T]

~ficient LLM

nference

Saley Vishal Vivek
PhD Student
Department of CSE, IIT Delhi

LIMs so far

* Transformers, pre-training, zero-shot,....

* Training models on small GPU(s)

* Adapters
* LORA
* Mixed Precision Trailining

* Training models at scale

* DDP
* DeepSpeed

Do we really need efficient
LLM 1nference?

* Complexity — Quadratic due to Multi-head
Attention

* LLM sizes have 1ncreased rapidly. Not everyone
can afford GPUs needed to run larger (and most
capable) models.

* GPUs have considerable environmental impact.
Achieve similar inference with a less number of

GPUs.

* Deployment Concerns — Inference latency,
Inferences per second (Throughput), Cost, etc.

* Quantization

Convert LLMs to use simpler data types.

* Pruning

Remove un—-i1mportant weights from LLMs

* Hardware Aware Optimilizations

Code-up LLMs to 1mprove hardware utilization

Simple Idea: Reduce model size to
fit the GPU(s)

But mailntain the model performance as much as
possible!

How?

Quantilization

After the training..

FP32 data type

Computers use 4 bytes to represent floating

N I Rl e e
Sign Range Precision

— AN
23 bits for mantissa

8 bits for exponent

All parameters of a (pre-trained) LLMs are 1n
FP32 (sometimes called full precision).

Credits: https://huggingface.co/blog/hf-bitsandl

Can we use a different data
type?

Another floating-polnt representation

10 bits for mantissa

5 bits for exponent

Credits: https://huggingface.co/blog/hf-bitsandl

Use FPlo 1instead for FP3/

* Pros
* Reduced memory usage
* Faster compute

e Cons

* Converting all LLM welghts may not be straight
forward

* Over/underflows during computation (why?)

Inference 1s boost 1s almost 2x.

Other possible data types

BFLOAT16

BF16 has range similar to FP32 but less precision ->
Overflow/underflow handled.
TF32 — nvidia’s own TensorFloat 32 alternate to FP32

These data types require hardware support.

Credits: https://huggingface.co/blog/hf-bitsandl

Can we do better?

Int8 Quantization

1. Convert FP16/32 tensors to Int8 tensors
2. Perform Int8 tensor operations
3. Convert results back to FP16/32

But why would this approach provide benefit?

- (Most) C/GPUs can perform integer operations
faster than FPs

-Lower memory utilization

Conversion to Int8

%et % be a FP32 matrix where values 1n A are 1n range
—a,a

* Quantize
a=round(A * s,)

* De—quantize
. a
A=—
SCl

where S, is quantization parameter depending on b and a.

2b-1_4

Typical values are s; =——— and a = max(abs(4)).

Credits: https://arxiv.org/pdf/20

Int8 Matrix Multiplication

Computing Y =XW using Int8 quantization.
Y = XW

— X W 1
~ XW = —— =
Sx SW SXSW

(xw)

where (xw) is now an integer matrix
multiplication.

Credits: https://arxiv.org/pdf/20

Vector—-wise Quantization

1

Compute Y;; = X;.W.; = Xi:W.j

Sxi:SW:j

Impact of large magnitude 1s not contained.

Credits: https://arxiv.org/pdf/20

Calibration

Fixing the values of the quantization constants
Sxi.r Sw; - Well, Sw.; 1s no problem. Just take

maX(abS(Wj)). What about the activations?

* Run the model 1in FP32 on a calibration dataset.
* Record all the activations from each layer
(i.e. Xi:) .

* Decide on S, such that the loss of information
between X;. and X;.1s minimum. Criteria -
Entropy, Percentile, etc.

Credits: https://arxiv.org/pdf/20

Performance,

Performance...

Input Data type Accumulation Data type Math Throughput Bandwidth Reduction
FP32 FP32 1x 1x
FP16 FP16 8x 2X
INTS8 INT32 16x 4x
INT4 INT32 32x 8X
INTI1 INT32 128x 32x

Credits: https://arxiv.org/pdf/20

Unfortunately,
scale....

Mean zeroshot accuracy

0.7

=
[y}

=
Ln

0.4

¥

Method
——— LLM.inta()

8-bit baseline
—— 16-bit baseline

."... -

1t does not

Parameters

T

..-""’----.
el A% &

Emergenc
e of

Outlier
Features

Percentage of layers or tokens affected

100

&0

60

40

oo
® % layers affected | |
® % tokens affected / 1/
emergence of f
outlier features /o
35 30 25 20 15

C4 perplexity

LLM.iNnt8() = s

FPle |3]-

r 1
] 1
i (1) Find vector-wise constants: C, & C, (2) Quantize (4) Dequantize '
[]
' X*(127/C) =X !
E X 1z -d—c_w Flg /Cx 1 Dqu"; {C}(@CW:I i

1 - — = Out
Y K S5 Lo W (12710 = W, 127%127 e |
' alo]a]z 0 |-2 ;
E b o e)2 (3) Int8 Matmul :
F16 Fl6 '
X 2 Jas| 1 7)1 -21 E E T w Xm “fa: DUt|32 :
0 [12]3 }eq 2 ' -
1 a7 fed o 0 EW] Cx]
2 .-

2

Fris 16-bit Decomposition
.- -- :
L} L}
i (1) Decompose outliers (2) FP16 Matmul -
]]
L} L}
I —_]
] asl17 W XFl-E 1IIIrI|"lrrlﬁ_ GUtFlE L Out
i X z|o ' FP1E
[] Regular values : 12155 3 |2]
. ' a7|a3 F16 '
[] outliers , F16 ;
LT R e P e T e P R] L]

Credits: https://arxiv.org/pdf/22

Results

125M

Parameters 1.3B 27B 6.7B 13B
32-bit Float 25.65 1591 1443 1330 12.45
Int8 absmax 87.76 16.55 15.11 1459 19.08
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94
Int8 absmax vector-wise 3584 1682 1498 14.13 1648
Int8 zeropoint vector-wise 25.72 1594 1436 13.38 1347
Absmax LLM.int8&() (vector-wise + decomp) 25.83 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 14.43 13.24 1245

Perplexity on C4 dataset.

Lower 1s better.

Pruning

After training..

Idea: Zero-out some weights 1n
LLM

e Some welghts i1n LLMs are 1mportant than others

* Select the weights that are 1mportant based on
a certaln criteria (saliency score) and zero-
out all other weights.

Constraints — LLM performance 1s malntained.
We perform pruning post-training (Why?).

But does pruning really provide improved
inference speed?

- Well depends on the hardware.

A General Framework

Let w be the neural network weights. And L(w) be the
loss of the model on some calibration data.

We want to find an update Aw such that L(w+ Aw) is
close to L(w) and w+ Aw is sparse.

Using second order Taylor expansion
1
IL(w + Aw) — L(W)| = [AW!VL + EAWTHAW

Here H is second-order derivative (hessian) with
respect to parameters. Our goal is to find Aw that
minimizes above term and 1ntroduces sparsity 1n w.

Credits: Laurent, César et al. “Revisiting Loss Modelling fc

Magnitude Pruning

* Assume that the network has converged. Then Vw
1s zero.

* Assume that the hessian 1s 1dentity matrix.

Thus,

IL(w + Aw) — L(w)| = 0.5 * ZW,%
k

Pruning — To minimize the damage, prune p%
welght with small magnitudes.

Credits: Laurent, César et al. “Revisiting Loss Modelling fc

TTo~ ~ = amga o~ a0 g an ~ A T)'|/\1'|vﬁ-: -~ A~

Alternate, Use first-order
approximation

Then,

IL(w + Aw) — L(w)| ~ [AWTVL| < Z|Wk||VLk|
k

Intuitively, weights with large magnitude and
large gradients are 1mportant.

Optimal Brain Surgeon

Assume that network has converged, 1.e., gradient 1is
Zero.

Let Ow be the update Such that a welght Wq 1s pruned by

T 1
update w4+ ow, i.e., e 5ww+mh 0. e; is just a basis
vector correspondlng to dimension J.

Now find 6w such that above condition is met and change
in the loss 1s minimized.

w
Sw = — 1 H‘leq

2
Wq
[H™] 44

1
Lq 252'

Updating w+ 6w is called weight reconstruction.

Credits: Hassibi, Babak et al. “Optimal Brain Surgeon and

Why would this not scale for
LLMs?

* Benefit Magnitude pruning depends upon hardware
support. Loss of performance can be too much at
high sparsities.

* Using second order approaches such as OBS do
not scale well. Computing (approximate) Hessian
matrix 1s daunting task - large memory and
compute.

SparseGPT (Frantar, et.al.,
2023)

Localized pruning - Use layer-wise
reconstruction loss for pruning

LM, W) =|wx - (MO W)xuj

Here, X — inputs (dgo,bs), W - weights (d,ouw,dco1)

~

M is sparse mask and W is reconstructed
welghts.

Note that W+ SW =MQ@OW in this case.
We need to find both M,W.

SparseGPT solution

Let mask M is known. Then, we have closed form
solution f-

- . 1-

w' M; — (XM XT)]XMi(WMiXMi)T

where, I 1s a row number
M; are columns in row i that are not pruned

X, is input matrix with columns in M;

XML.XITV}iis the hessian.

Different Row—-Hessian
Challenge

Fach row requilires inverting differ sections of
the hessian depending upon the masks.
Compu-l——\-l— ~rnAal Tlcrs Ax<rinAnrn ~Aa v

(Has)™

reconstruct Y. Hessian H

W, M

.
AN

select & invert

Credits: Frantar,

O tlmal Only update the columns that are not
p pruned yet. This i1s approximation of true

Partial updates.

Advantages - Hessian computation becomes

Updates easier.

mask M

prune

Al
ey

—

(Hy)™ ——2> (Hy)" —> (Hy,)! —> (Hp)™!

Selecting
the Mask

* Use Magnitude pruning as
the mask. Use SparseGPT
for reconstruction. Is 1t
okay?

* But, what about outlier
features?

p% sparse
~—

3

- X <
O ¥ 1]
H e =
= =
|

— (D

O

[HU-:I) :

Wanda

Solving reconstruction problem (as 1n SparseGPT)
1s still expensive.

Can we get rid of reconstruction all together?

Enter Pruning by Weights and Activation (Wanda)

Magnitude Pruning Wanda
______ S -IW alol1la S =W/ X2
aJo[1]1] [a]o]1[1] [«[o]o]o]| w[3]2]1|3| [alo]alal [«]o]x]o
W[3|-2[-1|-3|+]3[2|1]|3]|+3]|-2][0]-3 3l1]ol2]+]3]|4|8[9]+0|0]-1]|-3
a[1folz] [3[a]o]2] [s]o]o]z [3lz]ofef [3]0]0]2
Weights W_e|_ghtir_rup_)o_nar_wc_eJ Pruned Weights I1%ll2 n Weight Importance Pruned Weights
grouped per layer Weights and activations grouped per output

Credits:

Approach

1. Use a simple saliency metric SU::‘MQAHX”L

Rationale - In LLMs, high magnitude features emerge
because of inputs and weights combined.

2. Prune at each neuron level - Output of each
neuron 1s sum of all 1ts weight.

Comparis

oI
Method ~ Weight Update Calibration Data Pruning Metric S;; Complexity
Magnitude X X Wil Q(1)
SparseGPT v 4 [|W|E/diﬂ-ﬁ; [(XKI +)\I)_l”w— O(dy1aden)
Wanda X v |W?}| - ||Xj||3 O(dﬁidden)

Credits:

Speedups

LLaMA Layer = Dense 2:4 Speedup

Weight Q/K/V/Out FC1 FC2
Dense 2.84ms 10.26ms | 10.23ms
2:4 Sparse 1.59ms 6.15ms 6.64ms
Speedup 1.79% 1.67x 1.54 %
SparseGPT

Credits:

https://proceedings.mlr.press/v202/

frantar23a/frantar23a.pdf

qg/k/v/o_proj 349 214 1.63x
up/gate_proj 9.82 610 1.61x
down_proj 992 645 1.54x

Wanda
Credits:

https://arxiv.org/pdf/2306.11695.pd
f

Performan
ce,
Performan
ce

LLaMA LLaMA-2
Method Weight Update Sparsity B 13B 30B 65B 7B I13B 70B
Dense - 0% 5.68 509 477 356 512 457 3.12
Magnitude X 50% 1729 2021 7.54 590 1489 637 498
SparseGPT v 50% 7.22 6.21 531 457 651 563 398
Wanda X 50% 7.26 6.15 524 457 642 556 3.98
Magnitude X 4:8 16.84 13.84 762 636 1648 6.76 5.54
SparseGPT v 4:8 8.61 740 6.17 538 8.12 6.60 4.59
Wanda X 4:8 8.57 740 597 530 797 655 447
Magnitude X 2:4 42.13 1837 9.10 7.11 5459 833 6.33
SparseGPT v 2:4 11.00 911 7.16 628 1017 832 540
Wanda X 2:4 11.53 958 690 6.25 11.02 827 5.16

Table 3: WikiText perplexity of pruned LLaMA and LLaMA-2 models. Wanda performs competi-
tively against prior best method SparseGPT, without introducing any weight update.

Credits:

FFlash Attention

Making attention GPU aware
Credits: https://arxiv.org/pdf/2205.14135.pdf

Attention on GPT-2

] Matmul

—
i

] Dropout

10

] Softmax

w
E

@
£
—

L

Fused
Mask Kernel
| —

] Matmul
PyTorch FlashAttention

GPU
Memory

Hierarch
Y

SN\ SRAM: 19 TB/s (20 MB)
SRAM

S HBM: 1.5 TB/s (40 GB)
HBM

VETHRU G 1A DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

Standard Attention
Mechanis

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Tiling — Perform SoftMax 1in
blocks

Regular SoftMax

X) 1= ms - ' = [px1—m(x) xg—m(x) / o YRy . — f(x)
m(x) max X, f(x): [E ..oe] , C(x): Z f(x);, softmax(x) : [
SoftMax over concatenation of two
vectors .
m(x) =m([xD x@]) = max(m(xM), m(x?)), f(x) = [emEmE) f((D) @mD)=m2) f(x ()]

J(x)

{(x) = .E(lx(l) x@)J) = gm{xm)—m(x}f(xﬁ]) + gm{x(z})—m(x}f(x@]), softmax(x) = o8
AX

Let HBM 1s large enough to store Q, K, V

Let SRAM size be M.

Divide Q, K, V into blocks of size (B x d) as shown below.
Here B = [M/,,4].

Initialise tensors O (Nxd), 1(0)y and l(—inf)y

Also divide tensors into B blocks

Query QO (N x Key K (N x d) Value V (N x
d) d)
Output O (N x 1 (Nx1) m (Nx1)

d)

Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:
12:
13:
14:
15:
16:

Set block sizes B, = [f—d] , B, = min U%] : d).

Initialize O = (0)yxg € RV*?, ¢ = (0)y € RV, m = (—c0)ny € RN in HBM.

Divide Q into 7, = [g—r-‘ blocks Qg,...,Qr. of size B, X d each, and divide K,V in to 7. = [%-‘ blocks
Ki,...,Kr. and Vy,...,Vz, of size B. X d each.

Divide O into 7, blocks O;,...,Or, of size B, X d each, divide ¢ into T, blocks ¢, ..., {7 of size B, each,
divide m into 7, blocks m1,...,mr, of size B, each.

for 1 <;j<T. do
Load K;,V; from HBM to on-chip SRAM.
for 1 <i<T, do
Load Q;, O;, {;, m; from HBM to on-chip SRAM.
On chip, compute S;; = Qijf € RB-XBe,
On chip, compute m;; = rowmax(S;;) € R, f]fj = exp(S;; — m;;) € RE*Be (pointwise), f,;j =
rowsum(P; j) € R5B-.
On chip, compute m?*% = max(m;, m;;) € RBr | (PeW = M= (; 4 e™Mii=™i™" {;; € REr
Write O; « diag(£r%) L (diag(£;)e™ ™™ Q; + ™™ P;; V) to HBM.
Write {; « (%, m; < m?*" to HBM.
end for
end for
Return O.

Outer loop) J

Inner loop i i

Sij= i 3 _

m;; = rowmax(S;;) P;j = exp(S;; — lij = rowsum(P;;)

On chip, compute 77;; = rowmax(S;;) € R5r, f’;j = exp(Sij — m;;) € RE*Be (pointwise), €;; =
rowsum(P; j) e RPr.

On chip, compute m!*Y = max(m;,m;;) € R5r
Write O; « diag(£PV) ™ (diag((;)e™™ M0y 4 M
Write {; « (7Y, m; & m!*" to HBM.

new II.EW

, (Y =™ l; + ™M
“‘“’PUV}) to HBM.

lij € RBr.

Outer Loop

K':dxN

Copy Block to SRAM
Outer Loop

Q:Nxd . > V:NXd
= — — - — - - "
i |
Vo TT T
Q ' | o
2 Compute Block =
- | 1]
- on SRAM 5 —
e |3 o
= 1| 5 S
=
1] o
0
1k
\J v

|

Output to HBEM
sm(QK")V: N xd

Inner Loop

FlashAttention

Performance

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface (87| 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM |[77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

Questions?

