD* uses label-cleaning proposed by TRADE
- · SimpleTOD+ performs cleaning of Type 2 and partial cleaning of Type 4 noisy annotations (proposed in our paper)

Model	Decoder	Context Encoder	Extra Supervision	Joint Accuracy
TRADE*	Generative + Classifier	Bidirectional	-	45.6
DSTQA**	Classifier	Bidirectional	knowledge graph	51.17
DST-Picklist*	Classifier	Bidirectional		53.3
SST*	Generative	Bidirectional	schema graph	55.23
TripPy [†]	Classifier	Bidirectional	action decision	55.3
SimpleTOD ^o	Generative	Unidirectional		55.72
SimpleTOD*	Generative	Unidirectional		55.76
SimpleTOD ⁺	Generative	Unidirectional		57.43

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A list of discovered noisy annotations in MultiWOZ 2.1 alongside a cleaned version of the test set are provided

End-to-End Evaluation

Action and response generation uses three metrics.

inform and success rates: designed to capture how well the task was completed.

Inform rate: measures how often the entities provided by the system are correct.

Success rate: refers to how often the system is able to answer all the requested attributes by user.

BLUE score: is used to measure the fluency of the generated responses.

combined score: for action and response generation is computed as (BLEU + 0.5 * (Inform + Success)).

Model	Belief State	DB Search	Action	Inform	Success	BLEU	Combined
DAMD+augmentation	generated	oracle	generated	76.3	60.4	16.6	85
SimpleTOD (ours)	generated	oracle	generated	78.1	63.4	16.91	87.66
SimpleTOD (ours)	generated	dynamic	generated	81.4	69.7	16.11	91.66
SimpleTOD (ours)	generated	-	generated	84.4	70.1	15.01	92.26

Table 2: Action and response generation on MultiWOZ 2.0 reveals that SimpleTOD, a single, causal language model, is sufficient to surpass prior work.

Model	Belief State	DB Search	Action	Inform	Success	BLEU	Combined
DAMD+augmentation	oracle	oracle	oracle	95.4	87.2	27.3	118.5
PARG	oracle	oracle	oracle	91.1	78.9	18.8	103.8
SimpleTOD (ours)	oracle	oracle	oracle	93.4	83.2	17.78	106.08
SimpleTOD (ours)	oracle	-	oracle	92.3	85.8	18.61	107.66
HDSA	oracle	oracle	generated	82.9	68.9	23.6	99.5
DAMD+augmentation	oracle	oracle	generated	89.2	77.9	18.6	102.5
ARDM	oracle	oracle		87.4	72.8	20.6	100.7
LaRL	oracle	oracle	generated	82.78	79.2	12.8	93.79
SimpleTOD (ours)	oracle	oracle	generated	84	72.8	16.1	94.5
SimpleTOD (ours)	oracle	-	generated	88.9	67.1	16.9	94.9

Table 7: SimpleTOD results on MultiWOZ 2.0 using oracle information.

Comments

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pros

- Captures dependencies between TODS modules
- Leverages GPT-2 pre-trained model
- Robust to noisy samples
- Cons/Possible Improvements
 - GPT-2 is not trained on dialogue specific data. Pre-training on dialogue data can help.
 - SimpleTOD computes likelihood of all the tokens in the sample, even context utterance tokens. This seems to be an overkill.
 - No human evaluation (from official reviews)

Above issues are addressed in SOLOIST.

SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine Teaching

Baolin Peng, Chunyuan Li, Jinchao Li Shahin Shayandeh, Lars Liden, Jianfeng Gao

Microsoft Research, Redmond, United States {bapeng, chunyl, jincli, shahins, lars.liden, jfgao}@microsoft.com

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Goals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Few-shot fine-tuning of TODS model over new-domain
- Leverage machine teaching for resource constrained domains
- Building task-bots at scale

Following slides are taken directly from https://d3smihljt9218e.cloudfront.net/lecture/26055/ slideshow/33ad01c435de7ea63e5d8273b281c041.pdf

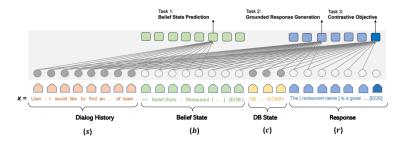
An auto-regressive model for dialog

- Each dialog turn: x = (s, b, c, r)
 - s: dialog history
 - **b**: belief state (user goal detected from **s**)
 - c: DB state (retrieved from a DB using b via APIs)
 - r: system response
- · Learn joint probability using an auto-regressive model
 - $p(\mathbf{x}) = p(\mathbf{r}, \mathbf{c}, \mathbf{b}, \mathbf{s}) = p(\mathbf{s}) p(\mathbf{b}|\mathbf{s}) p(\mathbf{c}|\mathbf{b}, \mathbf{s}) p(\mathbf{r}|\mathbf{c}, \mathbf{b}, \mathbf{s})$ where
 - p(b|s) -- belief prediction (detecting user goal)
 - p(c|b, s) = p(c|b) = 1 -- deterministic database lookup

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

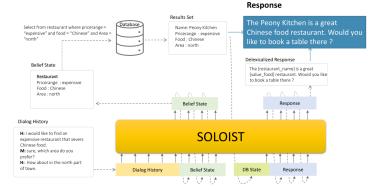
p(r|c, b, s) -- grounded response generation

Pre-train SOLOIST via multi-task learning



 $p(\mathbf{x}) = p(\mathbf{r}, \mathbf{c}, \mathbf{b}, \mathbf{s}) = p(\mathbf{s}) p(\mathbf{b}|\mathbf{s}) p(\mathbf{c}|\mathbf{b}, \mathbf{s}) p(\mathbf{r}|\mathbf{c}, \mathbf{b}, \mathbf{s})$

▲□▶▲□▶▲□▶▲□▶ □ のQの



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Datasets

Name	#Dialog	#Utterance	Avg. Turn	#Domain	
task-grounded	pre-traini	ng:			
Schema	22,825	463,284	20.3	17	 Task-grounded pre-training datasets
Taskmaster	13,215	303,066	22.9	6	
fine-tuning:					
MultiWOZ2.0	10,420	71,410	6.9	7	
CamRest676	676	2,744	4.1	1	
Banking77	-	25,716	-	21	 Fine-tuning / downstream evaluation datasets
Restaurant-8k	-	8,198	-	1	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Table 1: Dialog corpora. The datasets in the upper block are used for task-grounded pre-training, and the datasets in the lower block are for fine-tuning.

End-to-End Evaluation Results

Model	Annotat	ions	Evaluation Metrics			
	Belief State	Policy	Inform↑	$\texttt{Success} \uparrow$	$\texttt{BLEU}\uparrow$	Combined ↑
Sequicity (Lei et al., 2018)	~	~	92.30	85.30	21.40	110.20
Sequicity (w/o RL)	1	~	94.00	83.40	23.40	112.10
GPT fine-tuning (Budzianowski and Vulić, 2019)			-	86.20	19.20	-
ARDM ¹ (Wu et al., 2019b)			-	87.10	25.20	-
SOLOIST	√		94.70	87.10	25.50	116.40

¹ARDM is not fully E2E, as it requires a rule-based dialog state tracker.

Table 2: End-to-End evaluation on CamRest676. Results of existing methods are from Wu et al. (2019b).

Model	Annotati	ons	Evaluation Metrics			
	Belief State	Policy	Inform↑	Success ↑	BLEU ↑	Combined 1
Sequicity (Lei et al., 2018)	~	~	66.41	45.32	15.54	71.41
HRED-TS (Peng et al., 2019)	~	~	70.00	58.00	17.50	81.50
Structured Fusion (Mehri et al., 2019b)	~	~	73.80	58.60	16.90	83.10
DSTC8 Track 1 Winner 1 (Ham et al., 2020)	1	~	73.00	62.40	16.00	83.50
DAMD (Zhang et al., 2020b)	~	~	76.40	60.40	16.60	85.00
SOLOIST	~		85.50	72.90	16.54	95.74

¹The result of DSTC8 Track 1 Winner is produced by adapting their code to our setting.

Table 3: End-to-end evaluation on MultiWOZ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SOLOIST performs significantly better than competitors in the standard setting.

Adding Chit-Chat to Enhance Task-Oriented Dialogues

Kai Sun ¹* Seungwhan Moon², Paul Crook², Stephen Roller³, Becka Silvert², Bing Liu², Zhiguang Wang², Honglei Liu², Eunjoon Cho², and Claire Cardie¹ ¹Cornell University ²Facebook, ³Facebook AI Research ⊠ ks985@cornell.edu, shanemoon@fb.com

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Goal

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• To add chit-chat to enhance task-oriented dialogues for better user experience

The Data Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Publicly available datasets either focus purely on chit-chat or on TODS.
- To alleviate this issue, Accentor uses a collaborative data collection strategy
- Accentor first generates (chit-chat) candidates using pre-trained versions of GPT-2 and BlenderBot.
- A model based filtering removes bad candidates.
- Human annotators then classify a candidate as good or bad

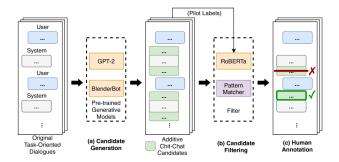


Figure: Image credits: [SMC⁺21]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Filtering Strategy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ACCENTOR collects pilot data for filtering.

- A RoBERTa based classifier
- A set of hand-crafted rules
- Candidate frequency
- Inter-candidate similarity
- Candidate response similarity

Candidates are ranked based on above filters and top-10 are selected for human annotations.

Annotation statistics

Metric	Value
# of candidates	228,250
# of unique candidates	68,406
vocabulary size	10,005
# of distinct 2-grams	59,259
# of distinct 3-grams	131,989
# of distinct 4-grams	195,508
# of distinct 5-grams	239,278
average length (in tokens)	8.7
# of good candidates (%)	94,600 (41.4)
◊ social	86,324(37.8)
◊ useful	7,681(3.4)
♦ social & useful	577(0.3)
♦ other (good)	18 (0.0)
# of bad candidates (%)	133,650(58.6)
◊ inappropriate	127,648(55.9)
♦ misleading	5,800(2.5)
♦ inappropriate & misleading	164(0.1)
♦ other (bad)	38 (0.0)

Figure: Credits: [SMC⁺21]

ACUTE-Eval for comparing dialoue models

I am doing great. How are you?

I am great, I did something crazy for me and colored my hair blue!

Hello there, how are you?

I have a daughter and a son who also love blue colored balls. You should meet them

Well that neat, I got a new car my mother gave so maybe I could see them!

It is a beautiful city. And, I try to be... Just cannot afford a bigger house atm.

I am sorry to hear that, I feel bad going out of town for spring break now.

Ok. I going to school in the spring for casino manager

Well I turn 29 next week, I wonder if that is a good age to apply as one.

My grandmother just died from lung cancer, sucks

Hi how are you today

Hi, I'm pretty good! Just listening to some aerosmith, they're my fave :) whatre you up to?

I am listening to some italian music

Italian music, nice! What do you do for work?

I'm a professional wrestler

Oh wow! I'm a construction worker, I've been doing it since I was 16.

What do you do for a living

I'm a construction worker haha, just told you! Whats your favorite type of food?

My favorite is garlic bread

Yum! I love mexican food, so good :) do you have any hobbies?

I like to workout and go to the gym

We're a bit different- I love watching nascar and ufc. They're so fun!

Who would you prefer to talk to for a long conversation?

I would prefer to talk to Speaker 1

I would prefer to talk to Speaker 2

Please provide a brief justification for your choice (a few words or a sentence)

Please enter here...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Data Quality using ACUTE-Eval

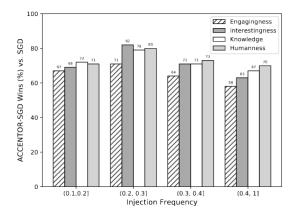


Figure: Image Credits: [SMC⁺21]

A D > A P > A D > A D >

э

The Model Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

ACCENTOR propose 3 models for fusing chit-chat with task-oriented dialogues

- SimpleTOD(+)
- 2 Arranger
- 8 Rewriter

SimpleTOD and SimpleTOD+

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **1** SimpleTOD is as discussed before.
- SimpleTOD+ additionally introduces *chit-chat* actions (add-before, add-after, do-not-add) to SimpleTOD

Arranger

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• A RoBERTa based classifier is trained to decide if and where to add the chit-chat. Model is trained using good and bad candidates dataset.

Rewriter

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 A GPT-2 based causal model which generates action and response based on dialogue history, generated belief states and chit-chat output Both arranger and rewriter models use responses from off-the-shelf chit-chat and TOD models. SimpleTOD is used as TOD model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A BERT based chit-chat model fine-tuned on Accentor-SGD is used as chit-chat.

Results

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

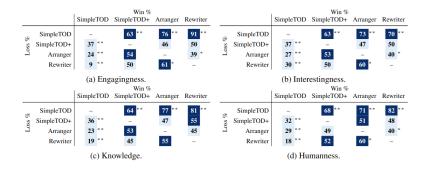


Figure: Credits: [SMC⁺21]

Comments

Pros

- Targets one of the essential areas for practical TOD systems
- Proposes a dataset based solution for TOD simple intuitive baselines
- We can extend this to multiple use-cases like domain mixing/transitions, multilingual dialogues and general knowledge grounded responses.

Cons

- Filtering results depend upon pilot data. This creates biases in the candidates.
- Does not support injection of chit-chat withing the response itself.

Relevance

- Personalized TODS
- Emotion infused models for sensitive domains like medical diagnosis and counselling
- Especially useful in conversational recommendation

Reviews: Advantages

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Models are simple and intuitive.
- Data generation and augmentation method is simple.
 Filtering method is effective as performance is decent (40% on SGD and 30% on WoZ) with limited pilot data.
- Human annotation is considerate as it tries to remove strong opinions and misleading utterances.
- Code separation makes approach plug-n-play
- Good evaluation and results.

Reviews: Disadvantages I

- The ACUTE-Eval metrics are not exclusive and highly correlated.
- Although difficult, there should be a method of generating good chit-chat besides language models. The human annotators could be suggestive instead of just discriminative.
- Human annotators' involvement and human evaluation are extensive, which is usually not ideal.
- The user's preferences are not considered.
- The paper analyses chit-chat responses as being either prepended or appended in the SimpleTOD+ and Arranger models proposed.
- Source of Bias or inaccurate results: Authors annotate 1.7k candidates as good/bad.
- The focus should be on zero-shot/ few-shot methods of adding chit-chat, rather than creating new datasets.

Reviews: Disadvantages II

- For the initial filtering step, a better approach than the rule-based filtering would be to use crowd workers to produce annotations for this step as well.
- While discussing inappropriate behaviors of a candidate dialogue, the paper says that the "bot is not a person and should not pretend to have real life experience". I disagree with this point, because the humanness of chatbots is an important factor.
- Does not handle 2 way chit chat, which may also be helpful in capturing the user's sentiment towards the products/system.

Reviews: Extensions I

- Injection frequency should be a parameter that the user sets according to his/her own requirements.
- In Arranger there are 3 possibilities. However, if the user is chit-chatting, the agent could also just chit-chat. Therefore, there should be a 4th possibility of just chit-chatting. Rewriter could take care of this automatically though.
- Can further extend to other dialogue styles using style transfer - such as politeness, formal or informal etc which can be given as a parameter.
- Can focus on improving the candidate filtering mechanism finding optimal settings (not done in the paper) as this can significantly improve the quality of the dataset.
- Extend dataset creation method so that chit-chat can be incorporated in between task-oriented-response.

Reviews: Extensions II

- Chit-chat may be subjective and this work can be extended to adjust the subsequent chit-chat according to how the user is responding to models chit-chat in the past. And Subjectivity of humans should also be taken into account in the evaluation process i.e. if possible the model responses should be subjective to the user.
- Generating rule based outputs using knowledge bases or databases like wikipedia, private knowledge bases etc can increase the number of responses of chit chats.
- Having a way to **measure and control the amount of engagement, interesting, knowledge and human-like** behavior of dialogue system may be useful.

References I

- Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang, A survey on dialogue systems: Recent advances and new frontiers, ArXiv abs/1711.01731 (2017).
- Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher, *A simple language model for task-oriented dialogue*, ArXiv **abs/2005.00796** (2020).
- Michael Heck, Carel van Niekerk, Nurul Lubis, Christian Geishauser, Hsien-Chin Lin, Marco Moresi, and Milica Gavsi'c, *Trippy: A triple copy strategy for value independent neural dialog state tracking*, ArXiv **abs/2005.02877** (2020).
- Margaret Li, Jason Weston, and Stephen Roller, Acute-eval: Improved dialogue evaluation with optimized questions and multi-turn comparisons, ArXiv abs/1909.03087 (2019).

References II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Kai Sun, Seungwhan Moon, Paul A. Crook, Stephen Roller, Becka Silvert, Bing Liu, Zhiguang Wang, Honglei Liu, Eunjoon Cho, and Claire Cardie, Adding chit-chat to enhance task-oriented dialogues, ArXiv abs/2010.12757 (2021).
- Chien-Sheng Wu, Learning to memorize in neural task-oriented dialogue systems, ArXiv abs/1905.07687 (2019).

Thank You