Attention and Iits
(mis)interpretation

Danish Pruthi



Acknowledgements

Bhuwan Dhingra

Graham Neubig Zachary C. Lipton



1.

3.

4.

5.

Outline

What is attention mechanism?
Attention-as-explanations
Manipulating attention weights
Results and discussion

Conclusion



Outline

1. What is attention mechanism?
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Sentence Representations

Problem: “You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!” — Ray Mooney

Solution: Use attention (Bahdanau et al. 2015)



Basic ldea

Bahdanau et al. 2015

e Encode each word In the sentence into a vector

* When decoding, perform a linear combination of these
vectors, weighted by “attention weights”

* Use this combination in picking the next word
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Score Functions

Dot-Product score(s,, h;) = s, h,
attention

Bi-linear score(s, h) = s W h,
attention

MLP

R ,

attention score(s;, h;) = v, tanh(W [s; h;])
s'h.

Scaled dot-product  score(s,, k) =
attention \/;




Score Functions

e Bi-linear score(s,h,) =s'W h,
attention
e MLP - |
attention score(s;, h;) = v, tanh(W [s; h;])
s h

* Scaled dot-product  score(s,h) ="
attention \/n
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Attention as explanation

e Used by model-developers to explain models' predictions

Hypothesis: Two dogs swim in the lake.

A stop sign is on a road with a
mountain in the background.

Entailment

Rocktaschel et al, 2015 Image captioning
Xu et al, 2015
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Attention as explanation

e Used by model-developers to explain models' predictions

why does zebras have stripes ?

what is the purpose or those stripes ?
who do they serve the zebras in the
wild life ?

this provides camouflage -  predator
vision is such that it is usually difficult

for them to see complex patterns

Document classification
Yang et al, 2016
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[SEP]
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Attention as explanation

e Used by model-developers to explain models' predictions

"By inspecting the network’s attention, for instance by
visually highlighting attention weights, one could attempt to
investigate and understand the outcome of neural networks.

Hence, weight visualization is now common practice."

Galassi et al., 2019
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Attention as explanation

e Used by model-developers to explain models' predictions

e Used by practitioners to audit models for bias, fairness,
accountabillity, etc

william henry gates iii ( born october 28 , 1955 ) is an american business magnate , investor
, author , philanthropist , humanitarian , and principal founder of microsoft corporation .
during his career at microsoft , gates held the positions of chairman , ceo and chief software
ﬁ, while also being the largest individual shareholder until may 2014 . in 1975,
gates and paul allen launched microsoft , which became the world 's largest pc software
company . gates led the company as chief executive officer until stepping down in january
2000 , but he remained as chairman and created the position of chief software ‘for
himself . in june 2006 , gates announced that he would be transitioning from full-time work
at microsoft to part-time work and full-time work at the bill & melinda gates foundation ,
which was established in 2000 .

Figure 7: Visualization of the DNN’s per-token attention
weights. Predicted label (i.e., occupation): software engineer.

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting,
De-Arteaga, et al, 2019
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Attention-as-explanation in FAT* contexts

* Fairness, accountability and transparency

e Use attention mechanism to identify gender bias in
occupation prediction models used as a part of high-
stakes job recommendation models
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Attention-as-explanation in FAT* contexts

* Fairness, accountability and transparency

e Use attention mechanism to identify gender bias in
occupation prediction models used as a part of high-
stakes job recommendation models

"The attention weights indicate which tokens are
the most predictive"

De-Arteaga et al., 2019
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Attention-as-explanation in FAT* contexts

* Fairness, accountability and transparency

e Use attention mechanism to identify gender bias in
occupation prediction models used as a part of high-
stakes job recommendation models

"The attention weights indicate which tokens are
the most predictive"

We question this assumption: does attention

necessarily indicate most predictive tokens?

De-Arteaga et al., 2019
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3. Manipulating attention weights
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Setup

Setup tasks such that we know certain features a-priori to
be useful for prediction

Measure “attention mass” on these tokens

Examine if the models can be manipulated

e What is the price to pay?

16



Classification Tasks



Classification Tasks

Task Input Example



Classification Tasks

Task : Input Example
Occupation Prediction E X practices medicine in Memphis, TN. B X
(Physician vs Surgeon) : speaks English and Spanish.
--------------------- T T T e
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Classification Tasks

Input Example

X practices medicine in Memphis, TN. B X
speaks English and Spanish.

Occupation Prediction
(Physician vs Surgeon)

After that, Austen was educated at home until
went to boarding school early in 1785
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Classification Tasks

Input Example

X practices medicine in Memphis, TN. B X
speaks English and Spanish.

Occupation Prediction
(Physician vs Surgeon)

After that, Austen was educated at home until
went to boarding school early in 1785

oood dialogue, good cinematography.
Helen Reddy is an Australian singer and activist.

Sentiment Analysis
(SST + Wikipedia)
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Classification Tasks

Task Input Example

X practices medicine in Memphis, TN. B X
speaks English and Spanish.

Occupation Prediction
(Physician vs Surgeon)

After that, Austen was educated at home until
went to boarding school early in 1785

Sentiment Analysis
(SST + Wikipedia)

oood dialogue, good cinematography.
Helen Reddy is an Australian singer and activist.

It is with pleasure that | am writing this letter...I
highly recommend her for your institution.
Percentile:99.0 Rank:Extraordinary.

Acceptance Prediction
(Reference Letters)

-----1---
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Sequence-to-sequence
Tasks

Example

o'
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A%

English - German MT This is an example. — Dieser ist ein Beispiel.
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Manipulating Attention

e Let I be the impermissible tokens, m is the mask

{1, ifw, € Z
m;=

0 otherwise
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e Let I be the impermissible tokens, m is the mask

{1, ifw, € Z
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* For any task-specific loss function, a penalty term is added
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Manipulating Attention

e Let I be the impermissible tokens, m is the mask

{1, ifw, € Z
;=

0 otherwise

* For any task-specific loss function, a penalty term is added

e The penalty term penalizes the model for allocating attention to
Impermissible tokens

R = —Alog(1 — a'm)
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Manipulating Attention




Manipulating Attention

R~ ~Xlog(3 - atm)

Total attention mass

on all the "allowed" tokens




Manipulating Attention

Penalty coefficient that
modulates attention on
Impermissible tokens

Total attention mass
on all the "allowed" tokens
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Manipulating Attention

Penalty coefficient that
modulates attention on
Impermissible tokens

Total attention mass
on all the "allowed" tokens

e Side note: In a parallel work, Wiegreffe and Pinter
(2019) propose a different penalty term

R,: —)\KL(aneW H aOld)
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Manipulating Attention

 Multiple attention heads



Manipulating Attention

 Multiple attention heads

e Optimizing the mean over a set of attention heads
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Manipulating Attention

 Multiple attention heads

e Optimizing the mean over a set of attention heads

 One of the attention heads can be assigned a large amount
of attention to impermissible tokens

R = —A-min log(l — afm)

heH
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Outline

4. Results and discussion
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BiLSTM + Attention
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Transformer-based Model
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[SEP]
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[SEP]

[CLS]
the
rabbit
quickly
hopped
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
the
turtle
slowly
crawled

[SEP]
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Classification Tasks

Occupation Pred. Gender Identify SST + Wiki Ref. Letters
Acc. A.M. Acc. A.M. Acc. A.M. Acc. AM.

93.8 66.8 48.9 74.2 2.3

Model A

N

Embedding 0.0
Embedding 0.0
Embedding 0.1
Embedding 1.0

BiLSTM 0.0
BiLSTM 0.0

BiLSTM 0.1
BiLSTM 1.0

BERT 0.0
BERT (mean) 0.0

BERT (mean) 0.1
BERT (mean) 1.0

BERT 0.0
BERT (max) 0.0

BERT (max) 0.1
BERT (max) 1.0

96.3 514 100 99.2 70.7 48.4 77.5 2.3
96.2 4.6 99.4 3.4 67.9 36.4 76.8 0.5
96.2 1.3 99.2 0.8 48.4 8.7 76.9 0.1

93.3 - 63.3 - 49.1 - 74.7 -
96.4 50.3 100 96.8 76.9 77.7 77.5 4.9

96.4 0.08 100 < 10°° 60.6 0.04 76.9 3.9
96.7 < 1072 100 < 10°° 61.0 0.07 742 < 102

95.0 - 72.8 - 50.4 - 68.2
97.2 13.9 100 80.8 90.8 59.0 74.7 2.6

97.2 0.01 999 < 107° 909 < 10°? 762 < 1071
972 <1073 999 < 107° 906 < 10°° 752 < 1072

95.0 - 72.8 - 50.4 - 68.2
97.2 99.7 100 99.7 90.8 96.2 74.7 28.9

97.1 < 107° 999 <1073 90.7 < 1072 76.7 0.6
974 < 107° 998 <107 902 < 10°° 759 < 1072
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Classification Tasks
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Occupation Pred. Gender Identify SST + Wiki Ref. Letters
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Alternate mechanisms

Gender-ldentification

— Attention Mass

= Vector Norm

= = Attention Mass w/o0 manipulation
= = Vector Norm w/o manipulation
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Alternate mechanisms

Gender-ldentification

— Attention Mass

= Vector Norm

= = Attention Mass w/o0 manipulation
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At inference time, what if we hard set the
corresponding attention mass to ZERO?




Alternate mechanisms

Gender-ldentification

— Attention Mass

= Vector Norm

= = Attention Mass w/o0 manipulation
= = Vector Norm w/o manipulation
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Alternative workarounds

e Through recurrent connections, if they exist.

e |Increase in the magnitude of representations
corresponding to impermissible tokens.
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Human studies

 We present inputs for the task Occupation Prediction and

the predicted outputs (Physician or Surgeon) by one of
the models

e \We notify the annotators that the input tokens are
highlighted on the basis of an “explanation
method” (attention weights)

e \We ask the annotators two rating questions
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Human studies

e Q1: Do you think that this prediction was influenced by
the gender of the individual?
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Human studies

e Q1: Do you think that this prediction was influenced by
the gender of the individual?

Manipulation Input example Percentage of
type Predicted label - Physician sentences

. . ms. UNK practices medicine in UNK and specializes
No manipulation :in urological surgery. ms. UNK is affiliated with 66%
menorah medical center

ms. UNK practices medicine in UNK and specializes
Ours in urological surgery. ms. UNK is affiliated with
menorah medical center

: ms. UNK practices medicine in UNK and specializes
Weigratf et al, in urological surgery. ms. UNK is affiliated with
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Human studies

e Q2: Do you believe that highlighted tokens capture the
model’s prediction?

Manipulation Input example
type Predicted label - Physician

. . ms. UNK practices medicine in UNK and specializes
No manipulation :in urological surgery. ms. UNK is affiliated with
menorah medical center

ms. UNK practices medicine in UNK and specializes
Ours in urological surgery. ms. UNK is affiliated with
menorah medical center

: ms. UNK practices medicine in UNK and specializes
Weigratf et al, in urological surgery. ms. UNK is affiliated with
2019 menorah medical center
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Conclusion

In organic cases, typically attention is high for the 'right’
tokens. Consistent across different seeds.

Often attention is easy to manipulate with negligible drop
In accuracy.

Models with manipulated attention often perform better
compared against models with no or uniform attention.

Multiple possible ways to find alternate mechanisms that
are not consistent with one another.
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Discussion points

e "maybe we can come up with techniques and metrics to
compute the reliability of attention for an explanation, for
a general model”

e "While the paper points out a major problem in the way
attention is conceived, it does not make any effort to offer
a solution.”
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Discussion points

e "| would have loved to see some more work on showing
that if [accuracy] scores were retained even after
changing the attention weights, then what exactly is the
model focussing on for its predictions”
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