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LLMs so far

• Transformers, pre-training, zero-shot,……

• Training models on small GPU(s)
• Adapters

• LORA

• Mixed Precision Training

• Training models at scale
• DDP

• DeepSpeed



Do we really need efficient 

LLM inference?

• Complexity – Quadratic due to Multi-head 

Attention

• LLM sizes have increased rapidly. Not everyone 
can afford GPUs needed to run larger (and most 

capable) models.

• GPUs have considerable environmental impact. 
Achieve similar inference with a less number of 

GPUs.

• Deployment Concerns – Inference latency, 

Inferences per second (Throughput), Cost, etc.



• Quantization

Convert LLMs to use simpler data types.

• Pruning

Remove un-important weights from LLMs

• Hardware Aware Optimizations

Code-up LLMs to improve hardware utilization



Simple Idea: Reduce model size to 

fit the GPU(s)

But maintain the model performance as much as 

possible!

How?



Quantization
After the training…



FP32 data type

Computers use 4 bytes to represent floating 
point numbers.

23 bits for mantissa

8 bits for exponent

All parameters of a (pre-trained) LLMs are in 
FP32 (sometimes called full precision).

Credits: https://huggingface.co/blog/hf-bitsandbytes



Can we use a different data 

type?

Another floating-point representation

10 bits for mantissa

5 bits for exponent

Credits: https://huggingface.co/blog/hf-bitsandbytes



Use FP16 instead for FP32

• Pros
• Reduced memory usage

• Faster compute

• Cons
• Converting all LLM weights may not be straight 
forward

• Over/underflows during computation (why?)

Inference is boost is almost 2x.



Other possible data types

BF16 has range similar to FP32 but less precision -> 

Overflow/underflow handled.

TF32 – nvidia’s own TensorFloat 32 alternate to FP32

These data types require hardware support.

Credits: https://huggingface.co/blog/hf-bitsandbytes



Can we do better?

Int8 Quantization

1. Convert FP16/32 tensors to Int8 tensors

2. Perform Int8 tensor operations

3. Convert results back to FP16/32

But why would this approach provide benefit?

-(Most) C/GPUs can perform integer operations 
faster than FPs

-Lower memory utilization



Conversion to Int8

Let A be a FP32 matrix where values in A are in range 
[−𝛼, 𝛼]

• Quantize
𝑎 = 𝑟𝑜𝑢𝑛𝑑(𝐴 ∗ 𝑠𝑎)

• De-quantize

 𝐴 =
𝑎

𝑠𝑎

where 𝑠𝑎 is quantization parameter depending on 𝑏 and 𝛼.

Typical values are 𝑠𝑎 =
2𝑏−1−1

𝛼
and 𝛼 = max(𝑎𝑏𝑠 𝐴 ).

Credits: https://arxiv.org/pdf/2004.09602.pdf



Int8 Matrix Multiplication

Computing 𝑌 = 𝑋𝑊 using Int8 quantization.

𝑌 = 𝑋𝑊

≈  𝑋  𝑊 =
𝑥

𝑠𝑥

𝑤

𝑠𝑤
=

1

𝑠𝑥𝑠𝑤
(𝑥𝑤)

where (𝑥𝑤) is now an integer matrix 

multiplication.

Credits: https://arxiv.org/pdf/2004.09602.pdf



Vector-wise Quantization

Compute 𝑌𝑖𝑗 = 𝑋𝑖:𝑊:𝑗 ≈
1

𝑠𝑥𝑖:
𝑠𝑤:𝑗

𝑥𝑖:𝑤:𝑗

Impact of large magnitude is not contained.

Credits: https://arxiv.org/pdf/2004.09602.pdf



Calibration

Fixing the values of the quantization constants 

𝑠𝑥𝑖:
, 𝑠𝑤:𝑗

. Well, 𝑠𝑤:𝑗
is no problem. Just take 

max(𝑎𝑏𝑠 𝑊:𝑗 ). What about the activations?

• Run the model in FP32 on a calibration dataset.

• Record all the activations from each layer 
(i.e. 𝑋𝑖:).

• Decide on 𝑠𝑥𝑖:
such that the loss of information 

between 𝑋𝑖: and  𝑋𝑖: is minimum. Criteria –

Entropy, Percentile, etc.

Credits: https://arxiv.org/pdf/2004.09602.pdf



Performance, Performance…

Credits: https://arxiv.org/pdf/2004.09602.pdf



Unfortunately, it does not 

scale….



Emergenc

e of 

Outlier 

Features



Credits: https://arxiv.org/pdf/2208.07339.pdf



Results

Perplexity on C4 dataset. 

Lower is better.



Pruning
After training…



Idea: Zero-out some weights in 

LLM

• Some weights in LLMs are important than others

• Select the weights that are important based on 
a certain criteria (saliency score) and zero-
out all other weights.

Constraints – LLM performance is maintained. 

We perform pruning post-training (Why?). 

But does pruning really provide improved 
inference speed?

- Well depends on the hardware.



A General Framework

Let 𝑤 be the neural network weights. And L(w) be the 
loss of the model on some calibration data. 

We want to find an update Δw such that L(w + Δw) is 
close to 𝐿(w) and w + Δw is sparse.

Using second order Taylor expansion

𝐿 w + Δw − 𝐿(w) ≈ Δw𝑇∇𝐿 +
1

2
Δw𝑇𝐻∆w

Here 𝐻 is second-order derivative (hessian) with 
respect to parameters. Our goal is to find Δw that 
minimizes above term and introduces sparsity in w.

Credits: Laurent, César et al. “Revisiting Loss Modelling for 

Unstructured Pruning.”



Magnitude Pruning

• Assume that the network has converged. Then ∇w
is zero.

• Assume that the hessian is identity matrix.

Thus, 

𝐿 w + Δw − 𝐿(w) ≈ 0.5 ∗  

𝑘

w𝑘
2

Pruning – To minimize the damage, prune p% 
weight with small magnitudes.

Credits: Laurent, César et al. “Revisiting Loss Modelling for 

Unstructured Pruning.”



Alternate, Use first-order 

approximation

Then,

𝐿 w + Δw − 𝐿(w) ≈ Δw𝑇∇𝐿 ≤  

𝑘

w𝑘 ∇𝐿𝑘

Intuitively, weights with large magnitude and 

large gradients are important.



Optimal Brain Surgeon

Assume that network has converged, i.e., gradient is 
zero.

Let 𝛿𝑤 be the update such that a weight 𝑤𝑞 is pruned by 
update 𝑤 + 𝛿𝑤, i.e., 𝑒𝑞

𝑇𝛿𝑤 + 𝑤𝑞 = 0. 𝑒𝑞
𝑇 is just a basis 

vector corresponding to dimension q.

Now find 𝛿𝑤 such that above condition is met and change 
in the loss is minimized.

𝛿𝑤 = −
𝑤𝑞

𝐻−1
𝑞𝑞

𝐻−1𝑒𝑞

𝐿𝑞 =
1

2

𝑤𝑞
2

𝐻−1
𝑞𝑞

Updating 𝑤 + 𝛿𝑤 is called weight reconstruction.
Credits: Hassibi, Babak et al. “Optimal Brain Surgeon and 

general network pruning.”



Why would this not scale for 

LLMs?

• Benefit Magnitude pruning depends upon hardware 
support. Loss of performance can be too much at 

high sparsities.

• Using second order approaches such as OBS do 
not scale well. Computing (approximate) Hessian 

matrix is daunting task – large memory and 

compute.



SparseGPT (Frantar, et.al., 

2023)

Localized pruning - Use layer-wise 

reconstruction loss for pruning

𝐿 𝑀,  𝑊 = 𝑊𝑋 − 𝑀 ⊙  𝑊 𝑋
2

2

Here, 𝑋 – inputs (𝑑𝑐𝑜𝑙 , 𝑏𝑠), 𝑊 – weights (𝑑𝑟𝑜𝑤, 𝑑𝑐𝑜𝑙)

𝑀 is sparse mask and  𝑊 is reconstructed 

weights.

Note that W + 𝛿𝑊 = 𝑀 ⊙  𝑊 in this case. 

We need to find both 𝑀,  𝑊.



SparseGPT solution

Let mask 𝑀 is known. Then, we have closed form 

solution for each row as

where, 𝑖 is a row number

𝑀𝑖 are columns in row 𝑖 that are not pruned

𝑋𝑀𝑖
is input matrix with columns in Mi

𝑋𝑀𝑖
𝑋𝑀𝑖

𝑇 is the hessian.



Different Row-Hessian 

Challenge

Each row requires inverting differ sections of 

the hessian depending upon the masks. 

Computationally expensive.

Credits: Frantar, 

et.al, 2023



Optimal 

Partial 

Updates

Only update the columns that are not 

pruned yet. This is approximation of true 

updates. 

Advantages – Hessian computation becomes 

easier.



Selecting 

the Mask

• Use Magnitude pruning as 
the mask. Use SparseGPT 

for reconstruction. Is it 

okay?

• But, what about outlier 
features?



Wanda

Solving reconstruction problem (as in SparseGPT) 

is still expensive.

Can we get rid of reconstruction all together?

Enter  Pruning by Weights and Activation (Wanda)

Credits: 

https://arxiv.org/pdf/2306.11695.pd



Approach

1. Use a simple saliency metric 𝑆𝑖𝑗 = 𝑊𝑖𝑗 𝑋𝑗 2
Rationale – In LLMs, high magnitude features emerge 

because of inputs and weights combined.

2. Prune at each neuron level – Output of each 

neuron is sum of all its weight. 



Comparis

on

Credits: 

https://arxiv.org/pdf/2306.11695.pd



Speedups 

SparseGPT

Credits: 

https://proceedings.mlr.press/v202/

frantar23a/frantar23a.pdf

Wanda

Credits: 

https://arxiv.org/pdf/2306.11695.pd

f



Performan

ce, 

Performan

ce

Credits: 

https://arxiv.org/pdf/2306.11695.pd



Flash Attention
Making attention GPU aware

Credits: https://arxiv.org/pdf/2205.14135.pdf



Operation-

wise 

split-up



GPU 

Memory 

Hierarch

y



Standard Attention 

Mechanism



Tiling – Perform SoftMax in 

blocks

Regular SoftMax

SoftMax over concatenation of two 

vectors



Query Q (N x 

d)

Key K (N x d) Value V (N x 

d)

Let HBM is large enough to store Q, K, V

Let SRAM size be M.

Divide Q, K, V into blocks of size (B x d) as shown below. 

Here 𝐵 =  𝑀
4𝑑 .

Initialise tensors 𝑂 𝑁 𝑥 𝑑 , 𝑙 0 𝑁 𝑎𝑛𝑑 𝑙 −𝑖𝑛𝑓 𝑁

Also divide tensors into B blocks

Output O (N x 

d)

l (Nx1) m (Nx1)





j jOuter loop

Inner loop i i

i i

i j𝑆𝑖𝑗=
T

(B x B)

=

 𝑚𝑖𝑗 = rowmax(𝑆𝑖𝑗)  𝑃𝑖𝑗 = exp(𝑆𝑖𝑗 −

 𝑚𝑖𝑗)

 𝑙𝑖𝑗 = rowsum(  𝑃𝑖𝑗)





Performance



Questions?


