Attention is All You Need

(Vaswani et. al. 2017)
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Attention in seg2seq models
(Bahdanau 2014)

The context vector c¢; is, then, computed as a weighted sum of these
annotations h;:

T
j=1
The weight «a;; of each annotation /; is computed by

B exp (eij)
= —% ,
Zk:l €xXp (e?ﬁk)

Ofij

where
e = a(si—1, hj)




Attention Functions

v: attended vec, q: query vec
MLP(q;v)=

 Additive Attention: ug(W'v+ W2q)

* Dot Product: v-q

* Multiplicative Attention: v'Wgq



Multi-head attention



Self-attention (single-head, high-level)

"The animal didn't cross the street because it was too tired”
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Self-attention (single-head, pt. 1)

Input

Creation of query, key
Embedding (T 1] [T T 1] and value vectors by
multiplying by trained
weight matrices

Queries q|[:I:I:] Q2[:I:I:] wa
Separation of Value
and Key

Keys [:I:I:] [:I:I:]
Matrix multiplications
are quite efficient and
can be done in

Yalues EEN EEE aggregated manner




Input

Embedding
Queries

Keys

Values

Score
Divide by 8 (Vdj )
Softmax
Softmax

X

Sum

Self-attention (single-
(1] head, pt. 2)

q: I
Mechanism similar to regular
L] attention except for division factor
[T 1]

Paper’s Justification:

To illustrate why the dot products get
large, assume that the components
of g and k are independent random
variables with mean 0 and variance
1. Then their dot product, q - k has

(TT]1 mean 0 and variance d,




Self-attention (single-head, pt. 3)
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Self-attention (multi-head)

X
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Self-attention (multi-head)

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7




Self-attention (multi-head)

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN




Self attention summary

Thinking
Machines

* In all encoders other than #0,

we don’t need embedding.

We start directly with the output
of the encoder right below this one
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Transformer Architecture
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Zooming in...
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ENCODER #1

B B
( Self-Attention
-------- e
ST @ @
X1 X2
Thinking Machines

Adding residual
connections...



A note on Positional embeddings

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

X1

+

X2

Je
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+ +
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Positional embeddings can be extended to any sentence length but if any test
input is longer than all training inputs then we will face issues.



Decoders

Two key differences from encoder:

DECODER 1
. r
e Self-attention only on words Foed Forward
generated uptil now, not on whole - :
sentence. s |
o Encoder-Decoder Attention
e Additional encoder-decoder \
. * B
attention layer where keys, values A
Self-Attention
come from last encoder layer. .

t



Full architecture with
Attention reference
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Regularization

Residual dropout: Dropout added to the the output of each sublayer, before it is
added to the input of the sublayer and normalized

Label Smoothing: During training label smoothing was employed. This hurts
perplexity, as the model learns to be more unsure, but improves accuracy and
BLEU score.



Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR
~ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-109 1.4-10%
ConvS2S [9] 25.16 4046 9.6-10"% 1.5-10%
MOoE [32] 26.03  40.56 2.0-10" 1.2-10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10° 1.1-10*
ConvS2S Ensemble [9] 26.36  41.29 7.7-10"  1.2.10*
Transformer (base model) 27.3 38.1 3.3.1018

Transformer (big) 28.4 41.8 2.3.10




. train | PPL BLEU params
N dmoger  d hde  dv Farop s steps | (dev) (dev) x10°
base | 6 512 2048 8 64 64 0.1 0.1 100K | 492 25.8 65
1 512 512 5.29 249
(A) 4 128 128 5.00 25.5
16 32 32 491 258
3216 16 501 254 Results:
16 5.16 25.1 58
® 32 so1 254 e Parameter
2 6.11 23.7 36 .
4 519 253 50 Ana|y3|s
3 4.88 255 30
(C) 256 32 32 5.75 245 28
1024 128 128 4.66 26.0 168
1024 5.12 254 53
4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
(D) 0.0 467 253
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213




Results: Constituency Parsing

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23
of WSJ)

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] | WSJ only, discriminative 88.3
Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 91.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 91.3
Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1
Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3




Continuations and SOTA for Machine
Translation



Scaling Neural Machine Translation (Ott et.al. 2018)

model #gpu bsz cumul | BLEU updates tkn/sec time speedup
Vaswani et al. (2017) 8xP100 25k 1 26.4 300k ~25k  ~5,000 -
Our reimplementation 8x V100 25k 1 26.4 192k 54k 1,429  reference
+ 16-bit 8 25k 1 26.7 193k 143k 495 2.9x
+ cumul 8 402k 16 26.7 13.7k 195k 447 3.2x
+2x 1r 8 402k 16 26.5 9.6k 196k 311 4.6x
+ 5k tkn/gpu 8 365k 10 26.5 10.3k 202k 294 4.9x
16 nodes (from +2x 1r) 128 402k 1 26.5 9.5k 1.53M 37 38.6x
+ overlap comm+bwd 128 402k 1 26.5 9.7k 1.82M 32 44.7x

Table 1: Training time (min) for reduced precision (1 6-bit), cumulating gradients over multiple back-
wards (cumul), increasing learning rate (2x 1r) and computing each forward/backward with more
data due to memory savings (5k tkn/gpu). Average time (excl. validation and saving models) over 3

- T — - - -



Understanding Back-translation at

Scale (Edunov et.al. 2018)

This paper augments
parallel data corpus with
noisy back-translations
of monolingual corpora.
State of the art for
English-German.

Training done on 4.5M
bitext and 262M
monolingual sentences.

En-De En-Fr

a. Gehring et al. (2017) 25.2 40.5
b. Vaswani et al. (2017) 28.4 41.0
¢. Ahmed et al. (2017) 28.9 414
d. Shaw et al. (2018) 29.2 41.5
DeepL 333 45.9
Our result 35.0 45.6
detok. sacreBLEU? 33.8 43.8

BLEU (newstest2012)

24
—— greedy -—# beam
qr ——  topl0 ——sampling
3.5 .
—+— beam+noise
5M 8M 11M 1™ 29M

Total training data



BPE-Dropout: Simple and Effective Subword
Regularization (Provilkov et. al. 2019)

This paper adds dropout to BPE  Kudo (2018) BPE-dropout
Byte-Pair Encoding. State of IWSLT15
the art or matching it for En-Vi  31.78 3243 33.27
syllabic language translation Vi-En  30.83 32.36 32.99
like English-Vietnamese En-zh 21.07 23.15 23.27
-ngiish ’ Zh-En 1829  21.10 21.45
English-Chinese.
IWSLT17
En-Fr 39.37 39.45 40.02
Fr-En  38.18 38.88 39.39
En-Ar 13.89 14.43 15.05

Ar-En  31.90 32.80 33.72




Multi-agent Learning for Neural Machine Translation
(Bi et. al. EMNLP 2019)

(a):Pre-train for Each Agent
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(b):Generate Ensemble Model

(c):One-to-Many Learning

Agentl Agent2 Agentl | Agent2 Agentl /| Agent2
I)-’: — ;d‘
E-"1 Ensemble | i : &
Model JIJ :_ j .‘.
- : .’I Ensemble :
Model
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Figure 2: In this example, four agents decode the similar sentence with different model capacity. (a): At first, each
agent is pre-trained to generate the translation independently. (b) The ensemble model is generated by the average
prediction from each agent. (c): The One-to-Many learning distills the knowledge from the ensemble model to
each agent as necessary. The performance of each agent is improved explicitly in an interactive updating process,

through repeating the process (b) and (c).

These 4 agents
are different
types of
transformers:
L2R, R2L, 30-
layer encoder,
relative position
attention



Jointly Learning to Align and Translate with
Transformer Models (Garg et. al. EMNLP 2019)

Table 4: Results on the align and translate task. Alignment quality is reported in AER, translation qua]m in
Thaseline (without back-translation) sacreBLEU results were provided in !

BLEU.
pytorch/fairseq/issues

s/506fissuecomment-4644

(BPE-based) is statistically significant (p<0.001)

A A4 4

'Difference in AER W.r.L. GIEA++

b= 4=
(= — -
___Iu-n_'i-

L

-

R TR T
100 . COI

AER'" (Precision . Recall ) BLEU
Model DeEn EnDe Symmetrized | DeEn EnDe
GI1ZA++ (word-based) 21.7(854.72.1) 24.0(85.8.68.2) 22.2 (935, 66.5) - -
G1ZzA++ (BPE-based) 19.0(89.1,742) 21.3(868.71.9) 19.6(93.2.70.6) - -
Layer average baseline | 66.8 (32.0,34.6) 66.5(325.34.7) 54.8(942.296) | 33.1 28.7
Multi-task 31.1(672,70.7) 32.2(666.69.1) 25.8(88.1,638) | 33.1 28.5
+ full-context 21.2(769,809) 23.5(75.0,78.0) 19.5(895.729) | 33.2 285
++ G1ZA++ supervised | 17.5% (80.5.84.7) 19.8% (78.8.81.7) 16.4% (89.6.78.2) | 33.1 28.8
Edunov et al. (2018)" - - - - 290




Pros

Current state-of-the-art in machine translation and text simplification.
Intuition of model well explained

Easier learning of long-range dependencies

Relatively less computation complexity

In-depth analysis of training parameters



cons

Huge number of parameters so-

e \ery data hungry
e Takes along time to train, LSTM comparisons in paper are unfair
e No study of memory utilisation

Other issues

e Keeping sentence length limited
e How to ensure multi-nead attention has diverse perspectives.



Reformer: The Efficient
Transformer
Kitaev et. al. (January 2020, ICLR)



Concerns about the transformer

“Transformer models are also used on increasingly long sequences. Up to
11 thousand tokens of text in a single example were processed in (Liu et
al., 2018) ... These large-scale long-sequence models yield great results
but strain resources to the point where some argue that this trend is
breaking NLP research”

“Many large Transformer models can only realistically be trained in
large industrial research laboratories and such models trained with
model parallelism cannot even be fine-tuned on a single GPU as their
memory requirements demand a multi-accelerator hardware setup"



Memory requirement estimate (per layer)

Largest transformer layer ever: 0.5B parameters = 2GB

Activations for 64K tokens for embedding size 1K and batch size 8
=64K* 1K * 8 = 2GB

Training data used in BERT = 17GB

Why can’t we fit everything in one GPU? 32GB GPUs are common today.

Caveats follow ->>>>>



Caveats

1. There are N layers in a transformer, whose activations need to be stored
for backpropagation

2. We have been ignoring the feed-forward networks uptil now, whose
depth even exceeds the attention mechanism so contributes to significant
fraction of memory use.

3. Dot product attention is O(L?) in space complexity where L is length of
text input.



Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only
a single copy of activations in the whole model, so the N factor disappears.

2. Splitting activations inside feed-forward layers and processing them in chunks
saves memory inside feed-forward layers.

3. Approximate attention computation based on locality-sensitive hashing
replaces the O(L?) factor in attention layers with O(L log L) and so allows
operating on long sequences.



Locality Sensitive Hashing

Hypothesis: Attending on all vectors is approximately same as attending to the
32/64 closest vectors to query in key projection space.

To find such vectors easily we require:

e Key and Query to be in same space
e Locality sensitive hashing i.e. if distance between key and query is less then

distance between their hash values is less.
Locality sensitive hashing scheme taken from Andoni et al., 2015

For simplicity, a bucketing scheme chosen: attend on everything in your bucket



Locality sensitive hashing
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Locality sensitive hashing

Table 1: Memory and time complexity of attention variants. We write [ for length, b for batch size,
nyp, for the number of heads, n.. for the number of LSH chunks, n,. for the number of hash repetitions.

Attention Type Memory Complexity Time Complexity
Scaled Dot-Product max(bnyldy, bn,l*) max(bny,ldy, bnl?)
Memory-Efficient max(bny,ldy., bn,l?) max (bny,ldy.., bnyl?)
LSH Attention max(bnpldy, bnyln, (4l /n.)?) max(bnyldy, bnyn,1(41/n.)?)

We have reduced the second term in the max(...) but the first term still remains a
challenge.



Plumbing the depths

the activations before each layer are already of the size b- [ - d,,,,4¢1, SO the memory use of the whole
model with n; layers is at least b - [ - d,,,,4¢1 - ;. Even worse: inside the feed-forward layers of
Transformer this goes up to b - [ - dss - n;. In a big Transformer it is usual to set dfy = 4K and
n; = 16 so with [ = 64K this again would use an impractical 16G'B of memory

For reducing attention activations: RevNets

For reducing feed forward activations: Chunking



RevNets

Reversible residual layers were introduced in Gomez et. al. 2017

Idea: Activations of previous layer can be recovered from activations of
subsequent layers, using model parameters.

Normal residual layer: y = x + F(x)

Reversible laver:
Yy = x1 + F(x9) ys =z + G(y1)
xro =Yys — G(y1) ) =y — F(x2)

So, for transformer:

Y7 = X, + Attention(X5) Y> = X5 + FeedForward(Y7)



Chunking

Y, = [}/’2(1); .. YQ(C)] = [XQ(I) - FeedForward(Yl(l)); e ;Xz(,c) + FeedForward(Yl(c))]

Operations done a chunk at a time:

e Forward pass of Feed-forward network
e Reversing the activations during backpropagation
e Forlarge vocabularies, chunk the log probabilities



CPU data swaps and conclusion

Layer parameters being computed swapped from CPU to GPU and vice versa

Hypothesis: Large batch size and length of input in Reformer so not so inefficient
to do such data transfers

Model Type Memory Complexity Time Complexity
Transformer max(blds s, bnpl®)n, (blds + bnhlg)m
Reversible Transformer max(bld ¢, bnyl?) (bnpldss + bngl®)n
Chunked Reversible Transformer ~ max(bld,,oqe1, bnnl?) (bnpldss + bngl*)ny
LSH Transformer max(bldg ¢, bnpln,.c)n;  (bldss + bnpn, lC)TLg
Reformer max (bldodel, bnpln.c)  (bldss + bnpn.lc)n



Experiments

Attention Speed Dependence on Sequence Length - Synthetic Data
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