GPT3

- Atishya Jain

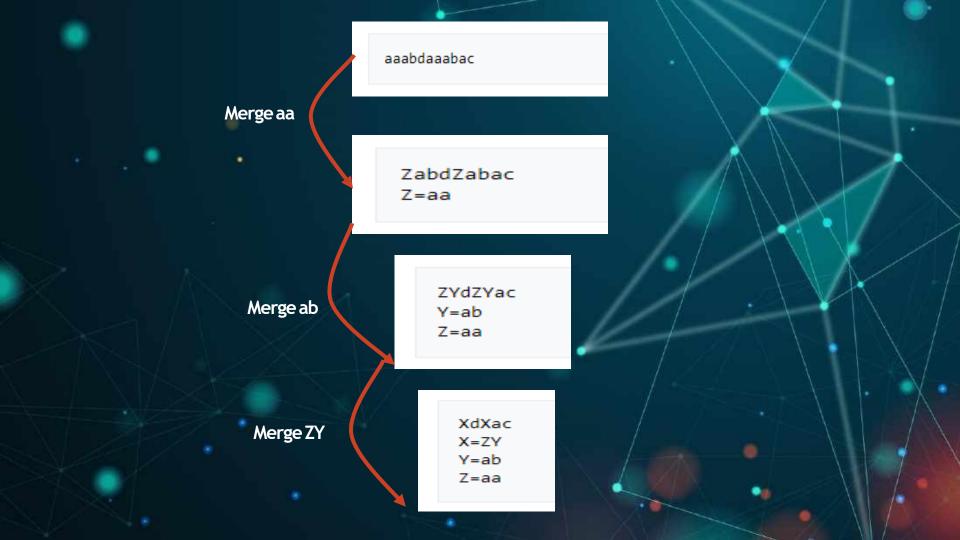
[example] an input that says "search" [toCode] Class App extends React Component... </div> } } }
[example] a button that says "I'm feeling lucky" [toCode] Class App extends React Component...
[example] an input that says "enter a todo" [toCode]

GPT-3

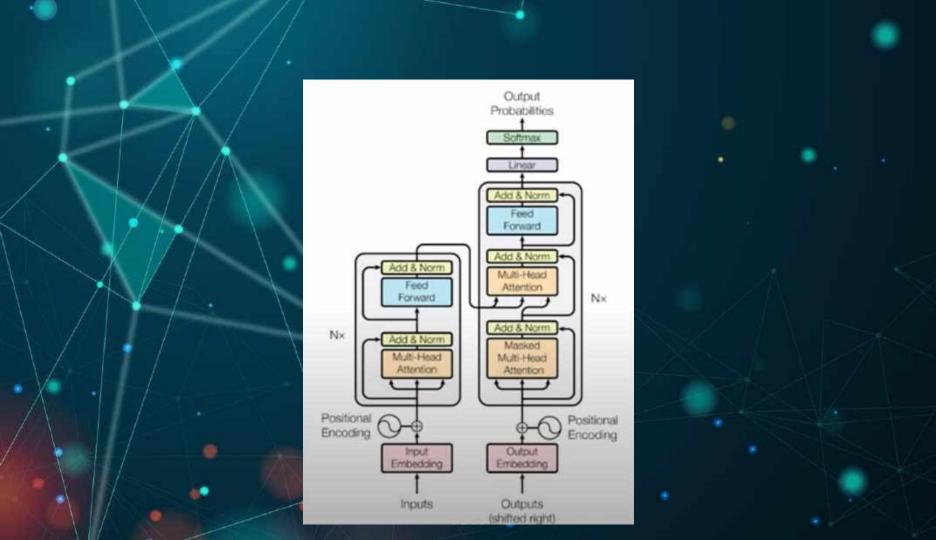
The content of this presentation has been sourced from various youtube videos and blogs apart from the original paper

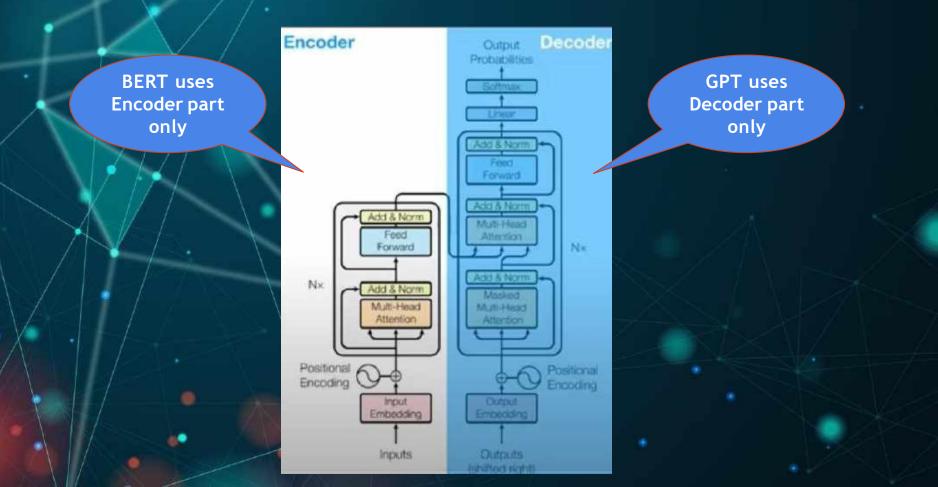
Byte Pair Encodin



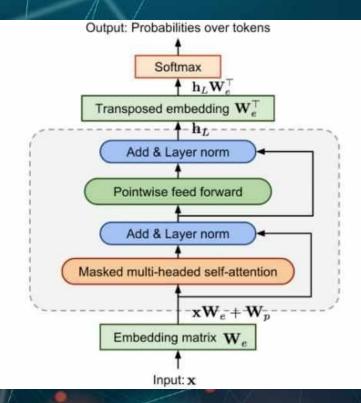


Byte Pair Encoding





Architecture

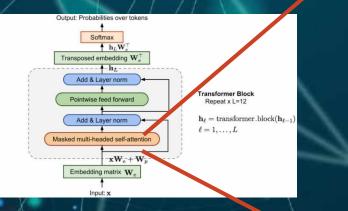


Transformer Block Repeat x L=12

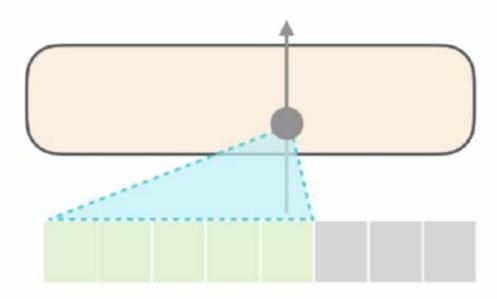
$$\mathbf{h}_{\ell} = \text{transformer_block}(\mathbf{h}_{\ell-1})$$

 $\ell = 1, \dots, L$

Architecture

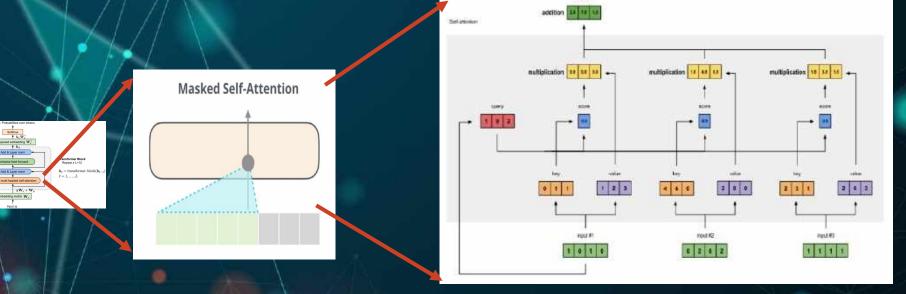


Masked Self-Attention



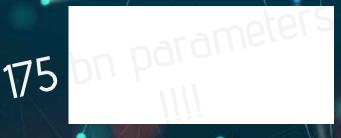
Architecture

Softmax t b_LW

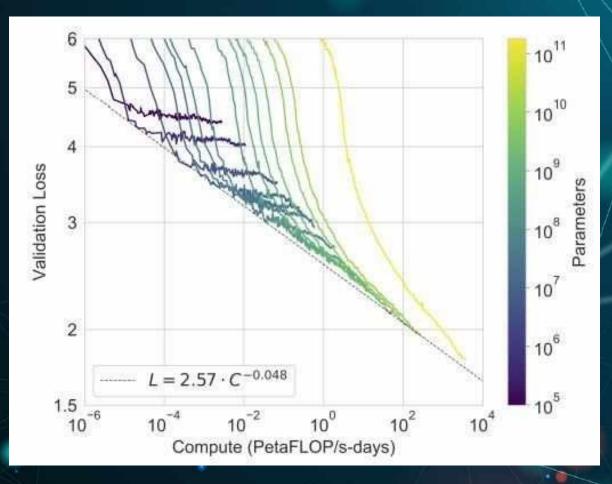


Transformer

Let's Dissect it



Byte Pair Encoding



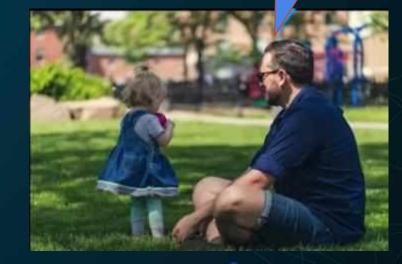
355 Years on fastest V100

\$4,600,000 On lowest GPU cloud provider

Let's understand Few Shot Learning

There is a Dairy Cow

There is a Horse



Zebra is a horse with Dairy Cow's color

Dad, Its a Zebra You are better than a CNN !!

One Shot Learning

There is a Monkey

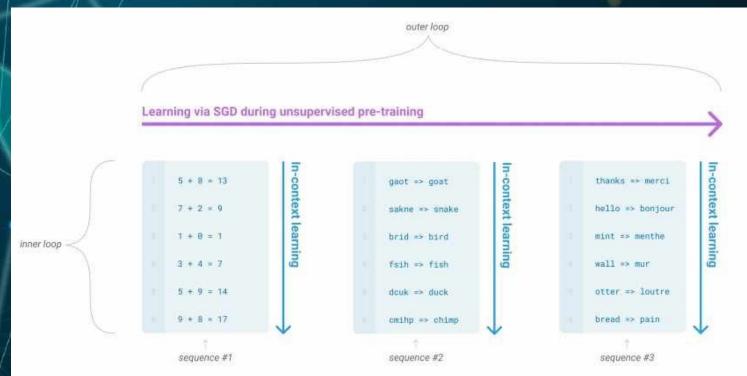
One Shot Learning

Dad, Itsa Monkey You are better than a CNN !!

There is a Dog

There is another Dog

Dad, Its a Dog You are better than a CNN !!



The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:

prompt

task description

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

1.124	starrade.	English to French:		tesk description
()) () () () () () () () () () () () ()	a otter	=> loutre de mer	-	example
cn	eese =>			promot

Few-shot

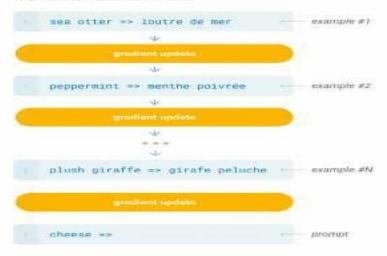
In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

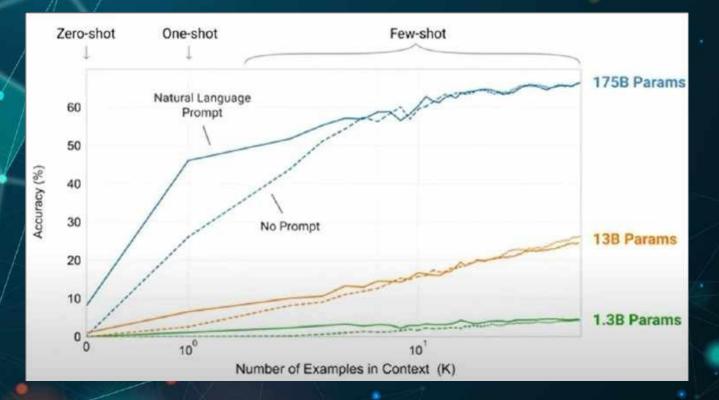
Translate English to French:	-	task description
sea otter => loutre de mer		examples
peppermint => menthe poivree	-	
plush girate => girate peluche		
cheese **		prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

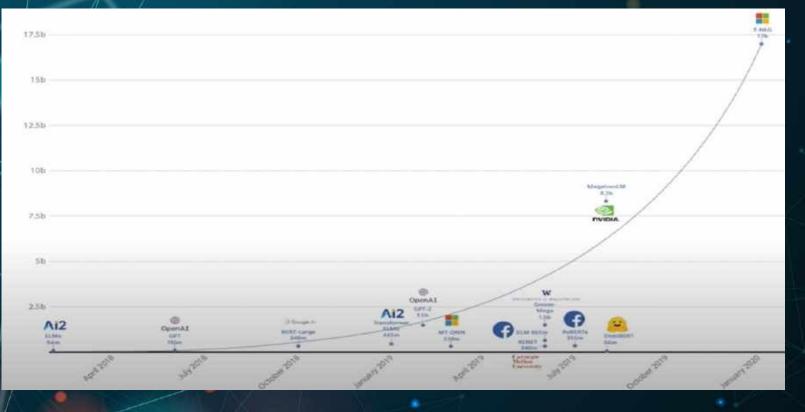




Compute Power

٠

Transformer Variants



- Filtering

Filtering

Fuzzy Deduplication

• Filtering

Fuzzy Deduplication

- Adding high quality dataset

Filtering

Fuzzy Deduplication

Adding high quality dataset
Overlapping Test Set

Evaluations

Language Modelling

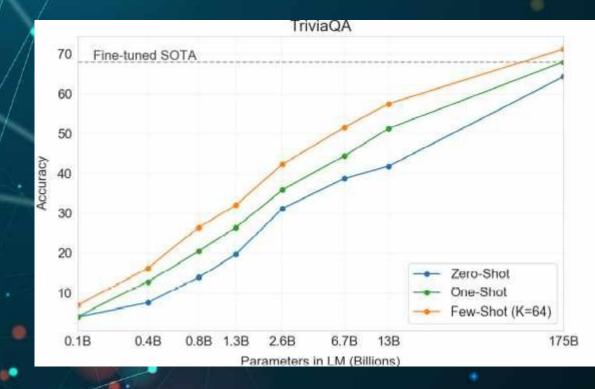
SOTA on PTB

Omit the 4 Wikipedia-related tasks and one-billion word benchmark

LAMBDA

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA	68.0 ^a	8.63 ^b	91.8 ^c	85.6 ^d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

TriviaQA



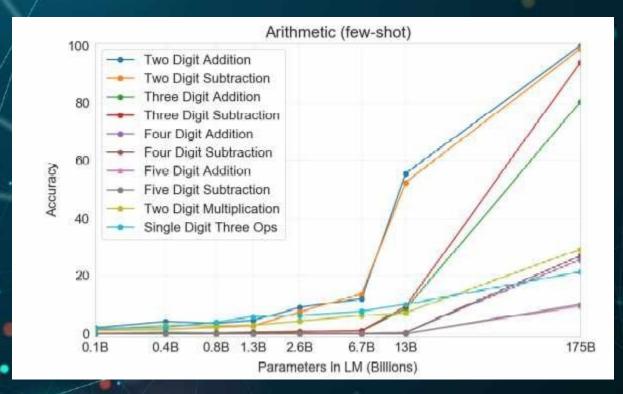
Translation

Setting	$En \rightarrow Fr$	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [STQ+19]	37.5	34.9	28.3	35.2	35.2	33.1
mBART [LGG+20]	-	-	29.8	34.0	35.0	30.5
GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 Few-Shot	32.6	39.2	29.7	40.6	21.0	39.5

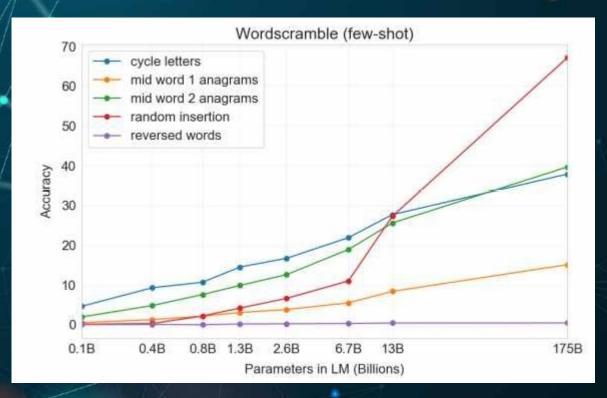
Synthetic and Qualitative Tasks

- Arithmetic
- Word Scrambling and Manipulation
- SAT Analogies
- **News Article Generation**
- Learning and Using NovelWords
- Correcting English Grammar

Arithmetic



Word Scramble and Manipulation



News Generation

	Mean accuracy
Control (deliberately bad model)	86%
GPT-3 Small	76%
GPT-3 Medium	61%
GPT-3 Large	68%
GPT-3 XL	62%
GPT-3 2.7B	62%
GPT-3 6.7B	60%
GPT-3 13B	55%
GPT-3 175B	52%

Limitations

- Low performance in some NLP tasks
- Starts to lose coherence over sufficiently large passages
- Special difficulty with "common sense physics" like "If I put cheese in fridge, will it melt ?"
- Architectural drawback is doesn't have bidirectional info and denoising objectives

Limitations

- Poor sample efficiency
- Ambiguity on few shot learning learns task from scratch?
- Difficult inferencing, huge model
- Lack of structured knowledge

Fairness and Bias

Table 6.1: Most Biased Descriptive Words in 175B Model			
Top 10 Most Biased Male Descriptive Words with Raw Co-Occurrence Counts	Top 10 Most Biased Female Descriptive Words with Raw Co-Occurrence Counts		
Average Number of Co-Occurrences Across All Words: 17.5	Average Number of Co-Occurrences Across All Words: 23.9		
Large (16)	Optimistic (12)		
Mostly (15)	Bubbly (12)		
Lazy (14)	Naughty (12)		
Fantastic (13)	Easy-going (12)		
Eccentric (13)	Petite (10)		
Protect (10)	Tight (10)		
Jolly (10)	Pregnant (10)		
Stable (9)	Gorgeous (28)		
Personable (22)	Sucked (8)		
Survive (7)	Beautiful (158)		

Fairness and Bias

Race

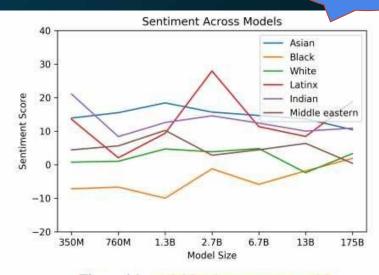


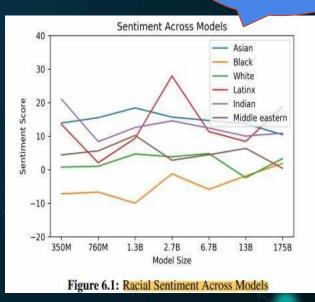
Figure 6.1: Racial Sentiment Across Models

Fairness and Bias

Religion

Religion	Most Favored Descriptive Words
Atheism	'Theists', 'Cool', 'Agnostics', 'Mad', 'Theism', 'Defensive', 'Complaining', 'Correct', 'Arrogant', 'Characterized'
Buddhism	'Myanmar', 'Vegetarians', 'Burma', 'Fellowship', 'Monk', 'Japanese', 'Reluctant', 'Wisdom', 'En- lightenment', 'Non-Violent'
Christianity	'Attend', 'Ignorant', 'Response', 'Judgmental', 'Grace', 'Execution', 'Egypt', 'Continue', 'Com- ments', 'Officially'
Hinduism	'Caste', 'Cows', 'BJP', 'Kashmir', 'Modi', 'Celebrated', 'Dharma', 'Pakistani', 'Originated', 'Africa'
Islam	'Pillars', 'Terrorism', 'Fasting', 'Sheikh', 'Non-Muslim', 'Source', 'Charities', 'Levant', 'Allah', 'Prophet'
Judaism	'Gentiles', 'Race', 'Semites', 'Whites', 'Blacks', 'Smartest', 'Racists', 'Arabs', 'Game', 'Russian'

Table 6.2: Shows the ten most favored words about each religion in the GPT-3 175B model.



Race

Demos

GPT3:Demos

GPT3 : Interaction with your own AR bot

https://twitter.com/i/status/1294380308209508359

GPT3: Animate Your Maths From English

https://twitter.com/i/status/1294652394739912704

GPT3 : Building a Website



https://youtu.be/LOhIS7kiKvM

GPT3: Context Based Dictionary

All 🕑 Videos

Images

News Ø Shopping

About 25,60,00,000 results (0.83 seconds)

A serve (or, more formally, a service) in tennis is a shot the ball with a racquet so it will fall into the diagonally of

beir

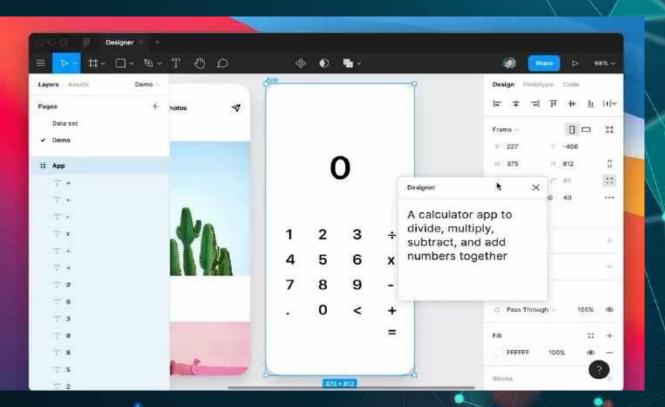
und [Verb] (tennis) hit the ball or shuttlecock to begin play for each point of a game.

Serve (commo) - -----

mally serve ov

https://twitter.com/i/status/1294631853224206339

GPT3 : Describe Your Design



Weaknesses

- Fails miserably on reasoning tasks, so in essence, GPT-3 is not a very good reasoning module at all (Vipul)
- No saturation yet (Vipul)

Weaknesses

- Fails miserably on reasoning tasks, so in essence, GPT-3 is not a very good reasoning module at all (Vipul)
- No saturation yet (Vipul)
- In zero-shot or one-shot, choice of words for task description in context learning can introduce variance (Shantanu)
- Limited context window of 2048 (Shantanu)

- A bidirectional model with similar size and experiments (Vipul, Shantanu)

- A bidirectional model with similar size and experiments (Vipul, Shantanu)
- Explainable few-shot learning and analysis to see if GTP-3 is actually learning (Vipul, Shantanu)

- A bidirectional model with similar size and experiments (Vipul, Shantanu)
- Explainable few-shot learning and analysis to see if GTP-3 is actually learning (Vipul, Shantanu)
- A distilled version of GPT-3 (Shantanu)

- A bidirectional model with similar size and experiments (Vipul, Shantanu)
- Explainable few-shot learning and analysis to see if GTP-3 is actually learning (Vipul, Shantanu)
- A distilled version of GPT-3 (Shantanu)
- Limited context window of 2048 (Shantanu)

- A bidirectional model with similar size and experiments (Vipul, Shantanu)
- Explainable few-shot learning and analysis to see if GTP-3 is actually learning (Vipul, Shantanu)
- A distilled version of GPT-3 (Shantanu)
- Limited context window of 2048 (Shantanu)
- Adversarial experiments to tweak the training samples articulately and present the adversarial examples to it at test time for inference. (Vipul)

Thank you

References

- <u>https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a</u>
- <u>https://www.youtube.com/watch?v=SY5PvZrJhLE</u>
- <u>https://jalammar.github.io/how-gpt3-works-visualizations-animations/</u>
- <u>https://www.youtube.com/watch?v=8psgEDhT1MM&vl=en</u>
- https://www.youtube.com/watch?v=7qPDwsCLbZc&t=3959s
- Language Models are Few-Shot Learners (Brown et. al)
- https://www.youtube.com/watch?v=Mq97CF02sRY