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Transfer Learning before the Large
Language Models Era
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Credit: NAACL 2019 Transfer learning tutorial



https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAgadvJfc/editslide=id.g56add75db5_0_104

Transfer Learning 1n the Large
Language M~~"~1~ T

BERT
Pretraining BART
» | ERNIE
GPT-3
PaLM

In-context learning has mostly replaced fine-tuning
for large mOdelS Credit: Liu et al. (2021)



https://arxiv.org/abs/2107.13586

Downsides of In-context Learning



Downsides of In-context Learning

1. Poor performance: Prompting generally performs
worse than fine-tuning [Brown et al., 2020].

2. Sensitivity to the wording of the prompt [Webson
& Pavlick, 2022], order of examples [Zhao et al.,
2021; Lu et al., 2022], etc.

3. Lack of clarity regarding what the model learns

from the prompt. Even random labels work [Min et
al., 2022]!

4. Inefficiency: The prompt needs to be processed
every time the model makes a predilctlObredt EMNLP 2022 PEFT Tutorial



https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-main.167/
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://aclanthology.org/2022.acl-long.556/
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2107.13586

Why 1s Full Fine Tuning 1n LLMs
challenging?
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What can we do then?
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Outline

e Adapters
e Prompt Tuning

e Low Rank Adapters
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Architecture of adapter module and its integration with
the transformer [Houlsby et al., 2019]



https://arxiv.org/pdf/1902.00751.pdf
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Accuracy versus the number of trained parameters,
aggregated across tasks. The lines and shaded areas
indicate the 20th, 50th, and 80th percentiles across tasks.
[Houlsby et al., 2021]



https://arxiv.org/pdf/1902.00751.pdf

Outline

e Prompt Tuning



Prompt Tunling

Transformer Layer N

Transformer Layer 2

Transformer Layer 1

Embedding Layer

Image Credits: leewayhertz.com



Prompt Tuning: Easy to batch
multiple tasks

ing
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Adapted from DeepLearning.Al




Prompt Tuning

Prompt tuning performs
poorly at smaller model
sizes and on harder
tasks [Mahabadi et al.,
2021; Liu et al., 2022]

SuperGLUE Score
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Prompt tuning only matches fine-
tuning at the largest model size

—=Ml- Prompt Design
Model Tuning
—=%—Prompt Tuning %

108 10° 1010 101!
Model Parameters

Prompt tuning vs standard fine-tuning and prompt
design across T5 models of different sizes [Lester et

al., 2021]



https://aclanthology.org/2021.emnlp-main.243/
https://openreview.net/forum?id=bqGK5PyI6-N
https://aclanthology.org/2022.acl-short.8/

Multi-Layer Prompt Tuning
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Image Credits: leewayhertz.com



Outline

e Low Rank Adapters



Low—-Rank Composition

e L1 et al. [2018] show that models can be
optimized 1n a low-dimensional, randomly oriented
subspace rather than the full parameter space

Standard fine-tuning: Low-rank fine-tuning:

9P = g{P) 1 (P) o) = giP) 1 poe(@

e

Arandom D x d
projection matrix

Credit: EMNLP 2022 PEFT Tutorial



https://openreview.net/pdf?id=ryup8-WCW
https://arxiv.org/abs/2107.13586

Intrinsic Dimensionality

L1 et al. [2018] refer to dhe mlnimum where
a model achieves within 90% of the fulldgparameter
model performance, as the intrinsic

dimensionality of a task

Aghajanyan et al. [2021] 1nvestigate the
intrinsic dimensionality of different NLP tasks
and pre—-trained models

Observations:

o Intrinsic dimensionalilty decreases durling pre-tralning
o Larger models have lower intrinsic dimensionality

Credit: EMNLP 2022 PEFT Tutorial



https://openreview.net/pdf?id=ryup8-WCW
https://aclanthology.org/2021.acl-long.568/
https://arxiv.org/abs/2107.13586

Intrinsic Dimensionality
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Intrinsic dimension dgg  on the MRPC dataset for models of different sizes [Aghajanyan et al.,
2021



https://aclanthology.org/2021.acl-long.568/

Structure Aware Low Rank Tuning

e Aghajanyan et al. [202]1] also propose a
. REyychugesawagA;ygrsion Lo 1aver to learn

layer-wlse scaling:

0" = 657 + N PO

e However, storing the random matrices still
requlres a lot of extra space and 1s slow to
train [Mahabadi et al., 2021]

Credit: EMNLP 2022 PEFT Tutorial



https://aclanthology.org/2021.acl-long.568/
https://openreview.net/forum?id=bqGK5PyI6-N
https://arxiv.org/abs/2107.13586

Low—rank Adaptation (LoRA)

e Instead of learning a low- h | |
rank factorization via a A O S
random matrix P, we can
learn the projection Pretrained
matrix directly (1f 1t 1s Weights

small enough)

e LORA [Hu et al., 2022]
learns two low—-rank
matrices 4 and B that
are applied to the
self-attention weights:

%
|

h = W().’L' + AW.’L' — WO.'L' + BAIL' Image Credits: Hu et al., 2022



https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9

LoRA: Effect of

rank on

Performance

Weight Type r=1 r=2 r=4 r=8 r==64

o W, 68.8 69.6 705 704  70.0

WikiSQL(£0.5%) w,, W, 734 733 737 138 T35

Wy, Wi, Wo, W, | 741 737 740 740 739

W, 90.7 909 91.1 907  90.7

MultiNLI (£0.1%) W,, W, 913 914 913 916 914

Wy, Wi, Wy, W, | 912 917 917 915 914

Validation accuracy on WikiSQL and MultiNLI with different rank [Hu et al., 2021]



https://arxiv.org/pdf/2106.09685.pdf

Other Extensions of LoRA

e LongLoRA [Chen et al., 2024]

o Sparse Local attention to support longer context
length during finetuning

e LORA+ [Hayou et al., 2024]

o different learning rates for the LoRA adapter matrices
A and B 1mproves finetuning speed

e DyLoORA [Valipou et al., 2023]

o sSelects rank without requiring multiple runs of
tralining



https://arxiv.org/pdf/2309.12307.pdf
https://arxiv.org/pdf/2402.12354.pdf
https://aclanthology.org/2023.eacl-main.239.pdf

Quantized LoRA

e Finetune a 65B model on a single 48GB GPU

Full Finetuning LoRA e
(No Adapters)
Optimizer /\
State D D D ‘_E ...... CPU
(32 bit) -
I 000
| | | 200

(16 bit)

=" ] N G e

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow ==jp-

[ 1]
| |

Image Credits: Dettmers et al., 2023



https://arxiv.org/pdf/2305.14314.pdf

summary

e Adapters
e Prompt Tuning

e Low Rank Adapters



I'raining LLMs at
Scale
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Adapted from a blog by MSR and slides from
deeplearning.ai



Table of Contents

*Model sizes and GPU memory consumption

* Methods for tralning at scale
* Quantization of parameters
* Data Parallel
* Distributed Data Parallel
* FSDP/ Deepspeed ZeRO
* Model Parallel - Not covered

Adapted from a blog by MSR and slides from
deeplearning.ai



Model sizes

7 -
—o— WebText2 (Test)
O 1 —o— Internet Books
—o— Books
5 —e— Wikipedia
wn Common Crawl
8
] — 41
T
1.5B GPT-3 —~
1758 PaLM 3]
540B

10 105 10 107 108 109
Parameters (non-embedding)
How do we train such large models?

Adapted from a blog by MSR and slides from
deeplearning.ai



Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adapted from a blog by MSR and slides from
deeplearning.ai



Training a 1B parameter model
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Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 * 1B = 4GB
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Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 * 1B = 4GB

parameters

Adapted from a blog by MSR and slides from
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Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 * 1B = 4GB

parameters activations
Gradient of parameters at layer (t) 1s a function of
* the Gradient at layer (t+1)
* the activations at layer (t)
Can vary significantly with sequence length



Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 *x 1B = 4GB

parameters activations gradients

Adapted from a blog by MSR and slides from
deeplearning.ai



Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 *x 1B = 4GB

parameters activations gradients Gradient Running’ 'quared Gradient
Average unning Average
Optimize
r

Adapted from a blog by MSR and slides from
deeplearning.ai State



Training a 1B parameter model

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

1B parameters =4 *x 1B = 4GB

parameters gradients Gradient RunningSquar.ed Gradient Activations
\ Average Running Average }

Y Adapted from a blog by MSR and slides from
24 GB deeplearning.ai
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FP32 vs BF16

FP32 4bytes memory
0O 10000000 10010010000111111011000

V = (—1)519n x 2exponent =127 » 1 mantissa
\ J v J L\ v J
Sign Exponent Fraction
1 bit 8 bits 23 bits

* Also, known as truncated fp32
* Same range as FP32
* Allows numbers as large as 2128 and

BFLOAT16|BF16J 2 bytes memory j as small as 2-127

Reduced precision

0 10000000 1001001 e x and x+x*277 are treated as
~ Y 7N Y g distinct
Sign  Exponent Fraction
1 bit 8 bits 7 bits

Adapted from a blog by MSR and slides from
deeplearning.ai



Quantization

Bits Exponent Fraction Memory needed
to store one value
FP32 32 8 23 4 bytes
FP16 16 5 10 2 bytes
BFLOAT16 16 8 7 2 bytes
INT8 8 -/~ 7 1 byte

For loading a 1B parameter model 1n GPU memory

FP32 FP16 BF16 INTS



Mixed Precision Tralning 1n
BE16

parameters gradients Activations Gradient RunningSquared Gradient
\ Average Run7ing Average

f

~ 18GB

Grows with
* The length of the sequence
* Number of parameters

Master Copy

Of parameters Adapted from a blog by MSR and slides from
deeplearning.ai
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*Methods for training at scale

* Data Parallel
e Distributed Data Parallel

Adapted from a blog by MSR and slides from
deeplearning.ai



Mult1-GPU training

e Data Parallelism

e Split the dataset across the GPUs/nodes
* Distributed data parallel

* Minimizes communication among GPUs

* Aggregates gradients across GPUs at the end of each training
step

* Each GPU holds the entire model.
* Deepspeed Zero/FSDP
* Reduces memory footprint of data parallel

* Each GPU holds only a portion of the model
* More communication overhead

Adapted from a blog by MSR and slides from
deeplearning.ai



Distributed Data Parallel

-~ ~
LLM
Dataloader Y
GPU3
J
( LLM h
. GPU2
N J
LLM
. GPU1
N\ Y,

LLM
GPUO

Adapted from a blog by MSR and slides from
deeplearning.ai




Distributed Data Parallel

LLM Forward/
Aoz ] I GPU3 Backward pass |
X J
s Y/
| LLM Forward/ N
GPU 2 Backward pass
N VA )
L LM Forward/ P
GPU 1 Backward pass
N J )
LLM Forward/ v,
GPUO Backward pass

Adapted from a blog by MSR and slides from
deeplearning.ai



Distributed Data Parallel

- \ Synchronize
LLM
Dataloader S Forward/
GPU 3 Backward pass
X )
f N [
] - Forward/
GPU 2 Backward pass
E 7S 7 Synchronize }
) gradients
I LM Forward/
GPU 1 Backward pass
o A\ )
LM Forward/
GPUO Backward pass

Adapted from a blog by MSR and slides from
deeplearning.ai



Distributed Data Parallel

Synchronize
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e

Fach GPU contains the model parameters, gradients and activations

Adapted from a blog by MSR and slides from
deeplearning.ai
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Zero Redundancy Optimizer

(Z2eRO)

DDP

ZeRO

GPU O

Parameters

GPU 2

GPU 3

Gradients

Parameters

Parameters

Activations
and Optimizer
states

Gradients

Gradients

Activations
and Optimizer
states

Activations
and Optimizer
states

rameters

Para S

Paramete

radients

Grad

Gradient

rivations
Optimizer
states

GPU 1
Parameters
Gradients

Activations
and Optimizer
states
I rters

ents
A\ tions
an imizer
es

Actiy 1S
and Oy er
st

Activatiq
and Optim:
states

Adapted from a blog by MSR and slides from
deeplearning.ai




Data
GPU, GPU,

GPU, GPU;

Adapted from a blog by MSR and slides from
deeplearning.ai



Datao I ] | | | | | 1 | | I | I g [ ' Da-ta1 L 1 i N 1 i ] i i i || | | | '

GPU, GPU,
Data2 1 [ u 1 I i | | ] i | [l [ | | ' Dat33 [ 1 I g g i ' b ' ' . " a . '
GPU, GPU;,
We will use 4-way data parallelism and ZeRO memory optimization

Each GPU will optimize the same model on different data

Adapted from a blog by MSR and slides from
deeplearning.ai
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Each cell E represents GPU memory used by its corresponding transformer layer l

Adapted from a blog by MSR and slides from
deeplearning.ai



Data, = 't} |

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII FP16 Paramet

GPU, GPU,

HE=E> R =II=:;»"'| il

' aaasssararaes)  patar {1 e o T e

..-. ................................:P16 Paramet .... ................................ FP16 Parameters
GPU, GPU,

The first row is the fp16 version of the model parameters

Adapted from a blog by MSR and slides from
deeplearning.ai



Data,

Data,

I 1 N i i E & §& § 1} ] I L ' Data i 2 i B N | E B L] L] T N N '

EP18 E3cane

GPU, GPU,
P @B B B N KB HE N HE B X N KB ) Data3 I I §F B I B B B B B B N K N )
FP16 Parameters
FP16 Gradient
GPU, GPU,

The 2nd row is the fp16 version of the gradient
This will be used in the backwards pass to update the weights

Adapted from a blog by MSR and slides from
deeplearning.ai

EP18 Gasne™

FP16 Parameters
FP16 Gradient



EP18 Baramerers
~ FP32 Gradient

= FP32 Variance
~ FP32 Momentum

== FP32 Parameters

Ep18 E2rapmete
FP32 Momentum

~ " FP32 Gradient
== FP32 Variance
S FP32 Parameters

' FP16 Parameters
FP16 Gradient

FP16 Paramete
FP16 Gradient

FP32 Gradient
FP32 Variance

EEEEEEEEEEEnmnnnm FP32 Parameters

FP32 Gradient
== FP32 Variance
FP32 Momentum

EEEEEEEEE

O

SERERDEEE

Tl T

EEERERSEEE
EEEEEEEEEEEEnnnnnnnFP32 Parameters

The last (massive) block of memory is used by the Optimizer.
This is not used until after the fp16 gradients are computed

Adapted from a blog by MSR and slides from

deeplearning.ai



= |

RN

GPU, GPU,

We also need a buffer to keep all the activations for each transformer
layer. (e.g. Attention heads, MLPs, etc)

Adapted from a blog by MSR and slides from
deeplearning.ai



Each GPU is responsible for 1 piece of the end model

Adapted from a blog by MSR and slides from
deeplearning.ai
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aais .

Data, QDI

égll_-jlll;

Only GPU, initially has the model parameters for M,,.
It broadcasts them to GPU, , 5

Adapted from a blog by MSR and slides from
deeplearning.ai



— 99—
Data, nd | e ———
[ 1 1 | K
GPU,
—M,
- .,_\ S = S
- ' S e O . o s e O

Run the forward pass

Each GPU runs on M,’s parameters using its own data
Only part of each layer’s activations are retained ™ W

Adapted from a blog by MSR and slides from
deeplearning.ai



I—MG—\

pata, = B |

Once M, is complete, GPU, , ; can delete the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai



M M

Data, - '

GPU, GPU,

SN ) S ) S ) S —_— \ J

GPU, GPU,

The forward pass continues across all GPUs on M,

Adapted from a blog by MSR and slides from
deeplearning.ai
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pata, =~ ISSSEEEE————"

GPU,

GPU,

M

HEEE -0

GPU,

o3, =0

GPU,

Once all GPUs have run M,, GPU,, 5 can delete the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai



r—MG—\ f—NIlﬁ
EEEEEEEN - - ST EEEEEEENEN
Data, = [l=====i od

HEEE
GPU, GPU,

od

LA 3

GPU,

Once all GPUs have run M,, GPU,, ; can delete the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai
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Data, = HSEEEHH———— | -~ IS
g EEEEEEEE EEEEEEEE
EEER
GPU, GPU,
,—IVIZﬁ !%M_\

- IS RREE - JEEEREEE - |

] 0
GPU, GPU,

GPU, broadcasts the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai
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GPU,

M

—

GPU,

agls - ¢

J\ )\ J \ J\ J

GPU,

The forward pass continues across all GPUs on M,’s parameters

Adapted from a blog by MSR and slides from
deeplearning.ai
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Data; = [ e

J X \ J\

dEEn
GPU, GPU,

The forward pass continues across all GPUs on M,’s parameters

Adapted from a blog by MSR and slides from
deeplearning.ai



M M

E B E R EEEEEREERN ’ Illl“llll HE B E B EEEEEEEDRN
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0
GPU, GPU,
r—MZﬁ !%ﬁ

m EEEEEEEEEEEEN Do EEEEEEEEEEEN
= ——— = ——— )
I . EEEEEEEE @ ““ .
1] E A
GPU, GPU,

Once all GPUs have run M,, GPU, , 5 can delete the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai
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GPU, GPU,
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ErnEEEEE - EEEEEEEE

GPU, GPU,

GPU; broadcasts the parameters for M,

Adapted from a blog by MSR and slides from
deeplearning.ai



M

patz, =~ IS EEEEEE——

GPU,
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GPU,

GPU,; broadcasts the parameters for M,
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GPU,
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IIII"IIII A E E EEEEEEER II

GPU,

Adapted from a blog by MSR and slides from

deeplearning.ai
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EEEEEEEE EEEEEEEE
GPU, GPU,
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od el RN - IEEEEEEEEEEEil - |

GPU, GPU,

The forward pass continues on all GPUs for M,

Adapted from a blog by MSR and slides from
deeplearning.ai
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. R . 5 I3 O
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GPU, GPU,

The forward pass continues on all GPUs for M;’s parameters

Adapted from a blog by MSR and slides from
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GPU,

The forward pass is complete.

OB E "

M

Loss

- mm———

GPU,
M

GPU,

The loss is computed on each GPU for its respective dataset

Adapted from a blog by MSR and slides from
deeplearning.ai
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GPU,

The backwards pass starts.

M Loss
Illl“llll H E E EEEEEEEEEEEETRE II

: - ——————
Bl b e ey | -

I

GPU,

M, Loss
IIII“IIII H B E E E EEEEEEEEEETDN II

Data, * mmmmm———

GPU,

GPU, , , will hold a temporary buffer M; gradients on Data, , ,

Adapted from a blog by MSR and slides from
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GPU,

The backwards pass proceeds on M,

M Loss

" B B EEEEEEEEREERNERN
'---====‘
GPU,

M; Loss
IIII"I'II HE B E EEEEEEEEEEEETRE II

R

GPU,

The activations for M; are recomputed from the saved partial activations

Adapted from a blog by MSR and slides from
deeplearning.ai
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GPU,
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ENEES

GPU,

The backwards pass proceeds on M,

M Loss

aais °

GPU,

M, Loss
IIII"IIII H B B B E EEEEEEEEEETDRN II

Data, = mmmm——— e

GPU,

Adapted from a blog by MSR and slides from
deeplearning.ai
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GPU,

GPU, , , pass their M; gradients to GPU,

o, -

= — ) ]

M Loss

GPU,
M, Loss

GPU,

GPU; performs gradient accumulation and holds final M, for all Data

Adapted from a blog by MSR and slides from
deeplearning.ai



M M Loss

GPU, GPU,

Loss
H E R E EEEEEEEEERE II*
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EEEES
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GPU, GPU,

GPU, , , pass their M3 gradients to GPU,
GPU, performs gradient accumulation and holds final M, for all Data

Adapted from a blog by MSR and slides from
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M Loss
HE B E B EEEEREEERN ==
Data, -IIIIIIIII-II-I-II-BD*.
i
GPU,
M Loss
H B E E EEEEEEER II
‘l
=
B

GPU,

M Loss

IIII“IIII H B E EEEEEEEERE
m = III-I-I-I-II-I-I-I-II-I-E}[]
[
GPU,
M, Lass
HE E E E EEEEEEER

Data, = e - s |

GPU,

GPU, , , delete their temporary M; gradients and parameters.

All M; activations are deleted
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M M, Loss
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GPU, GPU;

GPU, passes M,’s parameters to GPU, , 5 so they can run the
backwards pass and compute gradients for M,
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The backward pass continues on M,

M Loss
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The activations for M, are recomputed from the saved partial activations
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The backward pass continues on M,

M Loss
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GPU,
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GPU, GPU,

GPU, , 5 pass their M, gradients to GPU,
GPU, performs gradient accumulation and holds final M, gradients for all Data
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M, Loss
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GPUy ; 5 can delete their temporary M, gradients and parameters.

All M, activations are deleted
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GPU, GPU;

GPU, passes M,’s parameters to GPU, , 5 so they can run the backwards pass
and compute gradients for M,
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GPU,

M, Loss
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GPU,, 3 use temporary buffers to hold M,’s gradients
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The backward pass continues on M,

M
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The backward pass continues on M,
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GPU,

The activations for M, are recomputed from the saved partial activations
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GPU,

M
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GPU,

GPUy, , 3 pass their M, gradients to GPU,
GPU, performs gradient accumulation and holds final M, gradients for all Data

Adapted from a blog by MSR and slides from
deeplearning.ai



M M, Loss

HE B RN H E RN
HENRE
Data, = HEEEI————————— m = IIHHBBB-B-B-BE}BE}D
T AEEEEEEE
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M, Loss
CIEEE] e
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GPU, GPU,

GPU, , 5 can delete their temporary M, gradients and parameters.
All M, activations are deleted
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GPU,

M, Loss
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GPU,

M, ﬁ?s
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GPU,

GPU, passes My’s parameters to GPU, , 3 so they can run the backwards pass

and compute gradients for M,
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GPU, GPU,

The backward pass continues on M,
The activations for M, are recomputed from the saved partial activations
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GPU, GPU,

The backward pass continues on M,
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GPU,

GPU,

GPU, , 5 pass their M, gradients to GPU,,

M, Loss
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M, Lass
IIII“IIII EEEE
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GPU,

GPU, performs gradient accumulation and holds final M, gradients for all Data
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GPU, GPU,
Loss

GPU, GPU,

GPU, , 3 pass their M, gradients to GPU,
GPU, performs gradient accumulation and holds final M, gradients for all Data
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GPU, , ; delete their temporary M, gradients and parameters
All M, activations are deleted
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The Optimization step begins in parallel on each GPU

Adapted from a blog by MSR and slides from
deeplearning.ai



M, Loss

Los
:
Data, IIBQB%B*.
EEEEEEEE .
T
Sngaimas @ O 0
EEEEEEEE

n

——r— —
EEEES

The optimizer runs
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The optimizer runs

Los

S

n

M

GPU,

Adapted from a blog by MSR and slides from
deeplearning.ai

Loss

umgﬁ@@e@ﬁ

—"_-'—I_
EEEES

wn



M, Lﬂs M
-l ‘. L L
Data, = Bli————————— o
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The optimizer creates fp32 updated model weights
These are converted to fp16
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The fp16 weights become the model parameters for the next iteration
Training iteration complete!
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The need for two copies

* FP1o offers faster computation and reduced memory
usage.

* Allows for faster forward and backward pass.

e 'P32 weights/optimizer states are needed to ensure high
precision.

Forward/Back .
- . Updated 1n
Weights——— ward pass in >
FP32
FP16
Cradient Computed 1n - Accumulated
FeCLentE FP16 ] in FP32
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Summary

* Training at scale can be achieved by:
* Quantization of parameters
* Data Parallel
* Distributed Data Parallel
* FSDP/ Deepspeed ZeRO
* Model Parallel — Not covered
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