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Transfer Learning: Background

e Pre-train a model on a data-rich task (Unsupervised)
e.g. Word2vec, Glove (Mikolov et al., 2013a,b)

e Fine tune on a downstream task (Supervised)

e Pre-training gives a model “general-purpose abilities” that
can be “transferred” to downstream tasks



Traditional ML Vs Transfer Learning

e |solated, single task learning: B e Learning of a new tasks relies on
o Knowledge is not retained or the previous learned tasks:
accumulated. Learning is performed o Learning process can be faster, more
w.0. considering past learned accurate and/or need less training data

knowledge in other tasks
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https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
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Multi-task learning: Classical Paradigm

e Task-specific loss function
e Task specific architectural layers



TS (Text-to-Text Transfer Transformer): Idea

e Pre-train a Transformer Encoder-Decoder model on a
large unlabeled web crawl text

e Pose every NLP task as text to text (McCann et al., 2018;
Radford et al., 2019)

e Fine-tune separately for each downstream task (done in
parallel)



Multi-task learning: TS Paradigm
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Multi-task learning: TS Paradigm

e Cross Entropy/Max. likelinood loss for all pre-training and
fine-tuning tasks

e Same hyperparameters for each task

e “Unified” vocabulary



Unified Text-to-Text view

["translate English to German: That is good."

“"Das ist gut.“]
course is jumping well."

[ "cola sentence: The

"not acceptable” ]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Figure 1: A diagram of our text-to-text framework. Every task we consider — including
translation, question answering, and classification — is cast as feeding our model text as input
and training it to generate some target text. This allows us to use the same model, loss
function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard
testbed for the methods included in our empirical survey. “T'5” refers to our model, which we
dub the “Text-to-Text Transfer Transformer™.



Pre-training Dataset: Colossal Clean Crawled
Corpus

e (Goal: analyze the effect of the quality, characteristics and
size of unlabeled data
e Source: hitps://commoncrawl.org/ (20 TB/month, noisy data)

e Data cleaning using heuristics

Only retain lines ending in a terminal punctuation mark (“.”, “I”, “?” etc.)
Remove obscene words

Removing pages containing Javascript code

Remove duplicate sentences

Retain only English webpages

e /50 GB

O O O O O


https://commoncrawl.org/

Fine-tuning (Downstream) tasks

Text classification: GLUE and SuperGLUE
Abstractive summarization: CNN/Daily Mail

QA: SQUAD

Translation: WMT English to German, French, and
Romanian



Input & Output

o “text-to-text” format
e consistent training objective: maximum likelihood
e task-specific (text) prefix
e Mismatch label Issue
o e.g. given a premise and hypothesis, classify into one of
3 categories - ‘entailment’, ‘contradiction’ and ‘neutral’
o Potentially possible for decoder to output ‘hamburger’
o This issue never observed with their trained models



Input & Output

e Regression task

o Predict a score between 110 5

o Convert to 21-class classification i.e. round target floating point score to
nearest integer multiple of 0.2 and convert into string

o At inference, convert the string back into floating point number



Input & Output

e \Winograd Task (ambiguation)
o Input - Highlighted ambiguous pronoun. e.g. “The city councilmen
refused the demonstrators a permit because *they* feared violence .”
o Output - the target noun. E.g. “The city councilmen”
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Baseline

e Encoder-Decoder architecture as in original Transformer
paper (Vaswani et al., 2017)

e Relative Positional self—attengpns(§haw et al., 2018)
+ e
o RelativeAttention = Softmax(Q /Dr v
o S'®is shared across layers for a given attention head, different for

different attention heads within a layer




Baseline
e Pre-training objective: Denoising(drop 15 % tokens randomly)

Original text

Thank you fef inviting me to your party last week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <Z>

e BERT-base Size Encoder and Decoder (L=12, H=768, A=12)
e Multilingual Vocabulary: SentencePiece (32k word pieces)



Baseline (Pre-training Details)

e Max Sequence length: 512 tokens

e Batch size: 128 sequences = 128 x 512 = 276 tokens

e Training size = 29 steps = 219 x 216 = 235 tokens = 34 B
tokens << BERT (137B) << RoBERTa (2.2T)

e inverse square root learning rate schedule, where k = 104
(warm-up steps)

e AdaFactor

e Dropout: 0.1



Baseline (Fine-tuning Details)

Batch Size: 128

Length: 512

Training size = 218 steps = 218 x 216 = 234 tokens
constant learning rate: 0.001

5,000 steps/checkpoint



Baseline Performance

GLUE CNNDM SQuAD SGLUE EnDe  EnkFr EnRo

* Baseline average 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Baseline standard deviation 0.235 0.065 0.343 0.416 0.112 0.090 0.108
No pre-training 66.22 17.60 H0.31 53.04 25.86 39.77 24.04

Table 1: Average and standard deviation of scores achieved by our baseline model and training
procedure. For comparison, we also report performance when training on each task from
scratch (i.e. without any pre-training) for the same number of steps used to fine-tune the

baseline model. All scores in this table (and every table in our paper except Table 14) are
reported on the validation sets of each dataset.
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Types of Self-attention
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Architectural Variants
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e Encoder-Decoder
o Baseline
e Language model
o Used in transfer learning as pre-training model with
language modeling objective (Radford et al., 2018)
e Prefix LM
o Suited for classification tasks. e.g. Input - “ mnli premise: |
hate pigeons. hypothesis: My feelings towards pigeons
are filled with animosity. target:”, Output - “entailment”



Prefix LM

X X X y , Similar to CLS N
of 3f 4! t token in BERT !!!




Model Architectures: Results

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers  Denoising P M/2  80.88 18.97 77.59 68.42 26.38 3840  26.95
Language model  Denoising P M 74.70 17.93 61.14 55.02 25.09  35.28  25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 2739
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27 3917  26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62  39.17  27.05
Enc-dec, 6 layers LM P M/2  T8.67 18.26 75.32 64.06 26.13  38.42  26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 3431  25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28  37.51  26.76

e Surprisingly, Enc-dec shared performs nearly as well as

baseline and better than prefix LM. (ALBERT, XLNet)
e EXxplicit encoder-decoder structure can be useful

e Denoising objective > LM objective
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Pre-training: Bert vs Non-Bert style

Objective GLUE CNNDM SQuAD SGLUE EnDe  EnFr EnRo
Prefix langunage modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
BERT-style [Devlin et al., 2018] 82.96 19.17 80.65 69.85 26.78 40.03 27.41

26.11 39.30 25.62

Deshuffling 73.17 18.59 67.61 08.47




Variants of Masked LM

Objective Input Output

BERT-style 15 % corruption — (90 % MASK, 10 | Original full text
% random tokens)

MASS-style 15 % corruption — (100 % MASK) | Original full text

Replace corrupted spans

Thank you <X> me to your party
<Y> week .

<X> for inviting
<Y> last <Z>

Drop corrupted tokens

Thank you me to your party week .

for inviting last




Results

Objective

GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
BERT-style [Devlin et al., 2018] 82.96 19.17 80.65 69.85 26.78 40.03 2741
MASS-style [Song et al., 2019] 82.32 19.16 80.10 69.28 26,79 39.89 27.55
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82
Short Target & \'
Fast Training Due to ColLA



Results

e Corruption rate:

o Not sensitive

Corruption rate GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
10% 82.82 19.00 80.38 69.55 26.87 39.28 2744
* 15% 83.28 19.24 80.88 71.36 26.98 39.82 27.65
25% 83.00 19.54 80.96 70.48 27.04 3983 2747
50% 81.27 19.32 79.80 70.33 27.01 3990 27.49




Results

e token-level vs span-level corruption
o Slight improvement with span length 3

Span length GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
% Baseline (i.i.d.) 83.28 19.24 80.88 71.36 26.98 39.82 27.65
2 83.54 19.39 82.09 72.20 26.76 39.99 27.63
3 83.49 19.62 81.84 72.53 26.86 39.65 27.62
5 83.40 19.24 82.05 72.23 26.88 39.40 27.53
10 82.85 19.33 81.84 70.44 26.79 39.49 27.69




Message

e Small modification to the masked language model
objective may not lead to significant improvement.
e Try something different !!!
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Pre-training Datasets

e C4: Common Crawl with heuristic filterin

e Unfiltered C4: Common Crawl only use use langdetect to
extract English text

RealNews-like: omitted any non-news content in C4
WebText-like (GPT2-like): high Reddit score webpages in C4
Wikipedia

Wikipedia + Toronto Books Corpus (BERT)



Pre-training Datasets

e Pre-training on in-domain unlabeled data can improve
performance on downstream tasks.

Dataset Size GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
* C4 745GB  83.28 19.24 80.88 71.36  26.98 39.82 27.65
C4, unfiltered 6.1TB  81.46 19.14 78.78 68.04 26.55  39.34  27.21
RealNews-like 35GB 83.83 19.23 80.39 26.75 3990 2748
WebText-like 17GB  84.03 19.31 81.42 40 26.80 39.74 27.59
Wikipedia 16GB  81.85 19.31 81.29 68.01 26.94 39.69 27.67
Wikipedia + TBC ~ 20GB  83.65 19.28 182.08°| |73.24| 26.77 39.63 27.57

Table 8: Performance resulting from pre-training o different datasets. The first four variants

are based on our new C4 dataset.

Due to ReCoRD,
News domain

SQUAD, from Wikipedia

v

Due to MultiRC,
the same domain as TBC



Varying No. of epochs

1.0
0.8 \M

Training loss

Dataset size

e Keeping total number of 06 - Pulldaaser

Training steps = constant 04 o

0.2 — 2"

0.0
0 100 200 300 400 500
Step x 1,000

Number of tokens  Repeats GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
* Full dataset 0 83.28 19.24 80.88 71.36 26.98 39.82 2765
229 64 82.87 19.19 80.97 72.03 26.83 39.74 2763
227 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33
225 1,024 79.55 18.57 76.27 64.76 26.38 39.56 26.80
223 4,096 76.34 18.33 70.92 59.29 26.37 38.84 25.81
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Fine-tuning

e Adapter Layers (Houlsby et al., 2019):

o Only adapter layers are updated
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e Gradual Unfreezing (ULMFIT):
o First unfreeze the last layer (which contains least general
knowledge) — the next lower layer

o Scope for better unfreezing scheduling

e Data hungry tasks => higher value of d

Fine-tuning method GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
* All parameters 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Adapter layers, d = 32 80.52 15.08 79.32 60.40 13.84 17.88 15.54
Adapter layers, d = 128 81.51 16.62 79.47 63.03 19.83 27.50 22.63
Adapter layers, d = 512 81.54 17.7 79.18 64.30 23.45 33.98 25.81
Adapter layers, d = 2048 81.51 16.62 79.47 63.03 19.83 27.50 22.63
Gradual unfreezing 82.50 18.95 79.17 70.79 26.71 39.02 26.93




Multi-task learning

e Mixing datasets for all fine-tuning tasks
o Equal mixing: r,, o 1
o Examples-proportional mixing: r, < min(s,,, K)
o Temperature scaled mixing (Multilingual BERT): r., «

Mixing strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline (pre-train/fine-tine) 83.28 19.24 80.88 71.36 26.98 3982 27.65
Equal T6.13 19.02 6.51 63.37 23.89 34.31 26.78
Examples-proportional, K = 216 80.45 19.04 T7.25 69.95 24.35 34.99 27.10
Examples-proportional, K = 217 81.56 19.12 T7.00 67.91 24.36 35.00 27.25
Examples-proportional, K = 218 81.67 19.07 T8.17 67.94 24.57 35.19 27.39
Examples-proportional, K = 219 81.42 19.24 T9.7 67.30 25.21 36.30 27.76
Examples-proportional, K = 220 80.80 19.24 80.36 67.38 25.66 36.93 27.68
Examples-proportional, K = 221! 79.83 18.79 79.50 65.10 25.82 37.22 27.13
Temperature-scaled, T" = 2 81.90 19.28 79.42 69.92 25.42 36.72 27.20
Temperature-scaled, T = 4 80.56 19.22 77.99 69.54 25.04 35.82 27.45
Temperature-scaled, T = 8 T7.21 19.10 T7.14 66.07 24.55 35.35 2717




Combining multi-task learning with fine-tuning

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training 4 fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82  27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21  36.30  27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 26.93 39.79 27.87

Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04
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complementary

Allowed compute power = 4x
o increasing both the training time as well as model size can be

o TPUs efficient for dense tensor multiplications

Scaling model size: main idea to increase di substantially

Scaling strategy GLUE CNNDM SQuAD SGLUE  EnDe EnkFr EnRo
Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1x size, 4x training steps 85.33 19.33 82.45 T4.72 27.08 40.66 27.93
1x size, 4% batch size 84.60 19.42 82.52 74.64 27.07 40.60 27.84
2x size, 2x training steps 86.18 19.66 84.18 77.18 27.52 41.03 28.19
4x size, 1x training steps 85.91 19.73 83.86 78.04 27.47 40.71 28.10
4x ensembled 84.77 20.10 83.09 71.74 28.05 40.53 28.57
4x ensembled, fine-tune only 84.05 19.57 82.36 71.55 27.55 40.22 28.09




State-of-the-Art
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Model

e Objective: span-corruption (SpanBERT) with span length 3

e Longer training: 1M steps with batch size 2048 — 1T tokens
o 8x BERT, 2x XLNet, 12 x RoBERTa

e Model sizes:
o Small: 60M Base: 220M Large: 770M XLarge: 3B
XXLarge: 11B
e Multi-task pre-training (MT-DNN):
o Monitor downstream task performance while pre-training
e Finetune on GLUE and SuperGLUE: 8 batch size



GLUE CoLA S55T-2 MRFPC MRFPC S5TS-B 5TS-B
Meodel Average  Matthew's  Accuracy F1 Accuracy  Pearson  Spearman
Previous best 89.4% 69.2% 97.1¢" 93.6° 91.5" 92.7" 92.30
TH-Small 774 41.0 91.8 20.7 R6.6 85.6 85.0
T5 Base 82.7 al.1 95.2 0.7 27.5 89.4 88.6
T5-Large R6.4 61.2 96.3 92.4 20.9 20.9 820.2
T5-35 88.5 G7.1 97.4 92.5 0.0 0.6 89.8
Ts-118B BO.7T TO.8 a7.1 91.9 ]0.2 92.5 92.1
QOr QP MNLI-m  MNLI-mm QNLI RTE WNLI
Model F1 Acouracy  Accuracy Accuracy Accuracy  Accuracy  Accuracy
Previous best T4.8° 90.7" 91.3* 91.0" 99.2* 89.2% 91.8%
TH-Small T0.0 R2R.0 824 22.3 90.3 69.9 69.2
T5-Base T2.6 89.4 27.1 26.2 93.7 a20.1 TE.B
T5Large 73.9 829.9 820.9 29.6 94.8 87.2 256G
T5-3B T4.4 297 91.4 91.2 96.3 91.1 20.T
T5-118 T4.6 0.4 92.0 291.7 96.7 925 93.2
SOuAD  SQuAD  SuperGLUE Bool(y cB cB COPA
Model EM F1 Average Accuracy F1 Accuracy  Accuracy
Previous best &R.954 94.524 84.6¢ 8]7.1¢ 90.5= 95.2¢ 9.6
T5-Small 79.10 87.24 G3.3 T6.4 G6.9 81.6 46.0
TH-Base 85.44 92.08 T6.2 21.4 86.2 94.0 TL.2
T5-Large 826.66 93.79 82.3 85.4 91.6 94.8 83.4
Ts-38 2R.53 94.95 RBG6.4 29.9 90.3 94.4 92.0
T5-11B 90.06 95.64 88.9 91.0 293.0 96.4 94.8
MultiRC  MultiRC  ReCoRD  ReCoRD RTE wiC WsC
Model Fla EM F1 Accuracy  Accuracy  Accuracy  Accuracy
Previous best 84.4° 52.5¢ 90.6¢ 90.0° BE.2° 69.9¢ 29.0°
T5-Small 693 26.3 56.3 054 Ta.3 G6.9 TO5
T5-Base TOT 43.1 T5.0 74.2 81.5 68.3 20.8
T5-Large 23.3 30.T 86.8 25.9 27.8 69.3 26.3
Ts-38 26.8 o83 91.2 0.4 Q0.7 72.1 a90.4
T5-118B BR.2 62.3 93.3 92.5 92.5 76.1 93.8
WMT EnDe WMT EnFr  WMT EnRo  CNN/DM  CNN/DM  CNN/DM
Model BLEU BLEU BLEU ROUGE-1  ROUGE-2  ROUGE-L
Previous best 33.8" 43.87 38.5¢ 43.47" 20.30" 40.63"
TH-Small 26.7 36.0 26.8 41.12 19.56 38.35
T5-Base 30.9 41.2 28.0 42.05 20.34 39.40
T&-Large 32.0 41.5 28.1 42.50 20.68 39.75
T5-38 31.8 42.6 28.2 42.72 21.02 39.94
Ts-11B 2.1 43.4 28.1 43.52 21.55 40.69




Takeaways

e Text-to-text framework comparable to task-specific
architectures

e Original Encoder-Decoder = shared Encoder-Decoder

e Denoising objectives > LM objective

e Pre-training on in-domain unlabeled data useful for a few
downstream tasks

e Scaling could be most useful when both model size and
training steps are increased

e Pushing limits (11 B parameters) on transformer-like
architectures can help achieve SOTA



Cons

Not language-agnostic (Atishya, Sankalan, Pratyush,
Soumya, Jigyasa)

Large carbon footprints (Keshav, Rajas, Saransh)
Saturation point of size still not known (Jigyasa)

Not much different from BERT (Siddhant, Rajas)
Better data cleaning heuristics (Pratyush, Keshav)



Possible extensions

e Extending to Graphs (KBs) [Keshav, Atishya]
o Leverage OpenlE to construct graphs with clustering of related
paragraphs

o Pre-training task: Predict a sentence from the graph given its
neighbouring ones
o Leverage Graph transformers (Yun et al., 2019) for fine-tuning

e Alternatives to Gradual unfreezing [Rajas, Saransh]
o RL based approach

e Balance scalability vs Performance trade-off in practical
settings [Shubham, Lovish]



Possible extensions

e Multi-lingual learning [Pratyush, Sankalan]
o Lakew et al., 2018



Thank You !!!



