Parameter-Efficient Fine-Tuning for Large Language Models *b* Training LLM as Scale

Dinesh Raghu

IBM Research

Gaurav Pandey IBM **Research**

Transfer Learning before the Large Language Models Era

In-context learning has mostly replaced fine-tuning for large models

Downsides of In-context Learning

Downsides of In-context Learning

- 1. Poor performance: Prompting generally performs worse than fine-tuning [Brown et al., 2020].
- 2. Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples [Zhao et al., 2021; Lu et al., 2022], etc.
- 3. Lack of clarity regarding what the model learns from the prompt. Even random labels work [Min et al., 2022]!
- 4. Inefficiency: The prompt needs to be processed every time the model makes a predictionred it: EMNLP 2022 PEFT Tutorial

Why is Full Fine Tuning in LLMs challenging?

Why is Full Fine Tuning in LLMs

Why is Full Fine Tuning in LLMs

What can we do then?

Parameter Efficient Fine Tuning (PEFT)

Outline

- Adapters
- Prompt Tuning
- Low Rank Adapters

Adapters

Architecture of adapter module and its integration with the transformer [Houlsby et al., 2019]

Adapters

GLUE (BERT_{LARGE})

Accuracy versus the number of trained parameters, aggregated across tasks. The lines and shaded areas indicate the 20th, 50th, and 80th percentiles across tasks. [Houlsby et al., 2021]

Outline

- Adapters
- Prompt Tuning
- Low Rank Adapters

Prompt Tuning

Image Credits: leewayhertz.com

Prompt Tuning: Easy to batch multiple tasks

Inference

Adapted from DeepLearning.Al

Prompt Tuning

Prompt tuning performs poorly at smaller model sizes and on harder tasks [Mahabadi et al., 2021; Liu et al., 2022]

Prompt tuning only matches finetuning at the largest model size

Prompt tuning vs standard fine-tuning and prompt design across T5 models of different sizes [Lester et al., 2021]

Multi-Layer Prompt Tuning

Image Credits: leewayhertz.com

Outline

- Adapters
- Prompt Tuning
- Low Rank Adapters

Low-Rank Composition

• Li et al. [2018] show that models can be optimized in a low-dimensional, randomly oriented subspace rather than the full parameter space

Standard fine-tuning:

$$\theta^{(D)} = \theta_0^{(D)} + \theta_\tau^{(D)}$$

Low-rank fine-tuning:

$$\theta^{(D)} = \theta_0^{(D)} + P \theta^{(d)}$$

A random $D \times d$

projection matrix

Intrinsic Dimensionality

- Li et al. [2018] refer to d he minimum where a model achieves within 90% of the full d_{90} arameter model performance, as the intrinsic dimensionality of a task
- <u>Aghajanyan et al. [2021]</u> investigate the intrinsic dimensionality of different NLP tasks and pre-trained models
- Observations:
 - Intrinsic dimensionality decreases during pre-training
 - Larger models have lower intrinsic dimensionality

Intrinsic Dimensionality

Structure Aware Low Rank Tuning

- <u>Aghajanyan et al. [2021]</u> also propose a
- Affocate awar λ_i yersion per layer to learn layer-wise scaling:

$$\theta_i^{(D)} = \theta_{0,i}^{(D)} + \lambda_i P \theta_i^{(d)}$$

• However, storing the random matrices still requires a lot of extra space and is slow to train [Mahabadi et al., 2021]

Low-rank Adaptation (LoRA)

- Instead of learning a lowrank factorization via a random matrix *P*, we can learn the projection matrix directly (if it is small enough)
- LoRA [Hu et al., 2022] learns two low-rank matrices A and B that are applied to the self-attention weights:
- $h = W_0 x + \Delta W x = W_0 x + BA x$

Image Credits: <u>Hu et al., 2022</u>

LoRA: Effect of rank on Performance

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL($\pm 0.5\%$)	$ W_q$	68.8	69.6	70.5	70.4	70.0
	W_q, \dot{W}_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
MultiNLI (±0.1%)	$ W_q$	90.7	90.9	91.1	90.7	90.7
	W_q, \dot{W}_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

Validation accuracy on WikiSQL and MultiNLI with different rank [Hu et al., 2021]

Other Extensions of LoRA

- LongLoRA [Chen et al., 2024]
 - Sparse Local attention to support longer context length during finetuning
- LoRA+ [Hayou et al., 2024]
 - different learning rates for the LoRA adapter matrices
 A and B improves finetuning speed
- DyLoRA [Valipou et al., 2023]
 - selects rank without requiring multiple runs of training

Quantized LoRA

• Finetune a 65B model on a single 48GB GPU

Summary

- Adapters
- Prompt Tuning
- Low Rank Adapters

Training LLMs at Scale

Table of Contents

- Model sizes and GPU memory consumption
- Methods for training at scale
 - Quantization of parameters
 - Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
 - Model Parallel Not covered

Table of Contents

- •Model sizes and GPU memory consumption
- Methods for training at scale
 - Quantization of parameters
 - Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
 - Model Parallel Not covered

Model sizes

Adapted from a blog by MSR and slides from deeplearning.ai

Training a 1B parameter model

	Bytes per parameter		
Model Parameters (Weights)	4 bytes per parameter		

Training a 1B parameter model in FP32

	Bytes per parameter				
Model Parameters (Weights)	4 bytes per parameter				
1B parameters = $4 * 1B \approx 4GB$					

Training a 1B parameter model

	Bytes per parameter	
Model Parameters (Weights)	4 bytes per parameter	
1B parameters = $4 * 1B \approx 4GB$		

parameters

Adapted from a blog by MSR and slides from deeplearning.ai

Training a 1B parameter model

	Bytes per parameter	
Model Parameters (Weights)	4 bytes per parameter	
1B parameters = $4 * 1B \approx 4GB$		

Training a 1B parameter model

	Bytes per parameter						
Model Parameters (Weights)	4 bytes per parameter						
1B parameters = $4 * 1B \approx 4GB$							

Training a 1B parameter model

Training a 1B parameter model

Table of Contents

• Model sizes and GPU memory consumption

•Methods for training at scale

- Quantization of parameters
- Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
- Model Parallel Not covered

FP32 vs BF16

FP32 4 bytes memory

Quantization

	Bits	Exponent	Fraction	Memory needed to store one value	
FP32	32	8	23	4 bytes	
FP16	16	5	10	2 bytes	
BFLOAT16	16	8	7	2 bytes	FLAN T5
INT8	8	-/-	7	1 byte	

For loading a 1B parameter model in GPU memory

Mixed Precision Training in BF16

deeplearning.ai

Table of Contents

• Model sizes and GPU memory consumption

•Methods for training at scale

- Quantization of parameters
- Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
- Model Parallel Not covered

Multi-GPU training

- Data Parallelism
 - Split the dataset across the GPUs/nodes
 - Distributed data parallel
 - Minimizes communication among GPUs
 - Aggregates gradients across GPUs at the end of each training step
 - Each GPU holds the entire model.
 - Deepspeed Zero/FSDP
 - Reduces memory footprint of data parallel
 - Each GPU holds only a portion of the model
 - More communication overhead

Each GPU contains the model parameters, gradients and activations

Table of Contents

• Model sizes and GPU memory consumption

•Methods for training at scale

- Quantization of parameters
- Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
- Model Parallel Not covered

Zero Redundancy Optimizer (ZeRO) GPU 0 GPU 1 GPU 2

	Parameters		Parameters			Parameters		Paramete	rs		
DDP	Gradients		Gradients		Gradients		Gradients				
	Activations and Optimizer states		Activations and Optimizer states		Activations and Optimizer states		Activations and Optimizer states				
ZeRO		rameters	I		eters		Para		S	Paramete	
		cadients			ents		Grad		5	Gradient	
		ivations Optimizer states	A an		tions imizer :es		Activ and Or st		is :er	Activatio and Optim states	

GPU 3

GPU₀

 GPU_2

 GPU_3

We will use 4-way data parallelism and ZeRO memory optimization Each GPU will optimize the same model on different data

Each cell represents GPU memory used by its corresponding transformer layer

The first row is the fp16 version of the model parameters

The 2nd row is the fp16 version of the gradient This will be used in the backwards pass to update the weights

The last (massive) block of memory is used by the Optimizer. This is not used until after the fp16 gradients are computed

We also need a buffer to keep all the activations for each transformer layer. (e.g. Attention heads, MLPs, etc)

Each GPU is responsible for 1 piece of the end model

Only GPU_0 initially has the model parameters for M_0 . It broadcasts them to $GPU_{1,2,3}$

Run the forward pass Each GPU runs on M_0 's parameters using its own data

Only part of each layer's activations are retained

Once M_0 is complete, $GPU_{1,2,3}$ can delete the parameters for M_0

The forward pass continues across all GPUs on M₁

Once all GPUs have run M_1 , $GPU_{0,2,3}$ can delete the parameters for M_1

Once all GPUs have run M_1 , $GPU_{0,2,3}$ can delete the parameters for M_1

GPU₂ broadcasts the parameters for M₂

The forward pass continues across all GPUs on M₂'s parameters

The forward pass continues across all GPUs on M₂'s parameters

Once all GPUs have run M_2 , $GPU_{0,1,3}$ can delete the parameters for M_2

GPU₃ broadcasts the parameters for M₃

GPU₃ broadcasts the parameters for M₃

The forward pass continues on all GPUs for M₃

The forward pass continues on all GPUs for M_3 's parameters

The forward pass is complete. The loss is computed on each GPU for its respective dataset

The backwards pass starts.

 $GPU_{0,1,2}$ will hold a temporary buffer M_3 gradients on $Data_{0,1,2}$

The backwards pass proceeds on M₃

The activations for M₃ are recomputed from the saved partial activations

The backwards pass proceeds on M_3

 $GPU_{0,1,2}$ pass their M_3 gradients to GPU_3 GPU_3 performs gradient accumulation and holds final M_3 for all Data

 ${\rm GPU}_{0,1,2}$ pass their ${\rm M}_3$ gradients to ${\rm GPU}_3$ ${\rm GPU}_3$ performs gradient accumulation and holds final ${\rm M}_3$ for all Data

 $GPU_{0,1,2}$ delete their temporary M_3 gradients and parameters. All M_3 activations are deleted

 GPU_2 passes M_2 's parameters to $GPU_{0,1,3}$ so they can run the backwards pass and compute gradients for M_2

The backward pass continues on M₂

The activations for M₂ are recomputed from the saved partial activations

The backward pass continues on M₂

 $GPU_{0,1,3}$ pass their M_2 gradients to GPU_2 GPU_2 performs gradient accumulation and holds final M_2 gradients for all Data

 $GPU_{0,1,3}$ can delete their temporary M_2 gradients and parameters. All M_2 activations are deleted

GPU₁ passes M_1 's parameters to $GPU_{0,2,3}$ so they can run the backwards pass and compute gradients for M_1

GPU_{0,2,3} use temporary buffers to hold M₁'s gradients

The backward pass continues on M₁

The backward pass continues on M₁

The activations for M₁ are recomputed from the saved partial activations

 $GPU_{0,2,3}$ pass their M_1 gradients to GPU_1 GPU_1 performs gradient accumulation and holds final M_1 gradients for all Data

 $GPU_{0,2,3}$ can delete their temporary M_1 gradients and parameters. All M_1 activations are deleted

 GPU_0 passes M_0 's parameters to $GPU_{1,2,3}$ so they can run the backwards pass and compute gradients for M_0

The backward pass continues on M₀

The activations for M₀ are recomputed from the saved partial activations

The backward pass continues on M₀

GPU_{1,2,3} pass their M₀ gradients to GPU₀

GPU₀ performs gradient accumulation and holds final M₀ gradients for all Data

GPU_{1,2,3} pass their M₀ gradients to GPU₀

GPU₀ performs gradient accumulation and holds final M₀ gradients for all Data

 ${\sf GPU}_{1,2,3}$ delete their temporary ${\sf M}_0$ gradients and parameters All ${\sf M}_0$ activations are deleted

The Optimization step begins in parallel on each GPU

The optimizer runs

The optimizer runs

The optimizer creates fp32 updated model weights These are converted to fp16

The fp16 weights become the model parameters for the next iteration Training iteration complete!

The need for two copies

- FP16 offers faster computation and reduced memory usage.
- Allows for faster forward and backward pass.
- FP32 weights/optimizer states are needed to ensure high precision.

Summary

- Training at scale can be achieved by:
 - Quantization of parameters
 - Data Parallel
 - Distributed Data Parallel
 - FSDP/ Deepspeed ZeRO
 - Model Parallel Not covered