
Neural	Module	Networks	for	
Reasoning	Over	Text

Nitish Gupta	,	Kevin	Lin	,	Dan	Roth	,	Sameer	Singh	&	Matt	Gardner

Presented	by:
Jigyasa Gupta



Neural	Modules
• Introduced	in	the	paper	“Deep	Compositional	Question	Answering	
with	Neural	Module	Networks”	by	Jacob	Andreas,	Marcus	
Rohrbach,Trevor Darrell,	Dan	Klein	for	Visual	QA	task

Slides	of	Neural	Modules	taken	from	Berthy Feng	,	a	student	at	Princeton	University



Motivation :	Compositional	Nature	of	VQA	

Slides	of	Neural	Modules	taken	from	Berthy Feng	,	a	student	at	Princeton	University



Motivation :	Compositional	Nature	of	VQA	



Motivation:	Combine	Both	Approaches	







Modules

Attention	(Find)
Re-Attention	(Transform)
Combination
Classification	(Describe)
Measurement





















DROP:	A	Reading	Comprehension	Benchmark	
Requiring	Discrete	Reasoning	Over	Paragraphs

Dheeru Dua,	Yizhong Wang	,	Pradeep	Dasigi,	Gabriel	Stanovsky,	Sameer	Singh,	and	Matt	Gardner





• Use	Neural	Module	Networks	(NMNs)	to	answer	compositional	
questions	against	a	paragraph	of	text.

• Require	multiple	steps	of	reasoning	:	discrete,	symbolic	operations	(as	
shown	in	DROP	dataset)

• NMNs	are
• Interpretable
• Modular
• Compositional

NEURAL	MODULE	NETWORKS	FOR	
REASONING	OVER	TEXT



Example



NMN	components

• Modules	:	differentiable	modules	that	perform	reasoning	over	text	
and	symbols	in	a	probabilistic	manner
• Contextual	token	representations	:	
• n	and	m	are	number	of	tokens	in	ques	and	para,	d	=	size	of	embedding	
(bidirectional	- GRU	or	pre	trained	BERT)

• Question	Parser	:	encoder	decoder	model	with	attention	to	map	
question	into	executable	program
• Learning:	
• likelihood	of	the	program	under	the	question-parser	model	p(z|q)
• for	any	given	program	z,	likelihood	of	the	gold-answer	p(y∗|z)



Question	
embedding

Paragraph	
embedding Answer	(y*)

Encoder Decoder Decoder Decoder Decoder

Module	1 Module	2 Module	3 Module	4

Program	executor	(z)

Question	Parser

Joint	Learning

NMN	components



Learning	Challenges

• Question	Parser	:	
• Free	form	real	world	questions	:	diverse	grammar	and	lexical	variability

• Program	Executor
• No	intermediate	feedback	available	for	modules.	Errors	gets	propagated

• Joint	Learning:	
• supervision	only	at	gold	level,	difficult	to	learn	question	parser	and	program	
executor	jointly



Modules



find(Q)	→	P
For	question	spans	in	the	input,	find	similar	spans	in	the	passage

• Similarity	matrix	between	question	and	para	tokens	embedding

• Normalize	S	to	get	attention	matrix	
• Compute	expected	paragraph	attention

Input	
question	
attention	map

Output	para
attention	map



find(Q)	→	P		:	Example

Question	attention	map	is	
available	from	the	encoder	–
decoder	of	parser



filter(Q,	P)	→	P
Based	on	the	question,	select	a	subset	of	spans	from	the	input

• Weighted	sum	of	question-token	embedding

• Compute	a	locally-normalized	paragraph-token	mask

• Output	is	a	normalized	masked	input	paragraph	attention



filter(Q,	P)	→	P :	Example



relocate(Q,	P)	→	P
Find	the	argument	asked	for	in	the	question	for	input	paragraph	spans

• Weighted	sum	of	question-token	embedding	with	attention	map

• Compute	a	paragraph-to-paragraph	attention	matrix

• Output	attention	is	a	weighted	sum	of	the	rows	R	weighted	by	the	
input	paragraph	attention



find-num(P)	→	N	and	find-date(P)	→	D
Find	the	number(s)	/	date(s)	associated	to	the	input	paragraph	spans

• Extract	numbers	and	dates	as	a	pre-processing	step,	eg [2,	2,	3,	4]
• Compute	a	token-to-number similarity matrix

• Compute	an expected distribution over	the number tokens

• Aggregate the probabilities for	number-tokens ,
• Example :		{2,	3,	4}	with N	=	[0.5,	0.3,	0.2]



find-num(P)	→	N	:		xample





count(P)	→	C
Count	the	number	of	input	passage	spans

• Count([0,	0,	0.3,	0.3,	0,	0.4])	=	2
• Module	first	scales	the	attention	using	the	values	[1,	2,	5,	10]	to	
convert	it	into	a	matrix	Pscaled∈ R	m×4

Pretraining this	module	by	generating	synthetic	data	of	attention	and	count	values	helps

Normalized-passage-attention	where	passage	lengths	are	typically	400-500	tokens.	Hence	scaling	the	attention	using	
values	>1	helps	the	model	in	differentiating	amongst	small	values.	





compare-num-lt(P1,	P2)	→	P
Output	the	span	associated	with	the	smaller	number

• N1	=	find_num(P1)	,	N2	=	find_num(P2)
• Computes	two	soft	boolean values,	p(N1	<	N2)	and	p(N2	<	N1)

• Outputs	a	weighted	sum	of	the	input	paragraph	attentions





time-diff(P1,	P2)	→	TD
Difference	between	the	dates	associated	with	the	paragraph	spans

• Module	internally	calls	the	find-date	module	to	get	a	date	distribution	
for	the	two	paragraph	attentions,	D1	and	D2



find-max-num(P)	→	P,	find-min-num(P)	→	P
Select	the	span	that	is	associated	with	the	largest	number

• Compute	an	expected	number	token	distribution	T	using	find-num
• Compute	the	expected	probability	that	each	number	token	is	the	one	
with	the	maximum	value,	Tmax∈ Rntokens

• Reweight the	contribution	from	the	i-th paragraph	token	to	the	j-th
number	token





span(P)	→	S
Identify	a	contiguous	span	from	the	attended	tokens

• Only	appears	as	the	outermost	module	in	a	program.	
• Outputs	two	probability	distributions,	Ps and	Pe∈ Rm,	denoting	start	
and	end	of	a	span
• This	module	is	implemented	similar	to	the	count	module



Auxiliary	supervision

• unsupervised	auxiliary	loss	to	provide	an	inductive	bias	to	the	
execution	of	find-num,	find-date,	and	relocate	modules
• provide	heuristically-obtained	supervision	for	question	program	and	
intermediate	module	output		for	a	subset	of	questions	(5–10%).



Unsupervised	auxiliary	loss	for	IE

• find-num,	find-date,	and	relocate	modules	perform	information	
extraction
• Objective	increases	the	sum	of	the	attention	probabilities	for	output	
tokens	that	appear	within	a	window	W	=	10



Question	Parse	Supervision

• Heuristic	patterns	to	get	program	and	corresponding	question	
attention	supervision	for	a	subset	of	the	training	data	(10%)



Intermediate	Module	Output	Supervision

• Used	for	find-num and	find-date	modules	
• For	a	subset	of	the	questions	(5%)	
• Eg :	“how	many	yards	was	the	longest/shortest	touchdown?”
• Identify	all	instances	of	the	token	“touchdown”	
• Assume	the	closest	number	to	it	should	be	an	output	of	the	find-num
module.	
• Supervise	this	as	a	multi-hot	vector	N∗ and	use	an	auxiliary	loss



Dataset

20,	000	questions	for	training/validation,	and	1800	questions	for	
testing	(25%	of	DROP)
Automatically	extracted	questions	in	the	scope	of	model	based	on	their	
first	n-gram.



RESULTS



RESULTS	– Questions	Type



Effect	of	Auxiliary	Supervision



Incorrect	Program	Predictions.

• How	many	touchdown	passes	did	Tom	Brady	throw	in	the	season?	-
count(find)
• Correct	answer	requires	a	simple	lookup	from	the	paragraph.

• Which	happened	last,	failed	assassination	attempt	on	Lenin,	or	the	
Red	Terror?			date-compare-gt(find,	find))	
• Correct	answer	requires	natural	language	inference	about	the	order	of	events	
and	not	symbolic	comparison	between	dates.	

• Who	caught	the	most	touchdown	passes?	- relocate(find-max-
num(find))).
• Require	nested	counting	which	is	out	of	scope



Future	Work

• Design	additional	modules
• How	many	languages	each	had	less	than	115,	000	speakers	in	the	population?
• Which	quarterback	threw	the	most	touchdown	passes?
• How	many	points	did	the	packers	fall	behind	during	the	game?

• Use	complete	dataset	of	DROP	:	In	current	system,	training	model	on	the	questions	for	
which	modules	can’t	express	the	correct	reasoning	harms	their	ability	to	execute	their	
intended	operations

• Opens	up	avenues	for	transfer	learning	where	modules	can	be	independently	trained	
using	indirect	or	distant	supervision	from	different	tasks

• Combining	black-box	operations	with	the	interpretable	modules	so	that	can	capture	
more	expressivity



Review	Comments	- Pros

• Interesting	idea	[Atishya,	Rajas,	Keshav,	Siddhant,	Lovish]
• Interpretable	and	modular	[Atishya,	Rajas,	Siddhant,	Lovish,	Vipul]
• Better	than	BERT	for	symbolic	reasoning	[Keshav]
• Auxiliary	loss	formulation	seems	a	very	novel	idea[Vipul]
• Question	parser	has	new	role:	parse	to	return	composition	of	
modules.[Pawan]



Review	comments	- Cons

• Difficult	to	understand	module	description	[Atishya,	Siddhant]
• Auxillary loss	not	generalizable	[Atishya,	Rajas]
• Contribution	of	each	module	not	studied	[Atishya,	Rajas,	Siddhant,	
Lovish,	Pawan]
• Only	22%	of	DROP	dataset	used	[Rajas,	Keshav,	Lovish]	
• Compositional	reasoning	queries	like	“Who	is	the	mother	of	PM	of	
India?”	are	not	handled.	[Keshav]
• Endless	amount	of	modules	required	to	achieve	full	reasoning	
capability[Vipul]



Review	comments	- Extensions

• Study	on	the	contribution	of	each	module[Atishya]
• Pre-train	all	the	modules	by	collecting	data	using	specific	heuristics	[Atishya,	Rajas]
• RL	framework	to	predict	whether	a	given	question	can	be	sufficiently	
reasoned [Rajas]
• Module	to	predict	open-predicates	of	the	type	PM(India,	x)	&	Mother(x,	y).[Keshav,	
Vipul]
• Train	multi	purpose	modules	(to	predict citizen	of and president	of relationships)	
[Vipul]
• Combine	end-to-end	neural	system	and	NMN[Keshav]
• Learn	new	modules	from	dataset	automatically	;	learn	new	SPARQL	template	from	
data )[Siddhant,	Pawan]
• Curriculum	learning	[Siddhant]
• Metalearning to	automatically	determine	the	modules	[Lovish]


