Efficient LLM Inference

Saley Vishal Vivek PhD Student Department of CSE, IIT Delhi

LLMs so far

- Transformers, pre-training, zero-shot,
- Training models on small GPU(s)
 - Adapters
 - LORA
 - Mixed Precision Training
- Training models at scale
 - DDP
 - DeepSpeed

Do we really need efficient LLM inference?

- Complexity Quadratic due to Multi-head Attention
- LLM sizes have increased rapidly. Not everyone can afford GPUs needed to run larger (and most capable) models.
- GPUs have considerable environmental impact. Achieve similar inference with a less number of GPUs.
- Deployment Concerns Inference latency, Inferences per second (Throughput), Cost, etc.

• Quantization

Convert LLMs to use simpler data types.

• Pruning

Remove un-important weights from LLMs

• Hardware Aware Optimizations Code-up LLMs to improve hardware utilization

Simple Idea: Reduce model size to fit the GPU(s)

But maintain the model performance as much as possible!

How?

Quantization

After the training...

FP32 data type

- 23 bits for mantissa
- 8 bits for exponent
- All parameters of a (pre-trained) LLMs are in FP32 (sometimes called full precision).

Can we use a different data type?

Another floating-point representation

10 bits for mantissa
5 bits for exponent

Credits: https://huggingface.co/blog/hf-bitsandk

Use FP16 instead for FP32

• Pros

- Reduced memory usage
- Faster compute
- Cons
 - Converting all LLM weights may not be straight forward
 - Over/underflows during computation (why?)

```
Inference is boost is almost 2x.
```

Other possible data types

BF16 has range similar to FP32 but less precision ->
Overflow/underflow handled.
TF32 - nvidia's own TensorFloat 32 alternate to FP32

These data types require hardware support.

Credits: https://huggingface.co/blog/hf-bitsandk

Can we do better?

Int8 Quantization

Convert FP16/32 tensors to Int8 tensors
 Perform Int8 tensor operations

3. Convert results back to FP16/32

But why would this approach provide benefit?

-(Most) C/GPUs can perform integer operations faster than FPs

-Lower memory utilization

Conversion to Int8

Let A be a FP32 matrix where values in A are in range $[-\alpha,\alpha]$

• Quantize

$$a = round(A * s_a)$$

• De-quantize

$$\tilde{A} = \frac{a}{s_a}$$

where s_a is quantization parameter depending on b and α . Typical values are $s_a = \frac{2^{b-1}-1}{\alpha}$ and $\alpha = \max(abs(A))$.

Int8 Matrix Multiplication

Computing Y = XW using Int8 quantization.

Y = XW

$$\approx \tilde{X}\tilde{W} = \frac{x}{s_x}\frac{w}{s_w} = \frac{1}{s_xs_w}(xw)$$

where (xw) is now an integer matrix multiplication.

Credits: https://arxiv.org/pdf/200

Vector-wise Quantization

Compute
$$Y_{ij} = X_{i:}W_{:j} \approx \frac{1}{s_{x_{i:}}s_{w_{:j}}} x_{i:}w_{:j}$$

Impact of large magnitude is not contained.

Credits: https://arxiv.org/pdf/200

Calibration

Fixing the values of the quantization constants $s_{x_{i:}}, s_{W_{:j}}$. Well, $s_{W_{:j}}$ is no problem. Just take $\max(abs(W_{:j}))$. What about the activations?

- Run the model in FP32 on a calibration dataset.
- Record all the activations from each layer (i.e. $X_{i:})$.
- Decide on $s_{x_{i:}}$ such that the loss of information between $X_{i:}$ and $\tilde{X}_{i:}$ is minimum. Criteria Entropy, Percentile, etc.

Performance, Performance...

Input Data type	Accumulation Data type	Math Throughput	Bandwidth Reduction
FP32	FP32	1x	1x
FP16	FP16	8x	2x
INT8	INT32	16x	4x
INT4	INT32	32x	8x
INT1	INT32	128x	32x

Unfortunately, it does not scale....

Emergenc e of Outlier Features

Credits: https://arxiv.org/pdf/220

Results

	-				
Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax Int8 zeropoint	87.76 56.66	16.55 16.24	15.11 14.76	14.59 13.49	19.08 13.94
Int8 absmax vector-wise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vector-wise	25.72	15.94	14.36	13.38	13.47
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44	13.24	12.45
Zeropoint LLWI.into() (vector-wise + decomp)	23.09	15.92	14.43	13.24	12.4

Perplexity on C4 dataset. Lower is better.

Pruning

After training...

Idea: Zero-out some weights in LLM

- Some weights in LLMs are important than others
- Select the weights that are important based on a certain criteria (saliency score) and zeroout all other weights.

Constraints - LLM performance is maintained. We perform pruning post-training (Why?).

But does pruning really provide improved inference speed?

- Well depends on the hardware.

A General Framework

Let w be the neural network weights. And L(w) be the loss of the model on some calibration data.

We want to find an update Δw such that $L(w + \Delta w)$ is close to L(w) and $w + \Delta w$ is sparse.

Using second order Taylor expansion

$$|L(w + \Delta w) - L(w)| \approx \left| \Delta w^T \nabla L + \frac{1}{2} \Delta w^T H \Delta w \right|$$

Here H is second-order derivative (hessian) with respect to parameters. Our goal is to find Δw that minimizes above term and introduces sparsity in w.

Credits: Laurent, César et al. "Revisiting Loss Modelling fo

Magnitude Pruning

- $\bullet\, \text{Assume}$ that the network has converged. Then ∇w is zero.
- Assume that the hessian is identity matrix.

Thus,

$$|L(w + \Delta w) - L(w)| \approx 0.5 * \left| \sum_{k} w_{k}^{2} \right|$$

Pruning - To minimize the damage, prune p% weight with small magnitudes.

Credits: Laurent, César et al. "Revisiting Loss Modelling fo

Alternate, Use first-order approximation

Then,

$$|L(\mathbf{w} + \Delta \mathbf{w}) - L(\mathbf{w})| \approx |\Delta \mathbf{w}^T \nabla L| \leq \sum_k |\mathbf{w}_k| |\nabla L_k|$$

Intuitively, weights with large magnitude and large gradients are important.

Optimal Brain Surgeon

Assume that network has converged, i.e., gradient is zero.

Let δw be the update such that a weight w_q is pruned by update $w + \delta w$, i.e., $e_q^T \delta w + w_q = 0$. e_q^T is just a basis vector corresponding to dimension q.

Now find δw such that above condition is met and change in the loss is minimized.

$$\delta w = -\frac{w_q}{[H^{-1}]_{qq}} H^{-1} e_q$$

$$L_q = \frac{1}{2} \frac{w_q^2}{[H^{-1}]_{qq}}$$

Updating $w + \delta w$ is called weight reconstruction. Credits: Hassibi, Babak et al. "Optimal Brain Surgeon and

Why would this not scale for LLMs?

- Benefit Magnitude pruning depends upon hardware support. Loss of performance can be too much at high sparsities.
- Using second order approaches such as OBS do not scale well. Computing (approximate) Hessian matrix is daunting task - large memory and compute.

SparseGPT (Frantar, et.al., 2023)

Localized pruning - Use layer-wise reconstruction loss for pruning

$$L(M,\widetilde{W}) = \left\| WX - (M \odot \widetilde{W})X \right\|_{2}^{2}$$

Here, X - inputs (d_{col}, bs) , W - weights (d_{row}, d_{col}) M is sparse mask and \widetilde{W} is reconstructed weights.

Note that $W + \delta W = M \odot \widetilde{W}$ in this case.

We need to find both M, \widetilde{W} .

SparseGPT solution

Let mask M is known. Then, we have closed form solution f $\mathbf{w^i}_{\mathbf{M_i}} = (\mathbf{X}_{\mathbf{M_i}} \mathbf{X}_{\mathbf{M_i}}^{\mathsf{T}})^{-1} \mathbf{X}_{\mathbf{M_i}} (\mathbf{w}_{\mathbf{M_i}} \mathbf{X}_{\mathbf{M_i}})^{\mathsf{T}}$

where, *i* is a row number M_i are columns in row *i* that are not pruned X_{M_i} is input matrix with columns in M_i $X_{M_i}X_{M_i}^T$ is the hessian.

Different Row-Hessian Challenge

Each row requires inverting differ sections of the hessian depending upon the masks. Computationally expensive

Credits: Frantar,

Optimal Partial Updates

Only update the columns that are not pruned yet. This is approximation of true updates.

Advantages - Hessian computation becomes easier.

Selecting the Mask

- Use Magnitude pruning as the mask. Use SparseGPT for reconstruction. Is it okay?
- But, what about outlier features?

Wanda

Solving reconstruction problem (as in SparseGPT) is still expensive.

Can we get rid of reconstruction all together?

Enter Pruning by Weights and Activation (Wanda)

Credits:

Approach

- 1. Use a simple saliency metric $S_{ij} = |W_{ij}|||X_j||_2$ Rationale - In LLMs, high magnitude features emerge because of inputs and weights combined.
- 2. Prune at each neuron level Output of each neuron is sum of all its weight.

Comparis on

Method	Weight Update	Calibration Data	Pruning Metric S_{ij}	Complexity
Magnitude	×	×	$ \mathbf{W}_{ij} $	O(1)
SparseGPT	1	1	$\left[\mathbf{W} ^2 / \text{diag} \left[(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1} \right] \right]_{ij}$	$O(d_{\tt hidden}^3)$
Wanda	×	1	$\ \mathbf{W}_{ij} \cdot\ \mathbf{X}_{j}\ _{2}$	$O(d_{\tt hidden}^2)$

Speedups

Weight	Q/K/V/Out	FC1	FC2
Dense 2:4 Sparse	2.84ms 1.59ms	10.26ms 6.15ms	10.23ms 6.64ms
Speedup	$1.79 \times$	$1.67 \times$	$1.54 \times$

SparseGPT

Credits:

https://proceedings.mlr.press/v202/
frantar23a/frantar23a.pdf

LLaMA Layer	Dense	2:4	Speedup
q/k/v/o_proj	3.49	2.14	1.63×
up/gate_proj	9.82	6.10	1.61×
down_proj	9.92	6.45	$1.54 \times$

```
Wanda
Credits:
https://arxiv.org/pdf/2306.11695.pd
f
```

Performan ce, Performan ce

			LLaMA			LLaMA-2			
Method	Weight Update	Sparsity	7B	13 B	30B	65B	7B	13B	70B
Dense	-	0%	5.68	5.09	4.77	3.56	5.12	4.57	3.12
Magnitude	×	50%	17.29	20.21	7.54	5.90	14.89	6.37	4.98
SparseGPT	\checkmark	50%	7.22	6.21	5.31	4.57	6.51	5.63	3.98
Wanda	×	50%	7.26	6.15	5.24	4.57	6.42	5.56	3.98
Magnitude	×	4:8	16.84	13.84	7.62	6.36	16.48	6.76	5.54
SparseGPT	✓	4:8	8.61	7.40	6.17	5.38	8.12	6.60	4.59
Wanda	×	4:8	8.57	7.40	5.97	5.30	7.97	6.55	4.47
Magnitude	×	2:4	42.13	18.37	9.10	7.11	54.59	8.33	6.33
SparseGPT	✓	2:4	11.00	9.11	7.16	6.28	10.17	8.32	5.40
Wanda	×	2:4	11.53	9.58	6.90	6.25	11.02	8.27	5.16

Table 3: WikiText perplexity of pruned LLaMA and LLaMA-2 models. Wanda performs competitively against prior best method SparseGPT, without introducing any weight update.

Flash Attention

Making attention GPU aware Credits: https://arxiv.org/pdf/2205.14135.pdf

Operationwise split-up

GPU Memory Hierarch Y

Memory Hierarchy with Bandwidth & Memory Size

Standard Attention Mechanism

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read S from HBM, compute $\mathbf{P} = \operatorname{softmax}(\mathbf{S})$, write \mathbf{P} to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

Tiling - Perform SoftMax in blocks

Regular SoftMax

$$m(x) := \max_{i} x_{i}, \quad f(x) := \begin{bmatrix} e^{x_{1}-m(x)} & \dots & e^{x_{B}-m(x)} \end{bmatrix}, \quad \ell(x) := \sum_{i} f(x)_{i}, \quad \text{softmax}(x) := \frac{f(x)}{\ell(x)},$$

SoftMax over concatenation of two

vectors

$$m(x) = m([x^{(1)} \ x^{(2)}]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = [e^{m(x^{(1)}) - m(x)} f(x^{(1)}) - e^{m(x^{(2)}) - m(x)} f(x^{(2)})],$$

$$\ell(x) = \ell([x^{(1)} \ x^{(2)}]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \quad \text{softmax}(x) = \frac{f(x)}{\ell(x)}.$$

```
Let HBM is large enough to store Q, K, V
Let SRAM size be M.
Divide Q, K, V into blocks of size (B x d) as shown below.
Here B = [M/_{4d}].
Initialise tensors O(N x d), l(0)_N and l(-inf)_N
Also divide tensors into B blocks
```


Algorithm 1 FLASHATTENTION

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M. 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM. 3: Divide \mathbf{Q} into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.

4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.

5: for $1 \le j \le T_c$ do

- 6: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}, \ \tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}, \ \ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}.$
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\operatorname{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\operatorname{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\operatorname{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: **end for**
- 15: **end for**
- 16: Return **O**.

On chip, compute
$$m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$$
, $\ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
Write $\mathbf{O}_i \leftarrow \text{diag}(\ell_i^{\text{new}})^{-1}(\text{diag}(\ell_i)e^{m_i - m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.

Performance

OpenWebText (ppl)	Training time (speedup)
18.2	9.5 days $(1.0\times)$
18.2	$4.7 \text{ days } (2.0 \times)$
18.2	$\textbf{2.7 days (3.5\times)}$
14.2	$21.0 \text{ days } (1.0 \times)$
14.3	$11.5 \text{ days} (1.8 \times)$
14.3	$6.9 \text{ days } (3.0 \times)$
	OpenWebText (ppl) 18.2 18.2 18.2 14.2 14.3 14.3

Questions?