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Attention in seq2seq models 

(Bahdanau 2014)





Multi-head attention



Self-attention (single-head, high-level)

”The animal didn't cross the street because it was too tired”



Self-attention (single-head, pt. 1)

Separation of Value 

and Key

Matrix multiplications 

are quite efficient and 

can be done in 

aggregated manner

Creation of query, key 

and value vectors by 

multiplying by trained 

weight matrices



Self-attention (single-

head, pt. 2)

Paper’s Justification:

To illustrate why the dot products get 

large, assume that the components 

of q and k are independent random 

variables with mean 0 and variance 

1. Then their dot product, q · k has 

mean 0 and variance dk

Mechanism similar to regular 

attention except for division factor



Self-attention (single-head, pt. 3)



Self-attention (multi-head)



Self-attention (multi-head)



Self-attention (multi-head)



Self attention summary



Self attention 

visualisation 

(Interpretable?!)



Transformer Architecture





Zooming in...



Zooming in further...



Adding residual 

connections...



A note on Positional embeddings

Positional embeddings can be extended to any sentence length but if any test 

input is longer than all training inputs then we will face issues.



Decoders

Two key differences from encoder:

● Self-attention only on words 

generated uptil now, not on whole 

sentence.

● Additional encoder-decoder 

attention layer where keys, values 

come from last encoder layer.



Full architecture with 

Attention reference



Regularization

Residual dropout: Dropout added to the the output of each sublayer, before it is 

added to the input of the sublayer and normalized

Label Smoothing: During training label smoothing was employed. This hurts 

perplexity, as the model learns to be more unsure, but improves accuracy and 

BLEU score.



Results 



Results: 

Parameter 

Analysis 



Results: Constituency Parsing



Continuations and SOTA for Machine 

Translation



Scaling Neural Machine Translation (Ott et.al. 2018)



Understanding Back-translation at 

Scale (Edunov et.al. 2018)

This paper augments 

parallel data corpus with 

noisy back-translations 

of monolingual corpora. 

State of the art for 

English-German.

Training done on 4.5M 

bitext and 262M 

monolingual sentences.



BPE-Dropout: Simple and Effective Subword 

Regularization (Provilkov et. al. 2019)

This paper adds dropout to 

Byte-Pair Encoding. State of 

the art or matching it for 

syllabic language translation 

like English-Vietnamese, 

English-Chinese.



Multi-agent Learning for Neural Machine Translation 

(Bi et. al. EMNLP 2019)

These 4 agents 

are different 

types of 

transformers:

L2R, R2L, 30-

layer encoder, 

relative position 

attention



Jointly Learning to Align and Translate with 

Transformer Models (Garg et. al. EMNLP 2019)



Pros

● Current state-of-the-art in machine translation and text simplification.

● Intuition of model well explained

● Easier learning of long-range dependencies

● Relatively less computation complexity

● In-depth analysis of training parameters



Cons

Huge number of parameters so-

● Very data hungry

● Takes a long time to train, LSTM comparisons in paper are unfair

● No study of memory utilisation

Other issues

● Keeping sentence length limited

● How to ensure multi-head attention has diverse perspectives.



Reformer: The Efficient 

Transformer

Kitaev et. al. (January 2020, ICLR)



Concerns about the transformer

“Transformer models are also used on increasingly long sequences. Up to 
11 thousand tokens of text in a single example were processed in (Liu et 
al., 2018) … These large-scale long-sequence models yield great results 
but strain resources to the point where some argue that this trend is 
breaking NLP research”

“Many large Transformer models can only realistically be trained in 
large industrial research laboratories and such models trained with 
model parallelism cannot even be fine-tuned on a single GPU as their 
memory requirements demand a multi-accelerator hardware setup" 



Memory requirement estimate (per layer)

Largest transformer layer ever: 0.5B parameters = 2GB

Activations for 64K tokens for embedding size 1K and batch size 8 

= 64K * 1K * 8 = 2GB

Training data used in BERT = 17GB

Why can’t we fit everything in one GPU?  32GB GPUs are common today.

Caveats follow ->>>>>



Caveats

1. There are N layers in a transformer, whose activations need to be stored 

for backpropagation

2. We have been ignoring the feed-forward networks uptil now, whose 

depth even exceeds the attention mechanism so contributes to significant 

fraction of memory use.

3. Dot product attention is O(L2) in space complexity where L is length of 

text input.



Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only 

a single copy of activations in the whole model, so the N factor disappears. 

2. Splitting activations inside feed-forward layers and processing them in chunks 

saves memory inside feed-forward layers. 

3. Approximate attention computation based on locality-sensitive hashing 

replaces the O(L2) factor in attention layers with O(L log L) and so allows 

operating on long sequences. 



Locality Sensitive Hashing

Hypothesis: Attending on all vectors is approximately same as attending to the 

32/64 closest vectors to query in key projection space.

To find such vectors easily we require:

● Key and Query to be in same space

● Locality sensitive hashing i.e. if distance between key and query is less then 

distance between their hash values is less.

Locality sensitive hashing scheme taken from Andoni et al., 2015 

For simplicity, a bucketing scheme chosen: attend on everything in your bucket



Locality sensitive hashing



Locality sensitive hashing

We have reduced the second term in the max(...) but the first term still remains a 

challenge.



Plumbing the depths

For reducing attention activations: RevNets

For reducing feed forward activations: Chunking



RevNets

Reversible residual layers were introduced in Gomez et. al. 2017

Idea: Activations of previous layer can be recovered from activations of 

subsequent layers, using model parameters.

Normal residual layer:   y = x + F(x)

Reversible layer:

So, for transformer:



Chunking

Operations done a chunk at a time:

● Forward pass of Feed-forward network

● Reversing the activations during backpropagation

● For large vocabularies, chunk the log probabilities



CPU data swaps and conclusion

Layer parameters being computed swapped from CPU to GPU and vice versa

Hypothesis: Large batch size and length of input in Reformer so not so inefficient 

to do such data transfers 



Experiments




