Tricks for Training Neural
Models

(Some slides by Yoav Goldberg, Graham Neubig)



Optimization Choices

 Use Gated Recurrent Unit.

* Adaptive learning rate.

» adaptive optimizers such as Adam (Kingmal4) because they can better handle the complex
training dynamics of RNNs

* Gradient clipping.
* Print or plot the gradient norm to see its usual range
* then scale down gradients that exceeds this range.
* This prevents spikes in the gradients to mess up the parameters during training.

 Early Stopping

* Stacked recurrent networks.
* Recurrent networks need a quadratic number of weights in their layer size.
* More efficient to stack two or three smaller layers instead of one big one.
e Sum the outputs of all layers instead of using only last one, similar to a ResNet/ DenseNet.

https://danijar.com/tips-for-training-recurrent-neural-networks/


https://arxiv.org/pdf/1412.6980.pdf

Normalizations

* Normalizing the loss. (To get losses of similar magnitude across datasets)

* sum the loss terms along the sequence and divide them by the maximum seq
length.

* This makes it easier to reuse hyper parameters between experiments.
* The loss should be averaged across the batch.

e Batch Normalization. fixes the means and variances of each layer's inputs
(Loffe & Szegedy 15)

e Layer Normalization. Adding layer normalization (Ba et al 16) to all linear
mappings of the recurrent network speeds up learning



Batch Normalization

For a layer of the network with d-dimensional input, x = (m(l) ooy w(d) ) each dimension

of its input is then normalized (i.e. re-centered and re-scaled) separately,

(k) ()
:f?z(-k) \/ _Ps ,where k € [1,d] andi € [1, m]; ”J(B) and o
(k)?
o

dimension mean and variance, respectively.

(k)

are the per-

ygk) — ”Y(k) :f:gk) —+ ﬁ(k), adaptive bias and gain

where the parameters ’y(k) and ﬁ(k) are subsequently learned in the optimization process.
k k ..
BNT(@ g(k) ::cg )m — yg )m called the Batch Normalizing transform.

BN for hidden-hidden transitions is not beneficial; BN for input-hidden transitions can speed up learning!



Layer Normalization

Given inputs x over a minibatch of size m, B = {x1, x2, ..., Z, }, each
sample x; contains K elements, i.e. the length of flatten x; is K, by
applying transformation of your inputs using some learned parameters -y
and f3, the outputs could be expressed as B' = {y1,¥y2,-..,Ym }, where

1
ik — Hi b= g 2 i
LiJ =

¥ 1 K
\/ G‘? + € o2 = e ;(mk — i)’

yi = vZ; + = LN, g(x;)

LN can be done for each instance separately — hence it does same computation at training/test time. can work with B=1



Model Parameters (RNN)

* Learned initial state.
* Initializing the hidden state as zeros = large loss initially

* Training the initial state as a variable can improve performance as described in
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

* Forget gate bias.
* |t can take a while for a RNN to learn to remember information
* |nitialize biases for LSTM'’s forget gate to 1 to remember more by default.
* Similarly, initialize biases for GRU’s reset gate to -1.

* Regularization. If your model is overfitting, use dropout

https://danijar.com/tips-for-training-recurrent-neural-networks/


https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html
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(Srivastava et al 2014
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Observations on Dropout

Dropout forces a neural network to learn more robust features that are
useful in conjunction with many different random subsets of the other
neurons.

Dropout roughly doubles the number of iterations required to
converge. However, training time for each epoch is less.

With H hidden units, each of which can be dropped, we have
2H possible models. In testing phase, the entire network is considered
and each activation is reduced by a factor p.

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-

deep-machine-learning-74334da4bfc5



https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-

DropConnect

 Wan et al. (2013)
* Instead of dropping nodes, drop edges (weights)

* Generalization of dropout



Dropout in RNNs

« Still an open question how to perform well.

« One suggestion: apply only to feedforward part of RNN (Zaremba et al 14)
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https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b



https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

Dropout in RNNs

« Still an open question how to perform well.

« Yarin Gal's Variational Dropout (Gal & Ghahramani 2015):

- L | i - B

1

Fi=L T TipL

uses the same dropout mask at each time step, including the recurrent layers (colours representing dropout
masks, solid lines representing dropout, dashed lines representing standard connections with no dropout).

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b



https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

Recurrent Dropout

* (Semenuita et al 2016) C; = f, * Cp—1 + i, % d(g, )

“We demonstrate that recurrent dropout is most effective when applied
to hidden state update vectors in LSTMs rather than to hidden states;
(ii) we observe an improvement in the network’s performance when our
recurrent dropout is coupled with the standard forward dropout,
though the extent of this improvement depends on the values of
dropout rates”

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b



https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

/oneQut

 (Krueger et al 2017)

In a variation on the dropout philosophy, Krueger et al. (2017) proposed
Zoneout where “instead of setting some units’ activations to 0 as in dropout,

zoneout randomly replaces some units’ activations with their activations from the
previous timestep.” this “makes it easier for the network to preserve information

from previous timesteps going forward, and facilitates, rather than hinders, the

flow of gradient information going backward”

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b



https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

Ensembles

 Same model, different initialization.
* Use cross-validation to determine the best hyperparameters,
* then train multiple models with the best set of hyperparameters but with different random initialization.

e Suffers from limited variety

* Top models discovered during cross-validation.
* Use cross-validation to determine the best hyperparameters
* then pick the top few (e.g., 10) models to form the ensemble.
* Improves the variety of ensemble but has the danger of including suboptimal models

 Different checkpoints of a single model.

 |f training is very expensive

* limited success in taking different checkpoints of a single network over time (for example after every
epoch) and using those to form an ensemble.

* Clearly, this suffers from some lack of variety, but can still work reasonably well in practice.

* The advantage of this approach is that is very cheap.

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html



Why are Neural Networks
Slow and What Can we Do?

* Big operations, especially for softmaxes over large
vocabularies

* — Approximate operations or use GPUs

« GPUs love big operations, but hate doing lots of them

* — Reduce the number of operations through
optimized implementations or batching

* Our networks are big, our data sets are big

 — Use parallelism to process many data at once



Parallelism in Computation Graphs

* Three types of parallelism

« Within-operation parallelism
}Model parallelism

 Operation-wise parallelism

 Example-wise parallelism } Data parallelism



Within-operation Parallelism

Thread 1

Thread 2

Thread 3

Thread 4

*» GPUs excel at this!
* Libraries like MKL implement this on CPU, but gains less striking.

» Thread management overhead is counter-productive when operations small.



Operation-wise Parallelism

» Split each operation into a different thread, or
different GPU device

Thread 1 Threws Thread 4

 Difficulty: How do we minimize dependencies and
memory movement?

W/ I tanh(i§) o( #)
\V‘r——




Example-wise Parallelism

* Process each training example in a different thread or machine

this Is an example

this Is another example

this Is the best example

no, I'm the best example

hread 1

hread 2
Thread 3
Thread 4

« Difficulty: How do we accumulate gradients and
keep parameters fresh across machines?



GPUs vs. CPUs

CPU, like a motorcycle GPU, like an airplane

1
A AT

Quick to start, top speed | Takes forever to get off the
not shabby ground, but super-fast

once flying

Image Credit: Wikipedia



Seconds

A Simple Example

* How long does a matrix-matrix multiply take”
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Practically

« Use CPU for profiling, it's plenty fast (esp. DyNet) and you can
run many more experiments

« For many applications, CPU is just as fast or faster than GPU:
NLP analysis tasks with small or complicated data/networks

« You see big gains on GPU when you have:
« \ery big networks (or softmaxes with no approximation)
« Do mini-batching

« Optimize things properly



Batching (in RNNs)

« Most toolkits require a fixed computation graph for all examples.
« But RNNs have different input lengths. What do we do?

« Option 1:
Use a tool that does not pose this limitation.

« Option 2:
Enforce max length + padding for shorter sequences.



Batching Reminder




Batching in RNNs

* Sequential in nature, very little parallelism.
e (Compare, e.g., to a Convolutional Network)

Dilated convolutions for capturing context
(Kalchbrenner et al. 2016): single GPU call for entire
sentence! - = e
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what if the sequences are different lengths?
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Dynet (PyTorch(?)) will identify batching
opportunities for you.
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nodes in red will be executed
using batch operations
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Efficiency Considerations when
Implementing an LSTM

RrsTm(Sj-1,%;) =[cj; hy]
Cj =Cj—1 of+goi
h; =tanh(c;) ® o
i=c(W*.x;+W" . hy_;)
f =o(W* .x; + WP . hy_,)
0 =g(W*° . x; + WP . h;_;)
g =tanh(W™*€ . x; + WPE. h;_,)



Efficiency Considerations when
Implementing an LSTM

RrsTm(Sj-1,%;) =[cj; hy]
Cj =Cj—1 of+goi
h; =tanh(c;) ® o
i=c(W*.x;+W" . hy_;)
f =o(W* .x; + WP . hy_,)
0 =g(W*° . x; + WP . h;_;)
g =tanh(W™*€ . x; + WPE. h;_,)

all gates computations can be done in single mat-mat op.



Speed Trick 1:
Don't Repeat Operations

* Something that you can do once at the beginning

of the sentence, don't do it for every word!
Bad

for x in words in sentence:
vals.append( W * ¢ + x )



Speed Trick 1:
Don't Repeat Operations

* Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x in words in sentence:
vals.append( W * ¢ + x )

Good

Wec=W* cC

for x in words_in_sentence:
vals.append( W c + x )




Speed Trick 2:
Reduce # of Operations

* e.g. can you combine multiple matrix-vector
multiplies Into a single matrix-matrix multiply? Do so!

Bad

for x in words 1n sentence:
vals.append( W * x )
val = dy.concatenate(vals)



Speed Trick 2:
Reduce # of Operations

* e.g. can you combine multiple matrix-vector
multiplies Into a single matrix-matrix multiply? Do so!

Bad

for x in words 1n sentence:
vals.append( W * x )

val = dy.concatenate(vals)
Good
X dy.concatenate cols(words 1n sentence)

val = W * X



Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
# input data for x
# do processing




Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
# input data for x
# do processing

Good

# input data for whole sentence
for x in words 1n sentence:
# do processing




