
Attention is All You Need

(Vaswani et. al. 2017)

Slides and figures when not cited are from:

Mausam, Jay Alammar ‘The Illustrated Transformer’

Attention in seq2seq models

(Bahdanau 2014)

Multi-head attention

Self-attention (single-head, high-level)

”The animal didn't cross the street because it was too tired”

Self-attention (single-head, pt. 1)

Separation of Value

and Key

Matrix multiplications

are quite efficient and

can be done in

aggregated manner

Creation of query, key

and value vectors by

multiplying by trained

weight matrices

Self-attention (single-

head, pt. 2)

Paper’s Justification:

To illustrate why the dot products get

large, assume that the components

of q and k are independent random

variables with mean 0 and variance

1. Then their dot product, q · k has

mean 0 and variance dk

Mechanism similar to regular

attention except for division factor

Self-attention (single-head, pt. 3)

Self-attention (multi-head)

Self-attention (multi-head)

Self-attention (multi-head)

Self attention summary

Self attention

visualisation

(Interpretable?!)

Transformer Architecture

Zooming in...

Zooming in further...

Adding residual

connections...

A note on Positional embeddings

Positional embeddings can be extended to any sentence length but if any test

input is longer than all training inputs then we will face issues.

Decoders

Two key differences from encoder:

● Self-attention only on words

generated uptil now, not on whole

sentence.

● Additional encoder-decoder

attention layer where keys, values

come from last encoder layer.

Full architecture with

Attention reference

Regularization

Residual dropout: Dropout added to the the output of each sublayer, before it is

added to the input of the sublayer and normalized

Label Smoothing: During training label smoothing was employed. This hurts

perplexity, as the model learns to be more unsure, but improves accuracy and

BLEU score.

Results

Results:

Parameter

Analysis

Results: Constituency Parsing

Continuations and SOTA for Machine

Translation

Scaling Neural Machine Translation (Ott et.al. 2018)

Understanding Back-translation at

Scale (Edunov et.al. 2018)

This paper augments

parallel data corpus with

noisy back-translations

of monolingual corpora.

State of the art for

English-German.

Training done on 4.5M

bitext and 262M

monolingual sentences.

BPE-Dropout: Simple and Effective Subword

Regularization (Provilkov et. al. 2019)

This paper adds dropout to

Byte-Pair Encoding. State of

the art or matching it for

syllabic language translation

like English-Vietnamese,

English-Chinese.

Multi-agent Learning for Neural Machine Translation

(Bi et. al. EMNLP 2019)

These 4 agents

are different

types of

transformers:

L2R, R2L, 30-

layer encoder,

relative position

attention

Jointly Learning to Align and Translate with

Transformer Models (Garg et. al. EMNLP 2019)

Pros

● Current state-of-the-art in machine translation and text simplification.

● Intuition of model well explained

● Easier learning of long-range dependencies

● Relatively less computation complexity

● In-depth analysis of training parameters

Cons

Huge number of parameters so-

● Very data hungry

● Takes a long time to train, LSTM comparisons in paper are unfair

● No study of memory utilisation

Other issues

● Keeping sentence length limited

● How to ensure multi-head attention has diverse perspectives.

Reformer: The Efficient

Transformer

Kitaev et. al. (January 2020, ICLR)

Concerns about the transformer

“Transformer models are also used on increasingly long sequences. Up to
11 thousand tokens of text in a single example were processed in (Liu et
al., 2018) … These large-scale long-sequence models yield great results
but strain resources to the point where some argue that this trend is
breaking NLP research”

“Many large Transformer models can only realistically be trained in
large industrial research laboratories and such models trained with
model parallelism cannot even be fine-tuned on a single GPU as their
memory requirements demand a multi-accelerator hardware setup"

Memory requirement estimate (per layer)

Largest transformer layer ever: 0.5B parameters = 2GB

Activations for 64K tokens for embedding size 1K and batch size 8

= 64K * 1K * 8 = 2GB

Training data used in BERT = 17GB

Why can’t we fit everything in one GPU? 32GB GPUs are common today.

Caveats follow ->>>>>

Caveats

1. There are N layers in a transformer, whose activations need to be stored

for backpropagation

2. We have been ignoring the feed-forward networks uptil now, whose

depth even exceeds the attention mechanism so contributes to significant

fraction of memory use.

3. Dot product attention is O(L2) in space complexity where L is length of

text input.

Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only

a single copy of activations in the whole model, so the N factor disappears.

2. Splitting activations inside feed-forward layers and processing them in chunks

saves memory inside feed-forward layers.

3. Approximate attention computation based on locality-sensitive hashing

replaces the O(L2) factor in attention layers with O(L log L) and so allows

operating on long sequences.

Locality Sensitive Hashing

Hypothesis: Attending on all vectors is approximately same as attending to the

32/64 closest vectors to query in key projection space.

To find such vectors easily we require:

● Key and Query to be in same space

● Locality sensitive hashing i.e. if distance between key and query is less then

distance between their hash values is less.

Locality sensitive hashing scheme taken from Andoni et al., 2015

For simplicity, a bucketing scheme chosen: attend on everything in your bucket

Locality sensitive hashing

Locality sensitive hashing

We have reduced the second term in the max(...) but the first term still remains a

challenge.

Plumbing the depths

For reducing attention activations: RevNets

For reducing feed forward activations: Chunking

RevNets

Reversible residual layers were introduced in Gomez et. al. 2017

Idea: Activations of previous layer can be recovered from activations of

subsequent layers, using model parameters.

Normal residual layer: y = x + F(x)

Reversible layer:

So, for transformer:

Chunking

Operations done a chunk at a time:

● Forward pass of Feed-forward network

● Reversing the activations during backpropagation

● For large vocabularies, chunk the log probabilities

CPU data swaps and conclusion

Layer parameters being computed swapped from CPU to GPU and vice versa

Hypothesis: Large batch size and length of input in Reformer so not so inefficient

to do such data transfers

Experiments

