Adversarial Learning for Neural Dialogue Generation

Jiwei Li1, Will Monroe1, Tianlan Shi1, Sébastian Jean2, Alan Ritter3, Dan Jurafsky1

1Stanford University, 2New York University, 3Ohio State University

Some slides/images taken from Ian Goodfellow, Jeremy Kawahara, Andrej Karpathy
Talk Outline

• Generative Adversarial Networks (Introduced by Goodfellow et. al, 2014)

• Policy gradients and REINFORCE

• GANs for Dialogue Generation (this paper)
Talk Outline

• Generative Adversarial Networks (Introduced by Goodfellow et. al, 2014)

• Policy gradients and REINFORCE

• GANs for Dialogue Generation (this paper)
Generative Modelling

- Have training examples $x \sim p_{\text{data}}(x)$
- Want a model that can draw samples: $x \sim p_{\text{model}}(x)$
- Where $p_{\text{model}} \approx p_{\text{data}}$
Why Generative Modelling?

• Conditional generative models
 - Speech synthesis: Text > Speech
 - Machine Translation: French > English
 • French: Si mon tonton tond ton tonton, ton tonton sera tondu.
 • English: If my uncle shaves your uncle, your uncle will be shaved
 - Image > Image segmentation
 - Dialogue Systems: Context > Response

• Environment simulator
 - Reinforcement learning
 - Planning

• Leverage unlabeled data
Adversarial Nets Framework

- A game between two players:
 1. Discriminator D
 2. Generator G

- D tries to discriminate between:
 - A sample from the data distribution and
 - A sample from the generator G

- G tries to “trick” D by generating samples that are hard for D to distinguish from true data.
Adversarial Nets Framework

D tries to output 1
Differentiable function D
x sampled from data

D tries to output 0
Differentiable function D
x sampled from model

Differentiable function G
Input noise Z
Deep Convolutional Generative Adversarial Network

Can be thought of as two separate networks
Generator $G(.)$
input= *random numbers*,
output= *generated image*

Uniform noise vector
(random numbers)

Generated image $G(z)$
Generator $G(.)$
- input: random numbers
- output: generated image

Discriminator $D(.)$
- input: generated/real image
- output: prediction of real image

Uniform noise vector (random numbers)

Generated image $G(z)$
Generator $G(.)$
input= random numbers,
output= generated image

Discriminator $D(.)$
input= generated/real image,
output= prediction of real image

Real image, so goal is $D(x)=1$

Discriminator Goal: discriminate between real and generated images
i.e., $D(x)=1$, where x is a real image
$D(G(z))=0$, where $G(z)$ is a generated image
Generator $G(.)$
- **input**: random numbers
- **output**: generated image

Discriminator $D(.)$
- **input**: generated/real image
- **output**: prediction of real image

Real image, so goal is $D(x) = 1$

Uniform noise vector (random numbers)

Generator Goal: Fool $D(G(z))$
- i.e., generate an image $G(z)$ such that $D(G(z))$ is wrong.
- i.e., $D(G(z)) = 1$

Generated image $G(z)$

Generated image, so goal is $D(G(z)) = 0$

Discriminator Goal: discriminate between real and generated images
- i.e., $D(x) = 1$, where x is a real image
- $D(G(z)) = 0$, where $G(z)$ is a generated image
Generator $G(.)$
- input = random numbers
- output = generated image

Discriminator $D(.)$
- input = generated/real image
- output = prediction of real image

Generator Goal: Fool $D(G(z))$
- i.e., generate an image $G(z)$ such that $D(G(z))$ is wrong.
- i.e., $D(G(z)) = 1$

Discriminator Goal: discriminate between real and generated images
- i.e., $D(x) = 1$, where x is a real image
- $D(G(z)) = 0$, where $G(z)$ is a generated image

Notes
1. Conflicting goals
2. Both goals are unsupervised
3. Optimal when $D(.) = 0.5$ (i.e., cannot tell the difference between real and generated images) and $G(z)$ learns the training images distribution

Real image, so goal is $D(x) = 1$

Generated image, so goal is $D(G(z)) = 0$
Zero-Sum Game

- Minimax objective function:

$$\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log (1 - D(G(z)))]$$
for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{data}(x)$.
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D(G(z^{(i)})) \right) \right].
 \]
 end for
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D(G(z^{(i)})) \right).
 \]
end for
for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples \{z^{(1)}, \ldots, z^{(m)}\} from noise prior \(p_g(z)\).
 • Sample minibatch of m examples \{x^{(1)}, \ldots, x^{(m)}\} from data generating distribution \(p_{data}(x)\).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].
 \]
 end for
 • Sample minibatch of m noise samples \{z^{(1)}, \ldots, z^{(m)}\} from noise prior \(p_g(z)\).
 • Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right).
 \]
end for
for number of training iterations do
 for \(k \) steps do
 \begin{itemize}
 \item Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 \item Sample minibatch of \(m \) examples \(\{x^{(1)}, \ldots, x^{(m)}\} \) from data generating distribution \(p_{data}(x) \).
 \item Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D \left(x^{(i)} \right) + \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right) \right].
 \]
 \end{itemize}
 end for

end for

• Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
• Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right).
 \]
for \(k \) steps do
 \begin{itemize}
 \item Sample minibatch of \(m \) examples \(\{x^{(i)}, \ldots, x^{(m)}\} \) from data generating distribution \(p_{\text{data}}(x) \).
 \item Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 \end{itemize}
 Update the discriminator by ascending its stochastic gradient:
 \[\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D(G(z^{(i)})) \right) \right]. \]

end for
 \begin{itemize}
 \item Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 \item Update the generator by descending its stochastic gradient:
 \[\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D(G(z^{(i)})) \right). \]
 \end{itemize}

end for

[interpretation] compute the gradient of the loss function, and then update the parameters to min/max the loss function (gradient descent/ascent)
Theoretical Results

- Assuming enough data and model capacity, we have a unique global optimum
- Generator distribution corresponds to data distribution
- For a fixed generator, the optimal discriminator is:

\[
D^*_G(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}
\]

- So at optimum, discriminator outputs 0.5 (can’t tell if input is generated by G or from data)
Learning Process

$p_D(data)$

Data distribution

Model distribution

Poorly fit model

After updating D

After updating G

Mixed strategy equilibrium
GANs - The Good and the Bad

- Generator is forced to discover features that explain the underlying distribution
- Produce sharp images instead of blurry like MLE.
- However, generator can be quite difficult to train
- Can suffer from problem of ‘missing modes’
Talk Outline

• Discussion of Generative Adversarial Networks (Introduced by Goodfellow et. al, 2014)

• Policy Gradients and REINFORCE

• Discussion of GANs for Dialogue Generation (this paper)
Policy Gradient

• We have a differentiable stochastic policy $\pi(x;\theta)$

• We sample an action x from $\pi(x;\theta)$ — the future reward or ‘return’ for action x is $r(x)$

• We want to maximize the expected return $\mathbb{E}_{x \sim \pi(x;\theta)}[r(x)]$
Policy Gradient

- We want to maximize the expected return $E_{x \sim \pi(x; \theta)}[r(x)]$
- So we’d like to compute the gradient $\nabla_\theta E_{x \sim \pi(x; \theta)}[r(x)]$

\[
\nabla_\theta E_x[f(x)] = \nabla_\theta \sum_x p(x)f(x)
= \sum_x \nabla_\theta p(x)f(x)
= \sum_x p(x) \frac{\nabla_\theta p(x)}{p(x)} f(x)
= \sum_x p(x) \nabla_\theta \log p(x)f(x)
= E_x[f(x)\nabla_\theta \log p(x)]
\]

- definition of expectation
- swap sum and gradient
- both multiply and divide by $p(x)$
- use the fact that $\nabla_\theta \log(z) = \frac{1}{z} \nabla_\theta z$
- definition of expectation
We know that $\nabla_\theta E_{x \sim \pi(x;\theta)}[r(x)]$ is nothing but $E_{x \sim \pi(x;\theta)}[r(x)\nabla_\theta \log(\pi(x;\theta))]$

We can estimate this gradient using samples from one or more episodes — we can do this because the policy itself is differentiable.

This can be seen as a Monte Carlo Policy Gradient, which is nothing but REINFORCE.
Estimate gradient of sampling operation

forward pass of the network:

- input
- differentiable compute
- non-differentiable compute (sample from stochastic policy)
- differentiable compute

• Sampling operation inside a neural network — this is the policy
We sample an action x from $\pi(x; \theta)$, which gives us a reward $r(x)$ — this could be a supervised loss.

We can now use REINFORCE to estimate gradient.
Talk Outline

• Discussion of Generative Adversarial Networks (Introduced by Goodfellow et. al, 2014)

• Policy Gradients and REINFORCE

• Discussion of GANs for Dialogue Generation (this paper)
GANs for NLP: Dialogue systems

- Given dialogue history x, want to generate response y
- Generator G
 - Input to G: x
 - Output from G: y
- Discriminator D
 - Input to D: x, y
 - Output from D: Probability that (x, y) is from training data
GANs for NLP: Dialogue systems

- Given dialogue history \(x \), want to generate response \(y \)
- Generator \(G \)
 - Input to \(G \): \(x \)
 - Output from \(G \): \(y \)
- Discriminator \(D \)
 - Input to \(D \): \(x, y \)
 - Output from \(D \): Probability that \((x, y) \) is from training data
GANs for NLP: Dialogue systems

Challenge:

• Typical seq2seq models for machine translation, dialogue generation etc. involve sampling from a distribution — can’t directly backpropagate from discriminator to generator

Workarounds:

• Use intermediate layer from generator as input to discriminator (not very appealing)

• Use reinforcement learning to train generator (this paper)
Architecture

y_t sampled from policy π

$y_1 \quad y_2 \quad y_T$: Response y

Dialogue History x : $x_1 \quad x_2 \quad x_T$

Generator

Discriminator

$Q_+({x,y})$

Full dialogue: (x, y)
Architecture

Generator:

- Encoder-Decoder with attention (Think machine translation)
- Last two utterances in x are concatenated and fed as input

Discriminator:

- HRED model
- After feeding \{x,y\} as input, we get a hidden representation at the dialogue level
- This is transformed to a scalar between 0 and 1 through an MLP
Training

Discriminator:

• Simple back propagation with SGD or any other optimizer

Generator:

• REINFORCE: π is our policy, $Q_+({x, y})$ is the return (same for each action)

• $J(\theta) = \mathbb{E}_{y \sim \pi(y|x; \theta)}[Q_+({x, y})]$ is our loss function

• As discussed before $\nabla J(\theta) \sim [Q_+({x, y})] \nabla \Sigma_t \log \pi(y_t | x, y_{1:t-1})$

• A baseline $b({x, y})$ is subtracted from Q to reduce variance
Reward for Every Generation Step

• Till now, same reward is given to each action (that is, for each word token generated by G)

Example:

History: *What’s your name?*
Gold Response: *I am John*
Machine Response: *I don’t know*
Discriminator Output for machine response: 0.1

Same reward given for *I, don’t and know*
Reward for Every Generation Step

• Till now, same reward is given to each action (that is, for each word token generated by G)

• Assign rewards for partially generated sequences

• Two ways to do this:
 • Monte Carlo search
 • Train discriminator D on partial sequences
Monte Carlo search

• For a partially decoded sequence $Y_t = y_{1:t}$, sample N responses with prefix Y_t.

• Discriminator judges each of these N responses.

• Average score is provided as reward for y_t.

• N is set to 5.
Reward for Every Generation Step

Train D on partial sequences

• Discriminator is trained to give a score for both full and partial responses.

• Generated response/real response is broken into all partial sequences. One partial sequence is sampled and given to discriminator.

• Less time consuming than MC, but discriminator becomes weaker
Reward for Every Generation Step

Train D on partial sequences

• Discriminator is trained to give a score for both full and partial responses.

• Generated response/real response is broken into all partial sequences. One partial sequence is sampled and given to discriminator.

• Less time consuming than MC, but discriminator becomes weaker
Teacher Forcing

- ‘Pretend’ that ground truth word was sampled, give this a reward of 1
- Equivalent to the standard method of training a seq2seq model, which uses maximum likelihood objective, called teacher forcing
- To make the life of the generator easier, it is periodically trained using teacher forcing
- Alternatively: Use discriminator to give score to human response, use this as reward for generator (instead of flat 1), but only if this reward is greater than baseline
Teacher Forcing

• ‘Pretend’ that ground truth word was sampled, give this a reward of 1

• Equivalent to the standard method of training a seq2seq model, which uses maximum likelihood objective, called teacher forcing

• To make the life of the generator easier, it is periodically trained using teacher forcing

• Alternatively: Use discriminator to give score to human response, use this as reward for generator (instead of flat 1), but only if this reward is greater than baseline
Heuristics

- Pre-train the generator and the discriminator
- Remove responses shorter than 5 words
- Weighted learning rate that considers the average tf-idf score for tokens within the response.
- Promoting diversity in beam search by penalizing sentences with same prefix.
- Penalizing word types that have already been generated.
Heuristics

- Pre-train the generator and the discriminator
- Remove responses shorter than 5 words
- Weighted learning rate that considers the average tf-idf score for tokens within the response.
- Promoting diversity in beam search by penalizing sentences with same prefix.
- Penalizing word types that have already been generated.
Final algorithm

For number of training iterations do
 For i=1,D-steps do
 Sample (X,Y) from real data
 Sample $\hat{Y} \sim G(\cdot|X)$
 Update D using (X,Y) as positive examples and (X,\hat{Y}) as negative examples.
 End
 For i=1,G-steps do
 Sample (X,Y) from real data
 Sample $\hat{Y} \sim G(\cdot|X)$
 Compute Reward r for (X,\hat{Y}) using D.
 Update G on (X,\hat{Y}) using reward r
 Teacher-Forcing: Update G on (X,Y)
 End
End
Adversarial Evaluation

• Train a separate discriminator that can be used as an evaluator during testing

• On a test set, if discriminator gives an average score of 0.5, then machine response is indistinguishable from human response (assuming discriminator is good)

• Adversarial Success (or AdverSuc): fraction of instances in which a model is capable of fooling the evaluator.
Is the Discriminator reliable?

- Sanity checks to test the reliability of the discriminator
 - Human-generated responses as both +ve and -ve examples: Ideal score - 0.5
 - Machine-generated responses as both +ve and -ve examples: Ideal score - 0.5
 - Human-generated responses as +ve, random responses as -ve examples: Ideal Score - 0
 - Human-generated responses as +ve, utterance following true response as -ve examples: Ideal Score - 0
- Evaluator Reliability Error: average deviation of an evaluator’s adversarial error from the gold-standard error
Is the Discriminator reliable?

- Sanity checks to test the reliability of the discriminator
 - Human-generated responses as both +ve and -ve examples: Ideal score - 0.5
 - Machine-generated responses as both +ve and -ve examples: Ideal score - 0.5
 - Human-generated responses as +ve, random responses as -ve examples: Ideal Score - 0
 - Human-generated responses as +ve, utterance following true response as -ve examples: Ideal Score - 0
- Evaluator Reliability Error: average deviation of an evaluator’s adversarial error from the gold-standard error
Is the Discriminator reliable?

<table>
<thead>
<tr>
<th>Setting</th>
<th>ERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM+Unigram</td>
<td>0.232</td>
</tr>
<tr>
<td>Concat Neural</td>
<td>0.209</td>
</tr>
<tr>
<td>Hierarchical Neural</td>
<td>0.193</td>
</tr>
<tr>
<td>SVM+Neural+multil-features</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Table 2: ERE scores obtained by different models.
Machine-vs-Random Accuracy

- Adversarial Success metric not enough
- Additional check: Accuracy of distinguishing between machine-generated responses and randomly sampled human responses
- Ensures that generative model is not fooling the discriminator simply by introducing randomness
Evaluation

• Automatic Evaluation
 • AdverSuc
 • Machine vs Random

• Human Evaluation
 • Single turn and multi-turn (3 messages)
 • Provide responses from 2 dialogue systems to 3 judges, judges choose better response (ties allowed)
Evaluation

• Automatic Evaluation
 • AdverSuc
 • Machine vs Random

• Human Evaluation
 • Single turn and multi-turn (3 messages)
 • Provide responses from 2 dialogue systems to 3 judges, judges choose better response (ties allowed)
Automatic Evaluation Results

<table>
<thead>
<tr>
<th>Model</th>
<th>AdverSuc</th>
<th>machine-vs-random</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE-BS</td>
<td>0.037</td>
<td>0.942</td>
</tr>
<tr>
<td>MLE-Greedy</td>
<td>0.049</td>
<td>0.945</td>
</tr>
<tr>
<td>MMI + p(t</td>
<td>s)</td>
<td>0.073</td>
</tr>
<tr>
<td>MMI - p(t)</td>
<td>0.090</td>
<td>0.880</td>
</tr>
<tr>
<td>Sampling</td>
<td>0.372</td>
<td>0.679</td>
</tr>
<tr>
<td>Adver-Reinforce</td>
<td>0.080</td>
<td>0.945</td>
</tr>
<tr>
<td>Adver-REGS</td>
<td>0.098</td>
<td>0.952</td>
</tr>
</tbody>
</table>

Table 3: *AdverSuc* and *machine-vs-random* scores achieved by different training/decoding strategies.
Human Evaluation Results

<table>
<thead>
<tr>
<th>Setting</th>
<th>adver-win</th>
<th>adver-lose</th>
<th>tie</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-turn</td>
<td>0.62</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>multi-turn</td>
<td>0.72</td>
<td>0.10</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 4: The gain from the proposed adversarial model over the mutual information system based on pairwise human judgments.
Human Evaluation Results

<table>
<thead>
<tr>
<th>Setting</th>
<th>adver-win</th>
<th>adver-lose</th>
<th>tie</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-turn</td>
<td>0.62</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>multi-turn</td>
<td>0.72</td>
<td>0.10</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 4: The gain from the proposed adversarial model over the mutual information system based on pairwise human judgments.
Sample Responses

<table>
<thead>
<tr>
<th>Input</th>
<th>Vanilla-MLE</th>
<th>Vanilla-Sample</th>
<th>REINFORCE</th>
<th>REGS Monte Carlo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i’m not a doctor.</td>
<td>well everything you did was totally untrue.</td>
<td>i don’t know how long it’s been.</td>
<td>A few months, I guess.</td>
</tr>
<tr>
<td></td>
<td>so i had the doctors test sammy’s response to conditioning.</td>
<td>sammy wrote the test sammy wrote the test.</td>
<td>objects pick objects up objects objects objects objects objects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>what are you going to do?</td>
<td>i’m going to the movies.</td>
<td>get him outta here first!</td>
<td>i’m going to get you.</td>
</tr>
<tr>
<td></td>
<td>they fear your power your intellect.</td>
<td>you’re the only one who knows what’s going on.</td>
<td>when they are conquered and you surrender they will control all of us.</td>
<td>i’m afraid i’m not ready yet.</td>
</tr>
<tr>
<td></td>
<td>i’m not afraid of your power.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Takeaways

• GANs can be trained for NLP tasks using policy gradient methods.
• GANs + teacher forcing significantly outperforms the best teacher forcing model for dialogue implying this is a viable and helpful model
• Rewards for partial sequences using MC search
• Four useful heuristics to make model responses more coherent and less generic
• Generator training is unstable — this is a hot topic of research in the vision space, ideas that emerge there could be used in NLP space as well
• Adversarial evaluation is an interesting automatic evaluation metric — but its effectiveness needs to be studied carefully
Extensions

• Gagan: Active Learning
• Barun: Weighted score, using both the discriminator score and a language model score, may help recognizing grammatically incoherent sentences
• Arindam: Half and half approach of pre training could be converted into a better graduated method, where the negative examples get gradually more difficult
• Arindam: The heuristics used for the generator, use them for the discriminator in some way, like generating negative training examples that violate these rules
• Arindam: Bidirectional LSTM
Extensions

- Rishab: Wasserstein GAN for more stable training
- Rishab: Use GAN discriminator as pretrained model for evaluator
- Rishab: Model could be tried out for QA
- Haroun: Adversarially train the discriminator?
- Haroun: Check what tells the evaluator learns, whether it is similar to a human evaluator
- Anshul: Can further formalize the 4 strategies/heuristics
- Anshul: Deeper discriminator
- Prachi: Trained discriminator can additionally be made to predict sentiment of an utterance. This will work in situations when we have limited labelled data.