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Sentence Representations

Problem: “You can’t cram the meaning of a whole %&!$ing 
sentence into a single $&!*ing vector!” — Ray Mooney

Solution: Use attention (Bahdanau et al. 2015)
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Basic Idea 
Bahdanau et al. 2015

• Encode each word in the sentence into a vector 


• When decoding, perform a linear combination of these 
vectors, weighted by “attention weights”  


• Use this combination in picking the next word
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Score Functions
• Dot-Product  

attention 


• Bi-linear  
attention


• MLP  
attention


• Scaled dot-product  
attention 

score(st, hi) = v⊤
a tanh(Wa[st; hi])
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Attention as explanation
• Used by model-developers to explain models' predictions

Image captioning

Xu et al, 2015

Entailment

Rocktäschel et al, 2015
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Attention as explanation
• Used by model-developers to explain models' predictions

Image captioning

Xu et al, 2015

BERTViz

Vig et al, 2019

Document classification

Yang et al, 2016 and many others…
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Attention as explanation

12

"By inspecting the network’s attention, for instance by 
visually highlighting attention weights, one could attempt to 
investigate and understand the outcome of neural networks. 

Hence, weight visualization is now common practice."

Galassi et al., 2019


• Used by model-developers to explain models' predictions



Attention as explanation
• Used by model-developers to explain models' predictions


• Used by practitioners to audit models for bias, fairness, 
accountability, etc

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting,

De-Arteaga, et al, 2019
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Attention-as-explanation in FAT* contexts 
* Fairness, accountability and transparency 

De-Arteaga et al., 2019

• Use attention mechanism to identify gender bias in 
occupation prediction models used as a part of high-
stakes job recommendation models 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Attention-as-explanation in FAT* contexts 
* Fairness, accountability and transparency 

De-Arteaga et al., 2019

• Use attention mechanism to identify gender bias in 
occupation prediction models used as a part of high-
stakes job recommendation models 

"The attention weights indicate which tokens are 
the most predictive"

We question this assumption:  does attention 
necessarily indicate most predictive tokens?  
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• Setup tasks such that we know certain features a-priori to 
be useful for prediction


• Measure “attention mass” on these tokens


• Examine if the models can be manipulated


• What is the price to pay?

Setup
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Task Input Example
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Task Input Example

Occupation Prediction 
(Physician vs Surgeon)

Ms. X practices medicine in Memphis, TN. Ms. X 
speaks English and Spanish.

Gender Identification After that, Austen was educated at home until she 
went to boarding school early in 1785

Sentiment Analysis  
(SST + Wikipedia)

Good acting, good dialogue, good cinematography. 
Helen Reddy is an Australian singer and activist.

Acceptance Prediction 
(Reference Letters)

It is with pleasure that I am writing this letter...I 
highly recommend her for your institution. 

Percentile:99.0 Rank:Extraordinary.

Classification Tasks
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Task Example

Bigram Flipping {w1, w2 … w2n-1, w2n}  → {w2, w1, … w2n, w2n-1}

Sequence Copying  {w1,w2, … wn-1, wn}   → {w1,w2, … wn, wn-1}

Sequence Reversal  {w1,w2, … wn-1, wn}  → {wn,wn-1, … w2, w1}

English - German MT This is an example. → Dieser ist ein Beispiel.

Sequence-to-sequence 
Tasks



Manipulating Attention

20



• Let  be the impermissible tokens, m is the mask 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• Let  be the impermissible tokens, m is the mask 
 

                                 

𝖨

• For any task-specific loss function, a penalty term is added 
 
                                       

•  The penalty term penalizes the model for allocating attention to 
impermissible tokens 
 

                             

Manipulating Attention

20



Manipulating Attention
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Manipulating Attention

Total attention mass 
on all the "allowed" tokens
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• Side note: In a parallel work, Wiegreffe and Pinter 
(2019) propose a different penalty term



Manipulating Attention

22



Manipulating Attention
• Multiple attention heads
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Manipulating Attention
• Multiple attention heads

• Optimizing the mean over a set of attention heads 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Manipulating Attention
• Multiple attention heads

• Optimizing the mean over a set of attention heads 
 

• One of the attention heads can be assigned a large amount 
of attention to impermissible tokens 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BiLSTM + Attention

x1

biLSTM biLSTM biLSTM

x2

….. biLSTM

xnx3

αnα1 α2 α3

y
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x1 x2 xnx3

αnα1 α2 α3

y

Embedding + Attention 
(No recurrent connections)
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Transformer-based Model

Devlin et. al26
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Occupation Prediction
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Alternate mechanisms 
Gender-Identification
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Bigram Flip
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Bigram Flip

Original
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Bigram Flip

Original Manipulated 
32



Bigram Flip

Original Manipulated 

A different seed 
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Sequence Copy
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Original Manipulated 
34



Sequence Copy

Original Manipulated 

A different seed 

34



Sequence Reverse
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English German MT
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Alternative workarounds

• Through recurrent connections, if they exist. 

• Increase in the magnitude of representations 
corresponding to impermissible tokens.
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Human studies

• We present inputs for the task Occupation Prediction and 
the predicted outputs (Physician or Surgeon) by one of 
the models


• We notify the annotators that the input tokens are 
highlighted on the basis of an “explanation 
method” (attention weights)


• We ask the annotators two rating questions
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Human studies
• Q1: Do you think that this prediction was influenced by 

the gender of the individual?
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2019
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Human studies
• Q2: Do you believe that highlighted tokens capture the 

model’s prediction? 

41
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Conclusion
• In organic cases, typically attention is high for the 'right' 

tokens. Consistent across different seeds.

• Often attention is easy to manipulate with negligible drop 
in accuracy. 

• Models with manipulated attention often perform better 
compared against models with no or uniform attention.

• Multiple possible ways to find alternate mechanisms that 
are not consistent with one another.
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Discussion points

• "maybe we can come up with techniques and metrics to 
compute the reliability of attention for an explanation, for 
a general model"


• "While the paper points out a major problem in the way 
attention is conceived, it does not make any effort to offer 
a solution."
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Discussion points

• "I would have loved to see some more work on showing 
that if [accuracy] scores were retained even after 
changing the attention weights, then what exactly is the 
model focussing on for its predictions"
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