
Reading Wikipedia to Answer 
Open-Domain Questions

                        Authors -  Danqi Chen





Introduction

• Answering factoid questions in an open-domain setting

• Using Wikipedia as the unique knowledge source



Document Retriever
• Articles and questions are compared as TF-IDF weighted bag-

of-word vectors. Additionally uses bigram counts for retrieval. 

• Return 5 Wikipedia articles given any question



Document Reader
• A question q of l tokens , a paragraph p of m tokens

• Paragraph encoding

• Question encoding

• Prediction



Paragraph encoding

                                       

                                      300-dimensional

3-dimensional

is single dense layer with ReLU 
nonlinearity.       captures the similarity 
between.     and each question words  .

 original, lowercase or lemma form

term frequency (TF)

ai, j

pi qj



Question encoding
• Recurrent layer on top of word embeddings of questions words.

• Attention.          



Prediction
• predict the two ends of the span that is most likely the correct 

answer

• input : paragraph vectors {p1, . . . , pm}  and the question vector 
q

• two classifiers

the best span from token  to token 



Wikipedia as knowledge source, curated Trec , webquestions and wiki movies doesn’t contain
Training paragraphs, so distant supervision is used to create training data. 





      Kelvin Guu *  Kenton Lee *

REALM: Retrieval-Augmented Language Model Pre-Training



Motivation
• Pre-trained model in like BERT and T5 contains large amount of 

world knowledge implicitly in their network parameters.
• Larger models for storing more world knowledge.
• Capture knowledge in more interpretable and modular way



Background
• Language model pre-training - Bert (Masked LM)
• Open domain question - answering
• Retrieve top k document and predict the answer from them.



Approach
• For both pre-training and fine-training, REALM learns- P(y|x)
• For pre-training , x is masked sentence , y is missing token
• For fine-tuning , task -OpenQA, x is question- y is answer

• Z- helpful documents



Knowledge Retriever
• Learn distribution of documents again question.

           - document’s title
           - document’s body

Ztitle

Zbody



Knowledge Augmented Encoder

• Given input x, retrieved document z.
• KAE defines p(y|z,x)
• x and z are joined into single sentence and feed into 

transformer.
• Different architectures for pre-training and fine-tuning.



Pre-training
• Masked Language model
• Predict original value of missing token in x.

• Jx is the total number of [MASK] tokens in x,
• W are learnable parameters.



Fine - tuning 
• Task - OpenQA
• y  is answer string.
• Assumption - y is contagious sequence of tokens in z
• S(z, y) be the set of spans matching y in z. 



•  



Training
• By maximizing the log-likelihood log p(y|x) of the correct output wrt 

to model parameters.
• Key challenge-

• Marginal probability -
• Involves summation over all documents in knowledge source. 
• Approximate this by selecting top k under highest p(z|x).  
• Reasonable since most of documents will have 0 probability. 



Training
• p(z|x) is equal to f(x,z). 

• Employ maximum inner product search to find approx top k 
documents. 
• Need to precompute                for every document.
• Construct an efficient search index. 

Embeddoc(z)



Training
• But this index will become stale after update in parameters.
• It only used to compute top-k documents.
• Assuming no drastic change in parameters, index will slightly 

be stale. 
• Update the index asynchronously and train the MLM model. 



Training
• MIPS index is refreshed after every few hundred training epochs 

for pre-training.
• Fine-tuning: index is built once and parameters of               are 

not re-trained.            is still fine-tuned to update retrieval 
function from query side.  

Embeddoc(z)

Embedinput



What does retriever learn?
• Gradient of knowledge retriever wrt to parameters - 

• p(y|z, x) - probability of predicting the correct output y given z.
• p(y|x) -  is the expected value of p(y|x,z).



Training strategies - 
• Salient span masking
• Some tokens only requires only local context.
• Mask tokens which requires world knowledge.

• “United Kingdom” or “July 1969”.
• Identify such entities using NER and dates to mask them 

during pre training. 



Training strategies
• Null document 
• Add empty document at top of k retrieved document.
• This allows for cases where no-retrieval is necessary.

• Prohibiting trivial retrievals during pre-training - 
• If pre-training corpus and knowledge source are sames,
• KAE can trivially predict y by looking at unmasked version of x 

in z ( which contains x).
• This might result in KAE looking for string matches of x.
• Remove such documents z during training. 



Training strategies
• Initialization - 
• If not initialised, 
• Retriever doesn’t retrieve relevant documents.
• KAE starts ignoring documents by retriever.
• Retriever will not receive any meaningful gradients.
• Retriever can’t improve
• Vicious cycle. 



Training strategies
•  Initialization 
• Train the retriever using inverse cloze task.
• Given a sentence, figure out from which document it came 

from.
• Warm-start KAE using pre-trained BERT.



Experiments
• Open QA datasets - 

• Focus on datasets where authors didn’t know the answer.
• Avoid issues when questions is formulated with answer in 

mind. 
• Natural questions-Open(NQ) - google queries and their 

answers.
• WebQuestions ( WQ) - google suggest api and their answer 

from amazon mechanical turk.
• Curated Trec (CT)- collection of question answer pair from 

sites like MSNSearch and AskJeeves.



Experiments
• Approaches compared - 
• Retrieval based OpenQA  - like DrQA
• Generation based OpenQA - 
• Text-to-text, encode question and predict answer token by token.
• fine-tuned T5 for openQA

• Pre-training-
• 200k steps on 64 TPUs, batch size 512, lr  3e-5 and Bert’s default 

optimizer.
• For each candidate , retrieve 8 candidate using MIPS including null 

document.



 Results



Results
• REALM outperforms T5 when approx 30 times lower in size.
• T5 has access to Squad data during pre-training.



 Reviews (Pros)
• Thorough comparisons, experiments, training strategy,(Atishya, 

Jigyasa,Rajas, Lovish,Vipul)
• Dot product to retrieve documents, this allow for use of MIPS(Soumya,
• Improve SOTA(Soumya, Rajas,Saransh,Makkunda)
• Pre-training in retrieval phase(keshav)
• Provide context to language model(pawan)
• Explainability (Saransh, Siddhant,Pratyush)
• Ability to adapt to new knowledge(Siddhant)
• Greener alternative to T5(Vipul)
• Modular approach(Pratyush,Vipul)



Reviews (Cons)
• Lot of hyper-parameters (Atishya)
• Answer to be continuous span of keywords (Atishya,Siddhant,saransh
• Doesn’t allow multi-hop reasoning(Soumya,Rajas,Jigyasa,Siddhant,saransh
• Conflicting information during retrieval due to time( Rajas )
• Oversell their paper(Keshav)
• Pre-training before pre-training(Lovish)
• Not actually explainable(Pawan)
• Started with issues with Bert and used BERT in the end(Pawan,Makkunda)
• Document embedding is fixed but input embedding is allowed to train during 

fine-tuning resulting these embeddings might go into different spaces.(Vipul)



Reviews(Extension)
• Using attention, copy mechanism to copy certain entities from retrieved documents - not vocab 

dependent and no need of answer span to be continous ( Atishya,siddhant)
• How will you define P(y/z,x) (Lovish)

• Retrieve Subgraph of big KB to augment sentence generation(Atishya)
• Combining text is better then graphs, graph2text? (Soumya)

• Concat top k retrieved document to allow for multi-hop answering.(Soumya)
• Extend current SOTA for multi-hop answering with current paper(Keshav)
• May exceed Bert’s capacity(Rajas)

• Extract top N sentences/paragraph instead of documents(Saransh)
• Multiple - retrieve-and-rank framework, in second retrieve only select from top 

documents selected in 1st step ( Pratyush)
• Retrieval Multiple times for multi-hop answering. Append the answer of 1st hop to 

retrieve relevant documents for 2nd hop(Makkunda)



Reviews(Extensions)
• Separate pre-training and fine-tuning to make system actually modular(Soumya)

• Use openIE triplets, construct a graph and then use of GNNs to predict 
missing nodes for pre-training. Similarly GNN can operate on retrieved graph 
for fine-tuning(keshav)
• Use of GNNs is moving away from the focus which is knowledge learning 

by adapting pre-training in language models. How do we incorporate 
multi-hop answering in pre-training(Saransh)
• We should focus on building end - to -end pipelines for Graphs similar to 

current task.(Vipul)
• Instead of using Bert like architecture for retrieve/rank, how to extract 

knowledge from its pre-trained parameters (Pratyush)



Reviews(Extensions)
• Add time component to documents/questions to counter 

conflicting answers after updating knowledge source(Rajas)
• Multiple hstart/hend over multiple documents for multi-hop 

answering(Jigyasa)



Thanks !!!




