Neural Language Models Mausam

(Based on slides of Yejin Choi, Yoav Goldberg, Andrej Karpathy, Chris Manning, Graham Neubig, Jay Allamar and Keshav Kolluru)

Outline

- Neural Language Models: LSTMs
- Seq2Seq Models with LSTMs
- Neural Language Models: Transformers
- Seq2Seq Models with Transformers

Sequence Decoder

How do we get the actual sentence from a sequence of probability distributions?

Can you think of a fundamental problem in this design?

Can you think of a fundamental problem in this design?

Called "Auto-regressive models"

- Use LSTMs not BiLSTMs
 - Why?
- When does it stop?
- Define the probability distribution over the next item in a sequence (and hence the probability of a sequence).

 $P(w_{1:n}) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_{1:2})P(w_4 \mid w_{1:3})\dots P(w_n \mid w_{1:n-1})$

$$P(w_1, ..., w_n) = \prod_{i=1}^{n} P(t_i = w_i | w_1, ..., w_{i-1})$$

Neural Language Model: Inference Time

Neural Language Model: Inference Time

Neural Language Model: Greedy Decoding

- What is the function we actually wish to compute?
- $\operatorname{argmax} P(w_{1:n})$ $W_{1:n}$
- Computing this expression is prohibitive.
- Greedy Approach: approximation can be bad because
 - model will never begin a sentence with a low probability word
 - model will prefer many common words to one rare word
- Solution: Beam Search

paths

Instead of picking one greedy path, maintain multiple greedy

- Upto a constant beam of b
- Example for beam size =2

Neural Language Model: Training

Neural Language Model: Training

Neural Language Model: Training (Teacher Forcing)

Neural Language Model: Training (Teacher Forcing)

How to Train this Model?

- Loss function: sum(cross entropy at each prediction)
- Issues with vanilla training
 - Slow convergence. Model instability. Poor skill.
- Simple idea: Teacher Forcing
 - Just feed in the *correct* previous tag during training
- Drawback: **Exposure bias**
 - Not exposed to mistakes during training

Solutions to Exposure Bias

- Scheduled Sampling (Bengio et al. 2015)
 - With some probability, decode a token and feed that as the next input, rather than the gold token.
 - Increase probability over the course of training
- Retrieval Augmentation (Guu et al., 2018)
 - Learn to retrieve a sequence from existing corpus of humanwritten prototypes (e.g. dialogue responses). Learn to edit the retrieved prototype by adding / removing / modifying tokens in the sequence - this will result in more
 - "human-like" generation

Outline

- Neural Language Models: LSTMs
- Seq2Seq Models with LSTMs
- Neural Language Models: Transformers
- Seq2Seq Models with Transformers

Goal

- Generate text based on (varied) inputs
- Examples
 - Machine Translation: Language \rightarrow Language
 - Summarization: Language \rightarrow Language
 - Dialogue Systems: Language \rightarrow Language
 - Speech Recognition: Speech \rightarrow Language
 - Image Captioning: Image \rightarrow Language
 - Video Captioning: Video \rightarrow Language
 - Speech Recognition in Videos: Video+Speech \rightarrow Language

Goal

- Generate text based on (varied) inputs
- Examples
 - Machine Translation: Language \rightarrow Language
 - Summarization: Language \rightarrow Language
 - Dialogue Systems: Language \rightarrow Language
 - Speech Recognition: Speech \rightarrow Language
 - Image Captioning: Image \rightarrow Language
 - Video Captioning: Video \rightarrow Language
 - Speech Recognition in Videos: Video+Speech \rightarrow Language

Seq2Seq

Idea 1: Encoder-Decoder

- Encode the input
- Pass the representation as starting state (s_0) to neural language model

Idea 2: Encoder-Decoder

- Pass encoder output as input to *each* decoder unit
- Input at decoder = concat(c, x_{prev word})

Multiple Encoded Vectors → Single Summary $c = \sum_{i=1}^{r} \alpha_i . h_i$ $\alpha_{1:T} = \operatorname{softmax}(\overline{\alpha}_1, \overline{\alpha}_2, \dots, \overline{\alpha}_T)$ С $\bar{\alpha}_i = \phi^{\text{att}}(q, h_i)$ $\overline{\alpha}_5, h_5$ $\bar{\alpha}_1$, h_1 $\bar{\alpha}_3, h_3$ $\bar{\alpha}_2$, h_2 LSTM LSTM LSTM LSTM

राम

को

रावण

$$h_{1:T} = \text{biLSTM}_{enc}(x_1)$$

$$\bar{\alpha}_{i}^{j} = \phi^{\text{att}}(s_{j-1}, h_{i})$$

$$\alpha^{j} = \text{softmax}\left(\bar{\alpha}_{1}^{j}, \bar{\alpha}_{2}^{j}, \dots \right)$$

$$c^{j} = \sum_{i=1}^{T} \alpha_{i}^{j} \cdot h_{i}$$

$$s_j = \text{LSTM}_{dec}(s_{j-1}, x_{z[j-1]})$$

 $p_j(w) = \operatorname{softmax}(\operatorname{MLP}^{\operatorname{out}}(s_j))$ $z[j] \sim p_j(w)$

 $[-1], C^{j}$

Encoder-Decoder with Attention

- Encoder encodes a sequence of vectors, h₁,...,h_τ
- At each decoding stage, MLP ϕ assigns a relevance score to each Encoder vector.
- The relevance score is based on h_i and the state s_{i-1}
- Weighted-sum (based on relevance) is used to produce the conditioning context for decoder step j.

Encoder-Decoder with Attention

- Decoder "pays attention" to different parts of encoded sequence at each stage.
- The attention mechanism is "soft" -- it is a mixture of encoder states.
- The encoder acts as a read-only memory for the decoder
- The decoder chooses what to read at each stage
- Complexity
 - Encoder Decoder: O(n+m)
 - Encoder Decoder w/ Attention: O(nm)

Attention

Outline

- Neural Language Models: LSTMs
- Seq2Seq Models with LSTMs
- Neural Language Models: Transformers
- Seq2Seq Models with Transformers

Images from https://jalammar.github.io/illustrated-transformer/

Decoders

One key differences from encoder:

 Self-attention only on words generated uptil now, not on whole sentence.

Transformer Decoder

 Need to ensure we don't "look at the future" when predicting a sequence

Probabilities

Transformer Language Model

Outline

- Neural Language Models: LSTMs
- Seq2Seq Models with LSTMs
- Neural Language Models: Transformers
- Seq2Seq Models with Transformers

Transformers

Encoder-Decoder

One key differences from decoder:

 Additional encoder-decoder attention layer where keys, values come from last encoder layer.

Encoder-Decoder

- we process the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform cross-attention to the output of the Encoder.

Cross-Attention Details

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like standard key-value attention
- Let $h_1, ..., h_n$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let z_1, \ldots, z_n be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the encoder (like a memory):

• $k_i = Kh_i$, $v_i = Vh_i$.

And the queries are drawn from the decoder, q_i = Qz_i.

The Revolutionary Impact of Transformers

- Almost all current-day leading language models use Transformer building blocks.
 - E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, ... almost anything we can name
 - Transformer-based models dominate nearly all NLP leaderboards.
- Since Transformer has been popularized in language applications, computer vision also adapted Transformers, e.g., Vision

Transformers.

Transformer Examples

https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder

Do Transformer Modifications Transfer Across Implementations and Applications?

- Generally, no!
 - (Narang et al 2021)

Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02	26.62
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13	26.47
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34	26.75
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02	26.08
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34	27.12
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87	26.87
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87	27.02
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99
SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02
LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34	26.53
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	74.31	17.51	23.02	26.30
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34	26.89
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14
Rezero	223M	11.1T	3.51	2.262 ± 0.003	1.939	61.69	15.64	20.90	26.37
Rezero + LayerNorm	223M	11.1T	3.26	2.223 ± 0.006	1.858	70.42	17.58	23.02	26.29
Rezero + RMS Norm	223M	11.1T	3.34	2.221 ± 0.009	1.875	70.33	17.32	23.02	26.19
Fixup	223M	11.17	2.95	2.382 ± 0.012	2.067	58.56	14.42	23.02	26.31
24 layers, $d_{\rm ff} = 1536, H = 6$	224M	11.1T	3.33	2.200 ± 0.007	1.843	74.89	17.75	25.13	26.89
18 layers, $a_{\rm ff} = 2048$, $H = 8$	223M	11.17	3.38	2.185 ± 0.005	1.831	70.45	10.83	24.34	27.10
8 layers, $d_{\rm ff} = 4008$, $H = 18$	223M 222M	11.17	3.69	2.190 ± 0.005	1.847	74.58	17.69	23.28	26.85
0 layers, $a_{\rm ff} = 0144$, $H = 24$	223M	11.11	3.70	2.201 ± 0.010	1.807	73.00	17.59	24.00	20.00
Block sharing	65M	11.1T	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48
+ Factorized embeddings	45M	9.4T	4.21	2.631 ± 0.305	2.183	60.84	14.00	19.84	25.27
+ Factorized & shared em-	20M	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
beddings	10014		0.00	0.000 1.0.000	1.000	00.00	10.00	00.00	20.22
Encoder only block sharing	170M	11.17	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23
Decoder only block sharing	144M	11.17	3.70	2.352 ± 0.029	2.082	67.93	16.13	23.81	26.08
Factorized Embedding	227M	9.4T	3.80	2.208 ± 0.006	1.855	70.41	15.92	22.75	26.50
Factorized & shared embed-	202M	9.1T	3.92	2.320 ± 0.010	1.952	68.69	16.33	22.22	26.44
dings									
Tied encoder/decoder in-	248M	11.1T	3.55	2.192 ± 0.002	1.840	71.70	17.72	24.34	26.49
put embeddings									
Tied decoder input and out-	248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67
put embeddings									
Untied embeddings	273M	11.1T	3.53	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	204M	9.2T	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66
Adaptive softmax	204M	9.2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56
Adaptive softmax without	223M	10.8T	3.43	2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72
projection									
Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82
Transparent attention	223M	11.1T	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80
Dynamic convolution	257M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73
Evolved Transformer	217M	9.9T	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58
Synthesizer (dense)	224M	11.4T	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63
Synthesizer (dense plus)	243M	12.6T	3.22	2.191 ± 0.010	1.840	73.98	16.96	23.81	26.71
Synthesizer (dense plus al-	243M	12.6T	3.01	2.180 ± 0.007	1.828	74.25	17.02	23.28	26.61
pha)									
Synthesizer (factorized)	207M	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42
Synthesizer (random)	254M	10.1T	4.08	2.326 ± 0.012	2.009	54.27	10.35	19.56	26.44
Synthesizer (random plus)	292M	12.0T	3.63	2.189 ± 0.004	1.842	73.32	17.04	24.87	26.43
Synthesizer (random plus	292M	12.0T	3.42	2.186 ± 0.007	1.828	75.24	17.08	24.08	26.39
alpha)		10.000		a 100 i c		B C 17		40.00	00 C .
Universal Transformer	84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91
Mixture of experts	648M	11.7T	3.20	2.148 ± 0.006	1.785	74.55	18.13	24.08	26.94
Switch Transformer	1100M	11.7T	3.18	2.135 ± 0.007	1.758	75.38	18.02	26.19	26.81
Funnel Transformer	223M	1.9T	4.30	2.288 ± 0.008	1.918	67.34	16.26	22.75	23.20
Weighted Transformer	280M	71.07	0.59	2.378 ± 0.021	1.989	69.04	16.98	23.02	26.30
Product key memory	421M	386.67	0.25	2.155 ± 0.003	1.798	75.16	17.04	23.55	26.73

Transformers (2017) Made Many Changes at Once!

- Delete all RNN components \rightarrow Position encodings
- Residual connections
- Interspersing of Attention and MLP layers
- LayerNorms
- Multiple heads
- Carefully tuned hyperparameters
- Most original choices have stuck
 - sinusoidal embeddings!

What is missing in Transformers?

- Long sequence length
- External memory
- Better human controllability
- Align with language models of brain