
Parameter-Efficient 

Fine-Tuning for Large 

Language Models

&

Training LLM as Scale

Dinesh Raghu Gaurav 

Pandey



Transfer Learning before the Large 
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Credit: NAACL 2019 Transfer learning tutorial

https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAgadvJfc/editslide=id.g56add75db5_0_104


Transfer Learning in the Large 

Language Models Era

In-context learning has mostly replaced fine-tuning 

for large models
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Credit: Liu et al. (2021)

https://arxiv.org/abs/2107.13586
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Downsides of In-context Learning

1. Poor performance: Prompting generally performs 

worse than fine-tuning [Brown et al., 2020].

2. Sensitivity to the wording of the prompt [Webson 

& Pavlick, 2022], order of examples [Zhao et al., 

2021; Lu et al., 2022], etc.

3. Lack of clarity regarding what the model learns 

from the prompt. Even random labels work [Min et 

al., 2022]!

4. Inefficiency: The prompt needs to be processed 

every time the model makes a prediction.Credit: EMNLP 2022 PEFT Tutorial 

https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-main.167/
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://aclanthology.org/2022.acl-long.556/
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2107.13586
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What can we do then?
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Adapters

Architecture of adapter module and its integration with 

the transformer [Houlsby et al., 2019]

https://arxiv.org/pdf/1902.00751.pdf


Adapters

Accuracy versus the number of trained parameters, 

aggregated across tasks. The lines and shaded areas 

indicate the 20th, 50th, and 80th percentiles across tasks. 

[Houlsby et al., 2021]

https://arxiv.org/pdf/1902.00751.pdf
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Prompt Tuning

Image Credits: leewayhertz.com



Prompt Tuning: Easy to batch 

multiple tasks

Inference

Task A

Task B

Training

Adapted from DeepLearning.AI



Prompt Tuning

Prompt tuning vs standard fine-tuning and prompt 

design across T5 models of different sizes [Lester et 

al., 2021]

Prompt tuning only matches fine-

tuning at the largest model size

Prompt tuning performs 

poorly at smaller model 

sizes and on harder 

tasks [Mahabadi et al., 

2021; Liu et al., 2022]

https://aclanthology.org/2021.emnlp-main.243/
https://openreview.net/forum?id=bqGK5PyI6-N
https://aclanthology.org/2022.acl-short.8/


Multi-Layer Prompt Tuning

Image Credits: leewayhertz.com
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Low-Rank Composition

Standard fine-tuning: Low-rank fine-tuning: 

A random                  

projection matrix 

● Li et al. [2018] show that models can be 

optimized in a low-dimensional, randomly oriented 

subspace rather than the full parameter space

Credit: EMNLP 2022 PEFT Tutorial 

https://openreview.net/pdf?id=ryup8-WCW
https://arxiv.org/abs/2107.13586


Intrinsic Dimensionality

● Li et al. [2018] refer to the minimum      where 

a model achieves within 90% of the full-parameter 

model performance,         as the intrinsic 

dimensionality of a task

● Aghajanyan et al. [2021] investigate the 

intrinsic dimensionality of different NLP tasks 

and pre-trained models

● Observations:
○ Intrinsic dimensionality decreases during pre-training

○ Larger models have lower intrinsic dimensionality

Credit: EMNLP 2022 PEFT Tutorial 

https://openreview.net/pdf?id=ryup8-WCW
https://aclanthology.org/2021.acl-long.568/
https://arxiv.org/abs/2107.13586


Intrinsic Dimensionality

Intrinsic dimension          on the MRPC dataset for models of different sizes [Aghajanyan et al., 

2021]

https://aclanthology.org/2021.acl-long.568/


● Allocate one scalar        per layer to learn 

layer-wise scaling:

Structure Aware Low Rank Tuning

● Aghajanyan et al. [2021] also propose a 

structure-aware version

● However, storing the random matrices still 

requires a lot of extra space and is slow to 

train [Mahabadi et al., 2021]

Credit: EMNLP 2022 PEFT Tutorial 

https://aclanthology.org/2021.acl-long.568/
https://openreview.net/forum?id=bqGK5PyI6-N
https://arxiv.org/abs/2107.13586


● LoRA [Hu et al., 2022]

learns two low-rank 

matrices A and B that 

are applied to the 

self-attention weights:

Low-rank Adaptation (LoRA)

● Instead of learning a low-

rank factorization via a 

random matrix  P, we can 
learn the projection 

matrix directly (if it is 

small enough)

Image Credits: Hu et al., 2022

https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9


LoRA: Effect of rank on 

Performance

Validation accuracy on WikiSQL and MultiNLI with different rank [Hu et al., 2021]

https://arxiv.org/pdf/2106.09685.pdf


Other Extensions of LoRA

● LongLoRA [Chen et al., 2024]
○ Sparse Local attention to support longer context 

length during finetuning

● LoRA+ [Hayou et al., 2024]
○ different learning rates for the LoRA adapter matrices 

A and B improves finetuning speed

● DyLoRA [Valipou et al., 2023]
○ selects rank without requiring multiple runs of 

training

https://arxiv.org/pdf/2309.12307.pdf
https://arxiv.org/pdf/2402.12354.pdf
https://aclanthology.org/2023.eacl-main.239.pdf


Quantized LoRA

● Finetune a 65B model on a single 48GB GPU

Image Credits: Dettmers et al., 2023

https://arxiv.org/pdf/2305.14314.pdf
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Model sizes

How do we train such large models?

Adapted from a blog by MSR and slides from 

deeplearning.ai
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Training a 1B parameter model 
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Training a 1B parameter model

4 GB

1B parameters = 4 ∗ 1B ≈ 4𝐺𝐵

parameters

≈ 8 GB

activations

Gradient of parameters at layer (t) is a function of

• the Gradient at layer (t+1) 

• the activations at layer (t)

Can vary significantly with sequence length
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Training a 1B parameter model
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Training a 1B parameter model

4 GB

1B parameters = 4 ∗ 1B ≈ 4𝐺𝐵

parameters

4 GB

gradients

4 GB

Gradient Running

Average 

4 GB

Squared Gradient

Running Average 

≈ 8 GB

Activations

24 GB
Adapted from a blog by MSR and slides from 

deeplearning.ai
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FP32 vs BF16

𝑉 = −1 𝑠𝑖𝑔𝑛 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 −127 × 1.𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

• Also, known as truncated fp32

• Same range as FP32 

• Allows numbers as large as 2128 and 

as small as 2−127

• Reduced precision

• 𝑥 and 𝑥 + 𝑥 ∗ 2−7 are treated as 

distinct

Adapted from a blog by MSR and slides from 

deeplearning.ai



Quantization

For loading a 1B parameter model in GPU memory

4 GB 2 GB 2 GB 1 GB

FP16FP32 BF16 INT8

> >>



Mixed Precision Training in 

BF16

Adapted from a blog by MSR and slides from 

deeplearning.ai

2 GB

BF16

parameters

2 GB

BF16

gradients

4 GB

Gradient Running

Average 

4 GB

Squared Gradient

Running Average 

≈ 2 GB

Activations

4 GB

FP32

Master Copy

Of parameters

≈ 18𝐺𝐵
Grows with 

• The length of the sequence

• Number of parameters
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Multi-GPU training

• Data Parallelism
• Split the dataset across the GPUs/nodes

• Distributed data parallel
• Minimizes communication among GPUs

• Aggregates gradients across GPUs at the end of each training 

step

• Each GPU holds the entire model.

• Deepspeed Zero/FSDP

• Reduces memory footprint of data parallel

• Each GPU holds only a portion of the model

• More communication overhead

Adapted from a blog by MSR and slides from 

deeplearning.ai



Distributed Data Parallel

Adapted from a blog by MSR and slides from 
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Distributed Data Parallel
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Distributed Data Parallel
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Distributed Data Parallel

Each GPU contains the model parameters, gradients and activations

Adapted from a blog by MSR and slides from 

deeplearning.ai
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The need for two copies

• FP16 offers faster computation and reduced memory 
usage.

• Allows for faster forward and backward pass.

• FP32 weights/optimizer states are needed to ensure high 
precision.

Weights

Forward/Back

ward pass in 

FP16

Updated in 

FP32

Gradients
Computed in 

FP16

Accumulated 

in FP32

Adapted from a blog by MSR and slides from 

deeplearning.ai



Summary

• Training at scale can be achieved by:

• Quantization of parameters

• Data Parallel

• Distributed Data Parallel

• FSDP/ Deepspeed ZeRO

• Model Parallel – Not covered

Adapted from a blog by MSR and slides from 

deeplearning.ai


