Exploring the Limits of Transfer Learning with a unified Text-to-Text Transformer

Presented by - Vipul Rathore

Elements and images borrowed from Raffel et al., 2019

Transfer Learning: Background

- Pre-train a model on a data-rich task (Unsupervised)
 e.g. Word2vec, Glove (Mikolov et al., 2013a,b)
- Fine tune on a downstream task (Supervised)
- Pre-training gives a model "general-purpose abilities" that can be "transferred" to downstream tasks

Traditional ML

VS

• Isolated, single task learning:

 Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Traditional Learning vs Transfer Learning

Multi-task learning: Classical Paradigm

Multi-task learning: Classical Paradigm

- Task-specific loss function
- Task specific architectural layers

T5 (Text-to-Text Transfer Transformer): Idea

- Pre-train a Transformer Encoder-Decoder model on a large unlabeled web crawl text
- Pose every NLP task as text to text (McCann et al., 2018; Radford et al., 2019)
- Fine-tune separately for each downstream task (done in parallel)

Multi-task learning: T5 Paradigm

Multi-task learning: T5 Paradigm

- Cross Entropy/Max. likelihood loss for all pre-training and fine-tuning tasks
- Same hyperparameters for each task
- "Unified" vocabulary

Unified Text-to-Text view

Figure 1: A diagram of our text-to-text framework. Every task we consider – including translation, question answering, and classification – is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

Pre-training Dataset: Colossal Clean Crawled Corpus

- Goal: analyze the effect of the quality, characteristics and size of unlabeled data
- Source: https://commoncrawl.org/ (20 TB/month, noisy data)
- Data cleaning using heuristics
 - Only retain lines ending in a terminal punctuation mark (".", "!", "?" etc.)
 - Remove obscene words
 - Removing pages containing Javascript code
 - Remove duplicate sentences
 - Retain only English webpages
- 750 GB

Fine-tuning (Downstream) tasks

- Text classification: GLUE and SuperGLUE
- Abstractive summarization: CNN/Daily Mail
- QA: SQuAD
- Translation: WMT English to German, French, and Romanian

Input & Output

- "text-to-text" format
- consistent training objective: maximum likelihood
- task-specific (text) prefix
- Mismatch label Issue
 - e.g. given a premise and hypothesis, classify into one of 3 categories - 'entailment', 'contradiction' and 'neutral'
 - Potentially possible for decoder to output 'hamburger'
 - This issue never observed with their trained models

Input & Output

- Regression task
 - Predict a score between 1 to 5
 - Convert to 21-class classification i.e. round target floating point score to nearest integer multiple of 0.2 and convert into string
 - At inference, convert the string back into floating point number

Input & Output

- Winograd Task (ambiguation)
 - Input Highlighted ambiguous pronoun. e.g. "The city councilmen refused the demonstrators a permit because *they* feared violence ."
 - Output the target noun. E.g. "The city councilmen"

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Baseline

- Encoder-Decoder architecture as in original Transformer paper (Vaswani et al., 2017)
- Relative Positional self-attention (Shaw et al., 2018) RelativeAttention = Softmax $\left(\frac{Q\kappa^{T} + S^{rel}}{\sqrt{D_{h}}}\right) V$

 - S^{rel} is shared across layers for a given attention head, different for different attention heads within a layer

Baseline

• Pre-training objective: Denoising(drop 15 % tokens randomly)

- BERT-base Size Encoder and Decoder (L=12, H=768, A=12)
- Multilingual Vocabulary: SentencePiece (32k word pieces)

Baseline (Pre-training Details)

- Max Sequence length: 512 tokens
- Batch size: 128 sequences = $128 \times 512 = 2^{16}$ tokens
- Training size = 2¹⁹ steps = 2¹⁹ × 2¹⁶ = 2³⁵ tokens ≈ 34 B tokens << BERT (137B) << RoBERTa (2.2T)
- inverse square root learning rate schedule, where k = 10⁴ (warm-up steps)
- AdaFactor
- Dropout: 0.1

Baseline (Fine-tuning Details)

- Batch Size: 128
- Length: 512
- Training size = 2^{18} steps = $2^{18} \times 2^{16} = 2^{34}$ tokens
- constant learning rate: 0.001
- 5,000 steps/checkpoint

Baseline Performance

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	39.77	24.04

Table 1: Average and standard deviation of scores achieved by our baseline model and training procedure. For comparison, we also report performance when training on each task from scratch (i.e. without any pre-training) for the same number of steps used to fine-tune the baseline model. All scores in this table (and every table in our paper except Table 14) are reported on the validation sets of each dataset.

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Types of Self-attention

Architectural Variants

- Encoder-Decoder
 - Baseline
- Language model
 - Used in transfer learning as pre-training model with language modeling objective (Radford et al., 2018)
- Prefix LM
 - Suited for classification tasks. e.g. Input "mnli premise: I hate pigeons. hypothesis: My feelings towards pigeons are filled with animosity. target:", Output - "entailment"

Prefix LM

Model Architectures: Results

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	LM	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	LM	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	LM	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

- Surprisingly, *Enc-dec shared* performs nearly as well as baseline and better than prefix LM. (**ALBERT, XLNet**)
- Explicit encoder-decoder structure can be useful
- Denoising objective > LM objective

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Pre-training: Bert vs Non-Bert style

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling	80.69	18.94	77.99	65.27	26.86	39.73	27.49
BERT-style [Devlin et al., 2018]	82.96	19.17	80.65	69.85	26.78	40.03	27.41
Deshuffling	73.17	18.59	67.61	58.47	26.11	39.30	25.62

Variants of Masked LM

Objective	Input	Output
BERT-style	15 % corruption \rightarrow (90 % MASK, 10 % random tokens)	Original full text
MASS-style	15 % corruption \rightarrow (100 % MASK)	Original full text
Replace corrupted spans	Thank you <x> me to your party <y> week .</y></x>	<x> for inviting <y> last <z></z></y></x>
Drop corrupted tokens	Thank you me to your party week .	for inviting last

Results

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style [Devlin et al., 2018] MASS-style [Song et al., 2019]	$82.96 \\ 82.32$	$\begin{array}{c} 19.17 \\ 19.16 \end{array}$	80.65 80.10	$69.85 \\ 69.28$	$26.78 \\ 26.79$	$\begin{array}{c} 40.03\\ 39.89 \end{array}$	$27.41 \\ 27.55$
★ Replace corrupted spans	83.28 84.44	19.24 19.31	$\begin{array}{c} 80.88 \\ 80.52 \end{array}$	71.36 68.67	$\begin{array}{c} 26.98 \\ 27.07 \end{array}$	39.82 39.76	$\begin{array}{c} 27.65 \\ 27.82 \end{array}$
Short Target &		10.01	00.02	00.01		00.10	21.02
Fast Training C	oue to Co	DLA					

Results

Corruption rate:
 Not sensitive

	Corruption rate	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
	10%	82.82	19.00	80.38	69.55	26.87	39.28	27.44
*	15% 25%	83.28 83.00	19.24 19.54	80.88 80.96	71.36	$\begin{array}{c} 26.98 \\ 27.04 \end{array}$	39.82 39.83	27.65 27.47
_	50%	81.27	19.34	79.80	70.33	27.04 27.01	39.90	27.49

Results

- token-level vs span-level corruption
 - Slight improvement with span length 3

Span length	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline (i.i.d.) 2 3 5 10	83.28 83.54 83.49 83.40 82.85	19.24 19.39 19.62 19.24 19.33	80.88 82.09 81.84 82.05 81.84	71.36 72.20 72.53 72.23 70.44	$26.98 \\ 26.76 \\ 26.86 \\ 26.88 \\ 26.79$	39.82 39.99 39.65 39.40 39.49	$\begin{array}{r} 27.65 \\ 27.63 \\ 27.62 \\ 27.53 \\ 27.69 \end{array}$

Message

- Small modification to the masked language model objective may not lead to significant improvement.
- Try something different !!!

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Pre-training Datasets

- C4: Common Crawl with heuristic filterin
- Unfiltered C4: Common Crawl only use use langdetect to extract English text
- RealNews-like: omitted any non-news content in C4
- WebText-like (GPT2-like): high Reddit score webpages in C4
- Wikipedia
- Wikipedia + Toronto Books Corpus (BERT)

Pre-training Datasets

 Pre-training on in-domain unlabeled data can improve performance on downstream tasks.

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	$745 \mathrm{GB}$	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	$35 \mathrm{GB}$	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17 GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	$16 \mathrm{GB}$	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	$20 \mathrm{GB}$	83.65	19.28	82.08	73.24	26.77	39.63	27.57

 Table 8: Performance resulting from pre-training on different datasets. The first four variants are based on our new C4 dataset.

Due to ReCoRD, News domain SQuAD, from Wikipedia

Varying No. of epochs

• Keeping total number of Training steps = constant

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Full dataset	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25}	1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Fine-tuning

- Adapter Layers (Houlsby et al., 2019):
 - Only adapter layers are updated

- Gradual Unfreezing (ULMFiT):
 - First unfreeze the last layer (*which contains least general knowledge*) → the next lower layer
 - Scope for better unfreezing scheduling
- Data hungry tasks => higher value of d

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d = 32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d = 128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d = 512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d = 2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

Multi-task learning

- Mixing datasets for all fine-tuning tasks
 - Equal mixing: $r_m \propto 1$
 - Examples-proportional mixing: $r_m \propto min(s_m, K)$
 - Temperature scaled mixing (Multilingual BERT): $r_m \propto$

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13
Temperature-scaled, $T = 2$	81.90	19.28	79.42	69.92	25.42	36.72	27.20
Temperature-scaled, $T = 4$	80.56	19.22	77.99	69.54	25.04	35.82	27.45
Temperature-scaled, $T = 8$	77.21	19.10	77.14	66.07	24.55	35.35	27.17

Combining multi-task learning with fine-tuning

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Multi-task training	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Multi-task pre-training $+$ fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07
Leave-one-out multi-task training	81.98	19.05	79.97	71.68	26.93	39.79	27.87
Supervised multi-task pre-training	79.93	18.96	77.38	65.36	26.81	40.13	28.04

Empirical Survey

Methodology "coordinate descent"

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

- Allowed compute power = 4x
 - increasing both the training time as well as model size can be complementary
- Scaling model size: main idea to increase d_{ff} substantially
 - TPUs efficient for dense tensor multiplications

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4 \times \text{ ensembled}$	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

State-of-the-Art

Baseline \rightarrow Architecture \rightarrow Objective \rightarrow Dataset

 \rightarrow Transfer Approach \rightarrow Scaling

Model

- Objective: span-corruption (SpanBERT) with span length 3
- Longer training: 1M steps with batch size 2048 → 1T tokens
 o 8x BERT, 2x XLNet, 1/2 x RoBERTa
- Model sizes:
 - Small: 60M Base: 220M Large: 770M XLarge: 3B
 XXLarge: 11B
- Multi-task pre-training (MT-DNN):
 - Monitor downstream task performance while pre-training
- Finetune on GLUE and SuperGLUE: 8 batch size

	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
Model	Average	Matthew'	s Accurac	ry F1	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1 ^a	^a 93.6 ^b	91.5^{b}	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	89.7	70.8	97.1	91.9	89.2	92.5	92.1
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1 A	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2^{a}	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	74.6	90.4	92.0	91.7	96.7	92.5	93.2
	SQuAD	SQuAD	SuperGL	UE Bool	Q CB	CB	COPA
Model	ĔМ	F1	Âverage	e Accur	acy F1	Accuracy	Accuracy
Previous best	88.95^{d}	94.52^{d}	84.6 ^e	87.1	1^{e} 90.5 ^e	95.2^{e}	90.6 ^e
T5-Small	79.10	87.24	63.3	76.4	4 56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	4 86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	4 91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	9 90.3	94.4	92.0
T5-11B	90.06	95.64	88.9	91.	0 93.0	96.4	94.8
	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
Model	F1a	EM	F1	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	84.4^{e}	52.5^{e}	90.6^{e}	90.0^{e}	88.2^{e}	69.9^{e}	89.0^{e}
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.2	62.3	93.3	92.5	92.5	76.1	93.8
	WMT EnI	De WMT	EnFr WM	MT EnRo	CNN/DM	CNN/DM	CNN/DM
Model	BLEU	BLE	EU	BLEU	ROUGE-1	ROUGE-2	ROUGE-L
Previous best	33.8^{f}	43	.8 ^f	38.5^{g}	43.47^{h}	20.30^{h}	40.63^{h}
T5-Small	26.7	36.	.0	26.8	41.12	19.56	38.35
T5-Base	30.9	41.	.2	28.0	42.05	20.34	39.40
T5-Large	32.0	41.	.5	28.1	42.50	20.68	39.75
T5-3B	31.8	42.	.6	28.2	42.72	21.02	39.94
T5-11B	32.1	43.	.4	28.1	43.52	21.55	40.69

Takeaways

- Text-to-text framework comparable to task-specific architectures
- Original Encoder-Decoder ≈ shared Encoder-Decoder
- Denoising objectives > LM objective
- Pre-training on in-domain unlabeled data useful for a few downstream tasks
- Scaling could be most useful when both model size and training steps are increased
- Pushing limits (11 B parameters) on transformer-like architectures can help achieve SOTA

Cons

- Not language-agnostic (Atishya, Sankalan, Pratyush, Soumya, Jigyasa)
- Large carbon footprints (Keshav, Rajas, Saransh)
- Saturation point of size still not known (Jigyasa)
- Not much different from BERT (Siddhant, Rajas)
- Better data cleaning heuristics (Pratyush, Keshav)

Possible extensions

• Extending to Graphs (KBs)

[Keshav, Atishya]

- Leverage OpenIE to construct graphs with clustering of related paragraphs
- Pre-training task: Predict a sentence from the graph given its neighbouring ones
- Leverage Graph transformers (Yun et al., 2019) for fine-tuning
- Alternatives to Gradual unfreezing

[Rajas, Saransh]

- RL based approach
- Balance scalability vs Performance trade-off in practical settings [Shubham, Lovish]

Possible extensions

- Multi-lingual learning
 - Lakew et al., 2018

[Pratyush, Sankalan]

Thank You !!!